//===- PTXInstrInfo.td - PTX Instruction defs -----------------*- tblgen-*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the PTX instructions in TableGen format. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Instruction format superclass //===----------------------------------------------------------------------===// include "PTXInstrFormats.td" //===----------------------------------------------------------------------===// // Code Generation Predicates //===----------------------------------------------------------------------===// // Addressing def Use32BitAddresses : Predicate<"!getSubtarget().is64Bit()">; def Use64BitAddresses : Predicate<"getSubtarget().is64Bit()">; // Shader Model Support def FDivNeedsRoundingMode : Predicate<"getSubtarget().fdivNeedsRoundingMode()">; def FDivNoRoundingMode : Predicate<"!getSubtarget().fdivNeedsRoundingMode()">; def FMadNeedsRoundingMode : Predicate<"getSubtarget().fmadNeedsRoundingMode()">; def FMadNoRoundingMode : Predicate<"!getSubtarget().fmadNeedsRoundingMode()">; // PTX Version Support def SupportsPTX21 : Predicate<"getSubtarget().supportsPTX21()">; def DoesNotSupportPTX21 : Predicate<"!getSubtarget().supportsPTX21()">; def SupportsPTX22 : Predicate<"getSubtarget().supportsPTX22()">; def DoesNotSupportPTX22 : Predicate<"!getSubtarget().supportsPTX22()">; def SupportsPTX23 : Predicate<"getSubtarget().supportsPTX23()">; def DoesNotSupportPTX23 : Predicate<"!getSubtarget().supportsPTX23()">; // Fused-Multiply Add def SupportsFMA : Predicate<"getSubtarget().supportsFMA()">; def DoesNotSupportFMA : Predicate<"!getSubtarget().supportsFMA()">; //===----------------------------------------------------------------------===// // Instruction Pattern Stuff //===----------------------------------------------------------------------===// def load_global : PatFrag<(ops node:$ptr), (load node:$ptr), [{ const Value *Src; const PointerType *PT; if ((Src = cast<LoadSDNode>(N)->getSrcValue()) && (PT = dyn_cast<PointerType>(Src->getType()))) return PT->getAddressSpace() == PTX::GLOBAL; return false; }]>; def load_constant : PatFrag<(ops node:$ptr), (load node:$ptr), [{ const Value *Src; const PointerType *PT; if ((Src = cast<LoadSDNode>(N)->getSrcValue()) && (PT = dyn_cast<PointerType>(Src->getType()))) return PT->getAddressSpace() == PTX::CONSTANT; return false; }]>; def load_local : PatFrag<(ops node:$ptr), (load node:$ptr), [{ const Value *Src; const PointerType *PT; if ((Src = cast<LoadSDNode>(N)->getSrcValue()) && (PT = dyn_cast<PointerType>(Src->getType()))) return PT->getAddressSpace() == PTX::LOCAL; return false; }]>; def load_parameter : PatFrag<(ops node:$ptr), (load node:$ptr), [{ const Value *Src; const PointerType *PT; if ((Src = cast<LoadSDNode>(N)->getSrcValue()) && (PT = dyn_cast<PointerType>(Src->getType()))) return PT->getAddressSpace() == PTX::PARAMETER; return false; }]>; def load_shared : PatFrag<(ops node:$ptr), (load node:$ptr), [{ const Value *Src; const PointerType *PT; if ((Src = cast<LoadSDNode>(N)->getSrcValue()) && (PT = dyn_cast<PointerType>(Src->getType()))) return PT->getAddressSpace() == PTX::SHARED; return false; }]>; def store_global : PatFrag<(ops node:$d, node:$ptr), (store node:$d, node:$ptr), [{ const Value *Src; const PointerType *PT; if ((Src = cast<StoreSDNode>(N)->getSrcValue()) && (PT = dyn_cast<PointerType>(Src->getType()))) return PT->getAddressSpace() == PTX::GLOBAL; return false; }]>; def store_local : PatFrag<(ops node:$d, node:$ptr), (store node:$d, node:$ptr), [{ const Value *Src; const PointerType *PT; if ((Src = cast<StoreSDNode>(N)->getSrcValue()) && (PT = dyn_cast<PointerType>(Src->getType()))) return PT->getAddressSpace() == PTX::LOCAL; return false; }]>; def store_parameter : PatFrag<(ops node:$d, node:$ptr), (store node:$d, node:$ptr), [{ const Value *Src; const PointerType *PT; if ((Src = cast<StoreSDNode>(N)->getSrcValue()) && (PT = dyn_cast<PointerType>(Src->getType()))) return PT->getAddressSpace() == PTX::PARAMETER; return false; }]>; def store_shared : PatFrag<(ops node:$d, node:$ptr), (store node:$d, node:$ptr), [{ const Value *Src; const PointerType *PT; if ((Src = cast<StoreSDNode>(N)->getSrcValue()) && (PT = dyn_cast<PointerType>(Src->getType()))) return PT->getAddressSpace() == PTX::SHARED; return false; }]>; // Addressing modes. def ADDRrr32 : ComplexPattern<i32, 2, "SelectADDRrr", [], []>; def ADDRrr64 : ComplexPattern<i64, 2, "SelectADDRrr", [], []>; def ADDRri32 : ComplexPattern<i32, 2, "SelectADDRri", [], []>; def ADDRri64 : ComplexPattern<i64, 2, "SelectADDRri", [], []>; def ADDRii32 : ComplexPattern<i32, 2, "SelectADDRii", [], []>; def ADDRii64 : ComplexPattern<i64, 2, "SelectADDRii", [], []>; // Address operands def MEMri32 : Operand<i32> { let PrintMethod = "printMemOperand"; let MIOperandInfo = (ops RegI32, i32imm); } def MEMri64 : Operand<i64> { let PrintMethod = "printMemOperand"; let MIOperandInfo = (ops RegI64, i64imm); } def MEMii32 : Operand<i32> { let PrintMethod = "printMemOperand"; let MIOperandInfo = (ops i32imm, i32imm); } def MEMii64 : Operand<i64> { let PrintMethod = "printMemOperand"; let MIOperandInfo = (ops i64imm, i64imm); } // The operand here does not correspond to an actual address, so we // can use i32 in 64-bit address modes. def MEMpi : Operand<i32> { let PrintMethod = "printParamOperand"; let MIOperandInfo = (ops i32imm); } def MEMret : Operand<i32> { let PrintMethod = "printReturnOperand"; let MIOperandInfo = (ops i32imm); } // Branch & call targets have OtherVT type. def brtarget : Operand<OtherVT>; def calltarget : Operand<i32>; //===----------------------------------------------------------------------===// // PTX Specific Node Definitions //===----------------------------------------------------------------------===// // PTX allow generic 3-reg shifts like shl r0, r1, r2 def PTXshl : SDNode<"ISD::SHL", SDTIntBinOp>; def PTXsrl : SDNode<"ISD::SRL", SDTIntBinOp>; def PTXsra : SDNode<"ISD::SRA", SDTIntBinOp>; def PTXexit : SDNode<"PTXISD::EXIT", SDTNone, [SDNPHasChain]>; def PTXret : SDNode<"PTXISD::RET", SDTNone, [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; def PTXcopyaddress : SDNode<"PTXISD::COPY_ADDRESS", SDTypeProfile<1, 1, []>, []>; // Load/store .param space def PTXloadparam : SDNode<"PTXISD::LOAD_PARAM", SDTypeProfile<1, 1, [SDTCisVT<1, i32>]>, [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue]>; def PTXstoreparam : SDNode<"PTXISD::STORE_PARAM", SDTypeProfile<0, 2, [SDTCisVT<0, i32>]>, [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue]>; //===----------------------------------------------------------------------===// // Instruction Class Templates //===----------------------------------------------------------------------===// //===- Floating-Point Instructions - 2 Operand Form -----------------------===// multiclass PTX_FLOAT_2OP<string opcstr, SDNode opnode> { def rr32 : InstPTX<(outs RegF32:$d), (ins RegF32:$a), !strconcat(opcstr, ".f32\t$d, $a"), [(set RegF32:$d, (opnode RegF32:$a))]>; def ri32 : InstPTX<(outs RegF32:$d), (ins f32imm:$a), !strconcat(opcstr, ".f32\t$d, $a"), [(set RegF32:$d, (opnode fpimm:$a))]>; def rr64 : InstPTX<(outs RegF64:$d), (ins RegF64:$a), !strconcat(opcstr, ".f64\t$d, $a"), [(set RegF64:$d, (opnode RegF64:$a))]>; def ri64 : InstPTX<(outs RegF64:$d), (ins f64imm:$a), !strconcat(opcstr, ".f64\t$d, $a"), [(set RegF64:$d, (opnode fpimm:$a))]>; } //===- Floating-Point Instructions - 3 Operand Form -----------------------===// multiclass PTX_FLOAT_3OP<string opcstr, SDNode opnode> { def rr32 : InstPTX<(outs RegF32:$d), (ins RegF32:$a, RegF32:$b), !strconcat(opcstr, ".f32\t$d, $a, $b"), [(set RegF32:$d, (opnode RegF32:$a, RegF32:$b))]>; def ri32 : InstPTX<(outs RegF32:$d), (ins RegF32:$a, f32imm:$b), !strconcat(opcstr, ".f32\t$d, $a, $b"), [(set RegF32:$d, (opnode RegF32:$a, fpimm:$b))]>; def rr64 : InstPTX<(outs RegF64:$d), (ins RegF64:$a, RegF64:$b), !strconcat(opcstr, ".f64\t$d, $a, $b"), [(set RegF64:$d, (opnode RegF64:$a, RegF64:$b))]>; def ri64 : InstPTX<(outs RegF64:$d), (ins RegF64:$a, f64imm:$b), !strconcat(opcstr, ".f64\t$d, $a, $b"), [(set RegF64:$d, (opnode RegF64:$a, fpimm:$b))]>; } //===- Floating-Point Instructions - 4 Operand Form -----------------------===// multiclass PTX_FLOAT_4OP<string opcstr, SDNode opnode1, SDNode opnode2> { def rrr32 : InstPTX<(outs RegF32:$d), (ins RegF32:$a, RegF32:$b, RegF32:$c), !strconcat(opcstr, ".f32\t$d, $a, $b, $c"), [(set RegF32:$d, (opnode2 (opnode1 RegF32:$a, RegF32:$b), RegF32:$c))]>; def rri32 : InstPTX<(outs RegF32:$d), (ins RegF32:$a, RegF32:$b, f32imm:$c), !strconcat(opcstr, ".f32\t$d, $a, $b, $c"), [(set RegF32:$d, (opnode2 (opnode1 RegF32:$a, RegF32:$b), fpimm:$c))]>; def rrr64 : InstPTX<(outs RegF64:$d), (ins RegF64:$a, RegF64:$b, RegF64:$c), !strconcat(opcstr, ".f64\t$d, $a, $b, $c"), [(set RegF64:$d, (opnode2 (opnode1 RegF64:$a, RegF64:$b), RegF64:$c))]>; def rri64 : InstPTX<(outs RegF64:$d), (ins RegF64:$a, RegF64:$b, f64imm:$c), !strconcat(opcstr, ".f64\t$d, $a, $b, $c"), [(set RegF64:$d, (opnode2 (opnode1 RegF64:$a, RegF64:$b), fpimm:$c))]>; } multiclass INT3<string opcstr, SDNode opnode> { def rr16 : InstPTX<(outs RegI16:$d), (ins RegI16:$a, RegI16:$b), !strconcat(opcstr, ".u16\t$d, $a, $b"), [(set RegI16:$d, (opnode RegI16:$a, RegI16:$b))]>; def ri16 : InstPTX<(outs RegI16:$d), (ins RegI16:$a, i16imm:$b), !strconcat(opcstr, ".u16\t$d, $a, $b"), [(set RegI16:$d, (opnode RegI16:$a, imm:$b))]>; def rr32 : InstPTX<(outs RegI32:$d), (ins RegI32:$a, RegI32:$b), !strconcat(opcstr, ".u32\t$d, $a, $b"), [(set RegI32:$d, (opnode RegI32:$a, RegI32:$b))]>; def ri32 : InstPTX<(outs RegI32:$d), (ins RegI32:$a, i32imm:$b), !strconcat(opcstr, ".u32\t$d, $a, $b"), [(set RegI32:$d, (opnode RegI32:$a, imm:$b))]>; def rr64 : InstPTX<(outs RegI64:$d), (ins RegI64:$a, RegI64:$b), !strconcat(opcstr, ".u64\t$d, $a, $b"), [(set RegI64:$d, (opnode RegI64:$a, RegI64:$b))]>; def ri64 : InstPTX<(outs RegI64:$d), (ins RegI64:$a, i64imm:$b), !strconcat(opcstr, ".u64\t$d, $a, $b"), [(set RegI64:$d, (opnode RegI64:$a, imm:$b))]>; } multiclass PTX_LOGIC<string opcstr, SDNode opnode> { def ripreds : InstPTX<(outs RegPred:$d), (ins RegPred:$a, i1imm:$b), !strconcat(opcstr, ".pred\t$d, $a, $b"), [(set RegPred:$d, (opnode RegPred:$a, imm:$b))]>; def rrpreds : InstPTX<(outs RegPred:$d), (ins RegPred:$a, RegPred:$b), !strconcat(opcstr, ".pred\t$d, $a, $b"), [(set RegPred:$d, (opnode RegPred:$a, RegPred:$b))]>; def rr16 : InstPTX<(outs RegI16:$d), (ins RegI16:$a, RegI16:$b), !strconcat(opcstr, ".b16\t$d, $a, $b"), [(set RegI16:$d, (opnode RegI16:$a, RegI16:$b))]>; def ri16 : InstPTX<(outs RegI16:$d), (ins RegI16:$a, i16imm:$b), !strconcat(opcstr, ".b16\t$d, $a, $b"), [(set RegI16:$d, (opnode RegI16:$a, imm:$b))]>; def rr32 : InstPTX<(outs RegI32:$d), (ins RegI32:$a, RegI32:$b), !strconcat(opcstr, ".b32\t$d, $a, $b"), [(set RegI32:$d, (opnode RegI32:$a, RegI32:$b))]>; def ri32 : InstPTX<(outs RegI32:$d), (ins RegI32:$a, i32imm:$b), !strconcat(opcstr, ".b32\t$d, $a, $b"), [(set RegI32:$d, (opnode RegI32:$a, imm:$b))]>; def rr64 : InstPTX<(outs RegI64:$d), (ins RegI64:$a, RegI64:$b), !strconcat(opcstr, ".b64\t$d, $a, $b"), [(set RegI64:$d, (opnode RegI64:$a, RegI64:$b))]>; def ri64 : InstPTX<(outs RegI64:$d), (ins RegI64:$a, i64imm:$b), !strconcat(opcstr, ".b64\t$d, $a, $b"), [(set RegI64:$d, (opnode RegI64:$a, imm:$b))]>; } multiclass INT3ntnc<string opcstr, SDNode opnode> { def rr16 : InstPTX<(outs RegI16:$d), (ins RegI16:$a, RegI16:$b), !strconcat(opcstr, "16\t$d, $a, $b"), [(set RegI16:$d, (opnode RegI16:$a, RegI16:$b))]>; def rr32 : InstPTX<(outs RegI32:$d), (ins RegI32:$a, RegI32:$b), !strconcat(opcstr, "32\t$d, $a, $b"), [(set RegI32:$d, (opnode RegI32:$a, RegI32:$b))]>; def rr64 : InstPTX<(outs RegI64:$d), (ins RegI64:$a, RegI64:$b), !strconcat(opcstr, "64\t$d, $a, $b"), [(set RegI64:$d, (opnode RegI64:$a, RegI64:$b))]>; def ri16 : InstPTX<(outs RegI16:$d), (ins RegI16:$a, i16imm:$b), !strconcat(opcstr, "16\t$d, $a, $b"), [(set RegI16:$d, (opnode RegI16:$a, imm:$b))]>; def ri32 : InstPTX<(outs RegI32:$d), (ins RegI32:$a, i32imm:$b), !strconcat(opcstr, "32\t$d, $a, $b"), [(set RegI32:$d, (opnode RegI32:$a, imm:$b))]>; def ri64 : InstPTX<(outs RegI64:$d), (ins RegI64:$a, i64imm:$b), !strconcat(opcstr, "64\t$d, $a, $b"), [(set RegI64:$d, (opnode RegI64:$a, imm:$b))]>; def ir16 : InstPTX<(outs RegI16:$d), (ins i16imm:$a, RegI16:$b), !strconcat(opcstr, "16\t$d, $a, $b"), [(set RegI16:$d, (opnode imm:$a, RegI16:$b))]>; def ir32 : InstPTX<(outs RegI32:$d), (ins i32imm:$a, RegI32:$b), !strconcat(opcstr, "32\t$d, $a, $b"), [(set RegI32:$d, (opnode imm:$a, RegI32:$b))]>; def ir64 : InstPTX<(outs RegI64:$d), (ins i64imm:$a, RegI64:$b), !strconcat(opcstr, "64\t$d, $a, $b"), [(set RegI64:$d, (opnode imm:$a, RegI64:$b))]>; } multiclass PTX_SETP_I<RegisterClass RC, string regclsname, Operand immcls, CondCode cmp, string cmpstr> { // TODO support 5-operand format: p|q, a, b, c def rr : InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b), !strconcat("setp.", cmpstr, ".", regclsname, "\t$p, $a, $b"), [(set RegPred:$p, (setcc RC:$a, RC:$b, cmp))]>; def ri : InstPTX<(outs RegPred:$p), (ins RC:$a, immcls:$b), !strconcat("setp.", cmpstr, ".", regclsname, "\t$p, $a, $b"), [(set RegPred:$p, (setcc RC:$a, imm:$b, cmp))]>; def rr_and_r : InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c), !strconcat("setp.", cmpstr, ".and.", regclsname, "\t$p, $a, $b, $c"), [(set RegPred:$p, (and (setcc RC:$a, RC:$b, cmp), RegPred:$c))]>; def ri_and_r : InstPTX<(outs RegPred:$p), (ins RC:$a, immcls:$b, RegPred:$c), !strconcat("setp.", cmpstr, ".and.", regclsname, "\t$p, $a, $b, $c"), [(set RegPred:$p, (and (setcc RC:$a, imm:$b, cmp), RegPred:$c))]>; def rr_or_r : InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c), !strconcat("setp.", cmpstr, ".or.", regclsname, "\t$p, $a, $b, $c"), [(set RegPred:$p, (or (setcc RC:$a, RC:$b, cmp), RegPred:$c))]>; def ri_or_r : InstPTX<(outs RegPred:$p), (ins RC:$a, immcls:$b, RegPred:$c), !strconcat("setp.", cmpstr, ".or.", regclsname, "\t$p, $a, $b, $c"), [(set RegPred:$p, (or (setcc RC:$a, imm:$b, cmp), RegPred:$c))]>; def rr_xor_r : InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c), !strconcat("setp.", cmpstr, ".xor.", regclsname, "\t$p, $a, $b, $c"), [(set RegPred:$p, (xor (setcc RC:$a, RC:$b, cmp), RegPred:$c))]>; def ri_xor_r : InstPTX<(outs RegPred:$p), (ins RC:$a, immcls:$b, RegPred:$c), !strconcat("setp.", cmpstr, ".xor.", regclsname, "\t$p, $a, $b, $c"), [(set RegPred:$p, (xor (setcc RC:$a, imm:$b, cmp), RegPred:$c))]>; def rr_and_not_r : InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c), !strconcat("setp.", cmpstr, ".and.", regclsname, "\t$p, $a, $b, !$c"), [(set RegPred:$p, (and (setcc RC:$a, RC:$b, cmp), (not RegPred:$c)))]>; def ri_and_not_r : InstPTX<(outs RegPred:$p), (ins RC:$a, immcls:$b, RegPred:$c), !strconcat("setp.", cmpstr, ".and.", regclsname, "\t$p, $a, $b, !$c"), [(set RegPred:$p, (and (setcc RC:$a, imm:$b, cmp), (not RegPred:$c)))]>; def rr_or_not_r : InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c), !strconcat("setp.", cmpstr, ".or.", regclsname, "\t$p, $a, $b, !$c"), [(set RegPred:$p, (or (setcc RC:$a, RC:$b, cmp), (not RegPred:$c)))]>; def ri_or_not_r : InstPTX<(outs RegPred:$p), (ins RC:$a, immcls:$b, RegPred:$c), !strconcat("setp.", cmpstr, ".or.", regclsname, "\t$p, $a, $b, !$c"), [(set RegPred:$p, (or (setcc RC:$a, imm:$b, cmp), (not RegPred:$c)))]>; def rr_xor_not_r : InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c), !strconcat("setp.", cmpstr, ".xor.", regclsname, "\t$p, $a, $b, !$c"), [(set RegPred:$p, (xor (setcc RC:$a, RC:$b, cmp), (not RegPred:$c)))]>; def ri_xor_not_r : InstPTX<(outs RegPred:$p), (ins RC:$a, immcls:$b, RegPred:$c), !strconcat("setp.", cmpstr, ".xor.", regclsname, "\t$p, $a, $b, !$c"), [(set RegPred:$p, (xor (setcc RC:$a, imm:$b, cmp), (not RegPred:$c)))]>; } multiclass PTX_SETP_FP<RegisterClass RC, string regclsname, CondCode ucmp, CondCode ocmp, string cmpstr> { // TODO support 5-operand format: p|q, a, b, c def rr_u : InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b), !strconcat("setp.", cmpstr, "u.", regclsname, "\t$p, $a, $b"), [(set RegPred:$p, (setcc RC:$a, RC:$b, ucmp))]>; def rr_o : InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b), !strconcat("setp.", cmpstr, ".", regclsname, "\t$p, $a, $b"), [(set RegPred:$p, (setcc RC:$a, RC:$b, ocmp))]>; def rr_and_r_u : InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c), !strconcat("setp.", cmpstr, "u.and.", regclsname, "\t$p, $a, $b, $c"), [(set RegPred:$p, (and (setcc RC:$a, RC:$b, ucmp), RegPred:$c))]>; def rr_and_r_o : InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c), !strconcat("setp.", cmpstr, ".and.", regclsname, "\t$p, $a, $b, $c"), [(set RegPred:$p, (and (setcc RC:$a, RC:$b, ocmp), RegPred:$c))]>; def rr_or_r_u : InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c), !strconcat("setp.", cmpstr, "u.or.", regclsname, "\t$p, $a, $b, $c"), [(set RegPred:$p, (or (setcc RC:$a, RC:$b, ucmp), RegPred:$c))]>; def rr_or_r_o : InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c), !strconcat("setp.", cmpstr, ".or.", regclsname, "\t$p, $a, $b, $c"), [(set RegPred:$p, (or (setcc RC:$a, RC:$b, ocmp), RegPred:$c))]>; def rr_xor_r_u : InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c), !strconcat("setp.", cmpstr, "u.xor.", regclsname, "\t$p, $a, $b, $c"), [(set RegPred:$p, (xor (setcc RC:$a, RC:$b, ucmp), RegPred:$c))]>; def rr_xor_r_o : InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c), !strconcat("setp.", cmpstr, ".xor.", regclsname, "\t$p, $a, $b, $c"), [(set RegPred:$p, (xor (setcc RC:$a, RC:$b, ocmp), RegPred:$c))]>; def rr_and_not_r_u : InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c), !strconcat("setp.", cmpstr, "u.and.", regclsname, "\t$p, $a, $b, !$c"), [(set RegPred:$p, (and (setcc RC:$a, RC:$b, ucmp), (not RegPred:$c)))]>; def rr_and_not_r_o : InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c), !strconcat("setp.", cmpstr, ".and.", regclsname, "\t$p, $a, $b, !$c"), [(set RegPred:$p, (and (setcc RC:$a, RC:$b, ocmp), (not RegPred:$c)))]>; def rr_or_not_r_u : InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c), !strconcat("setp.", cmpstr, "u.or.", regclsname, "\t$p, $a, $b, !$c"), [(set RegPred:$p, (or (setcc RC:$a, RC:$b, ucmp), (not RegPred:$c)))]>; def rr_or_not_r_o : InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c), !strconcat("setp.", cmpstr, ".or.", regclsname, "\t$p, $a, $b, !$c"), [(set RegPred:$p, (or (setcc RC:$a, RC:$b, ocmp), (not RegPred:$c)))]>; def rr_xor_not_r_u : InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c), !strconcat("setp.", cmpstr, "u.xor.", regclsname, "\t$p, $a, $b, !$c"), [(set RegPred:$p, (xor (setcc RC:$a, RC:$b, ucmp), (not RegPred:$c)))]>; def rr_xor_not_r_o : InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c), !strconcat("setp.", cmpstr, ".xor.", regclsname, "\t$p, $a, $b, !$c"), [(set RegPred:$p, (xor (setcc RC:$a, RC:$b, ocmp), (not RegPred:$c)))]>; } multiclass PTX_SELP<RegisterClass RC, string regclsname> { def rr : InstPTX<(outs RC:$r), (ins RegPred:$a, RC:$b, RC:$c), !strconcat("selp.", regclsname, "\t$r, $b, $c, $a"), [(set RC:$r, (select RegPred:$a, RC:$b, RC:$c))]>; } multiclass PTX_LD<string opstr, string typestr, RegisterClass RC, PatFrag pat_load> { def rr32 : InstPTX<(outs RC:$d), (ins MEMri32:$a), !strconcat(opstr, !strconcat(typestr, "\t$d, [$a]")), [(set RC:$d, (pat_load ADDRrr32:$a))]>, Requires<[Use32BitAddresses]>; def rr64 : InstPTX<(outs RC:$d), (ins MEMri64:$a), !strconcat(opstr, !strconcat(typestr, "\t$d, [$a]")), [(set RC:$d, (pat_load ADDRrr64:$a))]>, Requires<[Use64BitAddresses]>; def ri32 : InstPTX<(outs RC:$d), (ins MEMri32:$a), !strconcat(opstr, !strconcat(typestr, "\t$d, [$a]")), [(set RC:$d, (pat_load ADDRri32:$a))]>, Requires<[Use32BitAddresses]>; def ri64 : InstPTX<(outs RC:$d), (ins MEMri64:$a), !strconcat(opstr, !strconcat(typestr, "\t$d, [$a]")), [(set RC:$d, (pat_load ADDRri64:$a))]>, Requires<[Use64BitAddresses]>; def ii32 : InstPTX<(outs RC:$d), (ins MEMii32:$a), !strconcat(opstr, !strconcat(typestr, "\t$d, [$a]")), [(set RC:$d, (pat_load ADDRii32:$a))]>, Requires<[Use32BitAddresses]>; def ii64 : InstPTX<(outs RC:$d), (ins MEMii64:$a), !strconcat(opstr, !strconcat(typestr, "\t$d, [$a]")), [(set RC:$d, (pat_load ADDRii64:$a))]>, Requires<[Use64BitAddresses]>; } multiclass PTX_LD_ALL<string opstr, PatFrag pat_load> { defm u16 : PTX_LD<opstr, ".u16", RegI16, pat_load>; defm u32 : PTX_LD<opstr, ".u32", RegI32, pat_load>; defm u64 : PTX_LD<opstr, ".u64", RegI64, pat_load>; defm f32 : PTX_LD<opstr, ".f32", RegF32, pat_load>; defm f64 : PTX_LD<opstr, ".f64", RegF64, pat_load>; } multiclass PTX_ST<string opstr, string typestr, RegisterClass RC, PatFrag pat_store> { def rr32 : InstPTX<(outs), (ins RC:$d, MEMri32:$a), !strconcat(opstr, !strconcat(typestr, "\t[$a], $d")), [(pat_store RC:$d, ADDRrr32:$a)]>, Requires<[Use32BitAddresses]>; def rr64 : InstPTX<(outs), (ins RC:$d, MEMri64:$a), !strconcat(opstr, !strconcat(typestr, "\t[$a], $d")), [(pat_store RC:$d, ADDRrr64:$a)]>, Requires<[Use64BitAddresses]>; def ri32 : InstPTX<(outs), (ins RC:$d, MEMri32:$a), !strconcat(opstr, !strconcat(typestr, "\t[$a], $d")), [(pat_store RC:$d, ADDRri32:$a)]>, Requires<[Use32BitAddresses]>; def ri64 : InstPTX<(outs), (ins RC:$d, MEMri64:$a), !strconcat(opstr, !strconcat(typestr, "\t[$a], $d")), [(pat_store RC:$d, ADDRri64:$a)]>, Requires<[Use64BitAddresses]>; def ii32 : InstPTX<(outs), (ins RC:$d, MEMii32:$a), !strconcat(opstr, !strconcat(typestr, "\t[$a], $d")), [(pat_store RC:$d, ADDRii32:$a)]>, Requires<[Use32BitAddresses]>; def ii64 : InstPTX<(outs), (ins RC:$d, MEMii64:$a), !strconcat(opstr, !strconcat(typestr, "\t[$a], $d")), [(pat_store RC:$d, ADDRii64:$a)]>, Requires<[Use64BitAddresses]>; } multiclass PTX_ST_ALL<string opstr, PatFrag pat_store> { defm u16 : PTX_ST<opstr, ".u16", RegI16, pat_store>; defm u32 : PTX_ST<opstr, ".u32", RegI32, pat_store>; defm u64 : PTX_ST<opstr, ".u64", RegI64, pat_store>; defm f32 : PTX_ST<opstr, ".f32", RegF32, pat_store>; defm f64 : PTX_ST<opstr, ".f64", RegF64, pat_store>; } //===----------------------------------------------------------------------===// // Instructions //===----------------------------------------------------------------------===// ///===- Integer Arithmetic Instructions -----------------------------------===// defm ADD : INT3<"add", add>; defm SUB : INT3<"sub", sub>; defm MUL : INT3<"mul.lo", mul>; // FIXME: Allow 32x32 -> 64 multiplies defm DIV : INT3<"div", udiv>; defm REM : INT3<"rem", urem>; ///===- Floating-Point Arithmetic Instructions ----------------------------===// // Standard Unary Operations defm FNEG : PTX_FLOAT_2OP<"neg", fneg>; // Standard Binary Operations defm FADD : PTX_FLOAT_3OP<"add.rn", fadd>; defm FSUB : PTX_FLOAT_3OP<"sub.rn", fsub>; defm FMUL : PTX_FLOAT_3OP<"mul.rn", fmul>; // For floating-point division: // SM_13+ defaults to .rn for f32 and f64, // SM10 must *not* provide a rounding // TODO: // - Allow user selection of rounding modes for fdiv // - Add support for -prec-div=false (.approx) def FDIVrr32SM13 : InstPTX<(outs RegF32:$d), (ins RegF32:$a, RegF32:$b), "div.rn.f32\t$d, $a, $b", [(set RegF32:$d, (fdiv RegF32:$a, RegF32:$b))]>, Requires<[FDivNeedsRoundingMode]>; def FDIVri32SM13 : InstPTX<(outs RegF32:$d), (ins RegF32:$a, f32imm:$b), "div.rn.f32\t$d, $a, $b", [(set RegF32:$d, (fdiv RegF32:$a, fpimm:$b))]>, Requires<[FDivNeedsRoundingMode]>; def FDIVrr32SM10 : InstPTX<(outs RegF32:$d), (ins RegF32:$a, RegF32:$b), "div.f32\t$d, $a, $b", [(set RegF32:$d, (fdiv RegF32:$a, RegF32:$b))]>, Requires<[FDivNoRoundingMode]>; def FDIVri32SM10 : InstPTX<(outs RegF32:$d), (ins RegF32:$a, f32imm:$b), "div.f32\t$d, $a, $b", [(set RegF32:$d, (fdiv RegF32:$a, fpimm:$b))]>, Requires<[FDivNoRoundingMode]>; def FDIVrr64SM13 : InstPTX<(outs RegF64:$d), (ins RegF64:$a, RegF64:$b), "div.rn.f64\t$d, $a, $b", [(set RegF64:$d, (fdiv RegF64:$a, RegF64:$b))]>, Requires<[FDivNeedsRoundingMode]>; def FDIVri64SM13 : InstPTX<(outs RegF64:$d), (ins RegF64:$a, f64imm:$b), "div.rn.f64\t$d, $a, $b", [(set RegF64:$d, (fdiv RegF64:$a, fpimm:$b))]>, Requires<[FDivNeedsRoundingMode]>; def FDIVrr64SM10 : InstPTX<(outs RegF64:$d), (ins RegF64:$a, RegF64:$b), "div.f64\t$d, $a, $b", [(set RegF64:$d, (fdiv RegF64:$a, RegF64:$b))]>, Requires<[FDivNoRoundingMode]>; def FDIVri64SM10 : InstPTX<(outs RegF64:$d), (ins RegF64:$a, f64imm:$b), "div.f64\t$d, $a, $b", [(set RegF64:$d, (fdiv RegF64:$a, fpimm:$b))]>, Requires<[FDivNoRoundingMode]>; // Multi-operation hybrid instructions // The selection of mad/fma is tricky. In some cases, they are the *same* // instruction, but in other cases we may prefer one or the other. Also, // different PTX versions differ on whether rounding mode flags are required. // In the short term, mad is supported on all PTX versions and we use a // default rounding mode no matter what shader model or PTX version. // TODO: Allow the rounding mode to be selectable through llc. defm FMADSM13 : PTX_FLOAT_4OP<"mad.rn", fmul, fadd>, Requires<[FMadNeedsRoundingMode, SupportsFMA]>; defm FMAD : PTX_FLOAT_4OP<"mad", fmul, fadd>, Requires<[FMadNoRoundingMode, SupportsFMA]>; ///===- Floating-Point Intrinsic Instructions -----------------------------===// def FSQRT32 : InstPTX<(outs RegF32:$d), (ins RegF32:$a), "sqrt.rn.f32\t$d, $a", [(set RegF32:$d, (fsqrt RegF32:$a))]>; def FSQRT64 : InstPTX<(outs RegF64:$d), (ins RegF64:$a), "sqrt.rn.f64\t$d, $a", [(set RegF64:$d, (fsqrt RegF64:$a))]>; def FSIN32 : InstPTX<(outs RegF32:$d), (ins RegF32:$a), "sin.approx.f32\t$d, $a", [(set RegF32:$d, (fsin RegF32:$a))]>; def FSIN64 : InstPTX<(outs RegF64:$d), (ins RegF64:$a), "sin.approx.f64\t$d, $a", [(set RegF64:$d, (fsin RegF64:$a))]>; def FCOS32 : InstPTX<(outs RegF32:$d), (ins RegF32:$a), "cos.approx.f32\t$d, $a", [(set RegF32:$d, (fcos RegF32:$a))]>; def FCOS64 : InstPTX<(outs RegF64:$d), (ins RegF64:$a), "cos.approx.f64\t$d, $a", [(set RegF64:$d, (fcos RegF64:$a))]>; ///===- Comparison and Selection Instructions -----------------------------===// // .setp // Compare u16 defm SETPEQu16 : PTX_SETP_I<RegI16, "u16", i16imm, SETEQ, "eq">; defm SETPNEu16 : PTX_SETP_I<RegI16, "u16", i16imm, SETNE, "ne">; defm SETPLTu16 : PTX_SETP_I<RegI16, "u16", i16imm, SETULT, "lt">; defm SETPLEu16 : PTX_SETP_I<RegI16, "u16", i16imm, SETULE, "le">; defm SETPGTu16 : PTX_SETP_I<RegI16, "u16", i16imm, SETUGT, "gt">; defm SETPGEu16 : PTX_SETP_I<RegI16, "u16", i16imm, SETUGE, "ge">; defm SETPLTs16 : PTX_SETP_I<RegI16, "s16", i16imm, SETLT, "lt">; defm SETPLEs16 : PTX_SETP_I<RegI16, "s16", i16imm, SETLE, "le">; defm SETPGTs16 : PTX_SETP_I<RegI16, "s16", i16imm, SETGT, "gt">; defm SETPGEs16 : PTX_SETP_I<RegI16, "s16", i16imm, SETGE, "ge">; // Compare u32 defm SETPEQu32 : PTX_SETP_I<RegI32, "u32", i32imm, SETEQ, "eq">; defm SETPNEu32 : PTX_SETP_I<RegI32, "u32", i32imm, SETNE, "ne">; defm SETPLTu32 : PTX_SETP_I<RegI32, "u32", i32imm, SETULT, "lt">; defm SETPLEu32 : PTX_SETP_I<RegI32, "u32", i32imm, SETULE, "le">; defm SETPGTu32 : PTX_SETP_I<RegI32, "u32", i32imm, SETUGT, "gt">; defm SETPGEu32 : PTX_SETP_I<RegI32, "u32", i32imm, SETUGE, "ge">; defm SETPLTs32 : PTX_SETP_I<RegI32, "s32", i32imm, SETLT, "lt">; defm SETPLEs32 : PTX_SETP_I<RegI32, "s32", i32imm, SETLE, "le">; defm SETPGTs32 : PTX_SETP_I<RegI32, "s32", i32imm, SETGT, "gt">; defm SETPGEs32 : PTX_SETP_I<RegI32, "s32", i32imm, SETGE, "ge">; // Compare u64 defm SETPEQu64 : PTX_SETP_I<RegI64, "u64", i64imm, SETEQ, "eq">; defm SETPNEu64 : PTX_SETP_I<RegI64, "u64", i64imm, SETNE, "ne">; defm SETPLTu64 : PTX_SETP_I<RegI64, "u64", i64imm, SETULT, "lt">; defm SETPLEu64 : PTX_SETP_I<RegI64, "u64", i64imm, SETULE, "le">; defm SETPGTu64 : PTX_SETP_I<RegI64, "u64", i64imm, SETUGT, "gt">; defm SETPGEu64 : PTX_SETP_I<RegI64, "u64", i64imm, SETUGE, "ge">; defm SETPLTs64 : PTX_SETP_I<RegI64, "s64", i64imm, SETLT, "lt">; defm SETPLEs64 : PTX_SETP_I<RegI64, "s64", i64imm, SETLE, "le">; defm SETPGTs64 : PTX_SETP_I<RegI64, "s64", i64imm, SETGT, "gt">; defm SETPGEs64 : PTX_SETP_I<RegI64, "s64", i64imm, SETGE, "ge">; // Compare f32 defm SETPEQf32 : PTX_SETP_FP<RegF32, "f32", SETUEQ, SETOEQ, "eq">; defm SETPNEf32 : PTX_SETP_FP<RegF32, "f32", SETUNE, SETONE, "ne">; defm SETPLTf32 : PTX_SETP_FP<RegF32, "f32", SETULT, SETOLT, "lt">; defm SETPLEf32 : PTX_SETP_FP<RegF32, "f32", SETULE, SETOLE, "le">; defm SETPGTf32 : PTX_SETP_FP<RegF32, "f32", SETUGT, SETOGT, "gt">; defm SETPGEf32 : PTX_SETP_FP<RegF32, "f32", SETUGE, SETOGE, "ge">; // Compare f64 defm SETPEQf64 : PTX_SETP_FP<RegF64, "f64", SETUEQ, SETOEQ, "eq">; defm SETPNEf64 : PTX_SETP_FP<RegF64, "f64", SETUNE, SETONE, "ne">; defm SETPLTf64 : PTX_SETP_FP<RegF64, "f64", SETULT, SETOLT, "lt">; defm SETPLEf64 : PTX_SETP_FP<RegF64, "f64", SETULE, SETOLE, "le">; defm SETPGTf64 : PTX_SETP_FP<RegF64, "f64", SETUGT, SETOGT, "gt">; defm SETPGEf64 : PTX_SETP_FP<RegF64, "f64", SETUGE, SETOGE, "ge">; // .selp defm PTX_SELPu16 : PTX_SELP<RegI16, "u16">; defm PTX_SELPu32 : PTX_SELP<RegI32, "u32">; defm PTX_SELPu64 : PTX_SELP<RegI64, "u64">; defm PTX_SELPf32 : PTX_SELP<RegF32, "f32">; defm PTX_SELPf64 : PTX_SELP<RegF64, "f64">; ///===- Logic and Shift Instructions --------------------------------------===// defm SHL : INT3ntnc<"shl.b", PTXshl>; defm SRL : INT3ntnc<"shr.u", PTXsrl>; defm SRA : INT3ntnc<"shr.s", PTXsra>; defm AND : PTX_LOGIC<"and", and>; defm OR : PTX_LOGIC<"or", or>; defm XOR : PTX_LOGIC<"xor", xor>; ///===- Data Movement and Conversion Instructions -------------------------===// let neverHasSideEffects = 1 in { def MOVPREDrr : InstPTX<(outs RegPred:$d), (ins RegPred:$a), "mov.pred\t$d, $a", []>; def MOVU16rr : InstPTX<(outs RegI16:$d), (ins RegI16:$a), "mov.u16\t$d, $a", []>; def MOVU32rr : InstPTX<(outs RegI32:$d), (ins RegI32:$a), "mov.u32\t$d, $a", []>; def MOVU64rr : InstPTX<(outs RegI64:$d), (ins RegI64:$a), "mov.u64\t$d, $a", []>; def MOVF32rr : InstPTX<(outs RegF32:$d), (ins RegF32:$a), "mov.f32\t$d, $a", []>; def MOVF64rr : InstPTX<(outs RegF64:$d), (ins RegF64:$a), "mov.f64\t$d, $a", []>; } let isReMaterializable = 1, isAsCheapAsAMove = 1 in { def MOVPREDri : InstPTX<(outs RegPred:$d), (ins i1imm:$a), "mov.pred\t$d, $a", [(set RegPred:$d, imm:$a)]>; def MOVU16ri : InstPTX<(outs RegI16:$d), (ins i16imm:$a), "mov.u16\t$d, $a", [(set RegI16:$d, imm:$a)]>; def MOVU32ri : InstPTX<(outs RegI32:$d), (ins i32imm:$a), "mov.u32\t$d, $a", [(set RegI32:$d, imm:$a)]>; def MOVU64ri : InstPTX<(outs RegI64:$d), (ins i64imm:$a), "mov.u64\t$d, $a", [(set RegI64:$d, imm:$a)]>; def MOVF32ri : InstPTX<(outs RegF32:$d), (ins f32imm:$a), "mov.f32\t$d, $a", [(set RegF32:$d, fpimm:$a)]>; def MOVF64ri : InstPTX<(outs RegF64:$d), (ins f64imm:$a), "mov.f64\t$d, $a", [(set RegF64:$d, fpimm:$a)]>; } let isReMaterializable = 1, isAsCheapAsAMove = 1 in { def MOVaddr32 : InstPTX<(outs RegI32:$d), (ins i32imm:$a), "mov.u32\t$d, $a", [(set RegI32:$d, (PTXcopyaddress tglobaladdr:$a))]>; def MOVaddr64 : InstPTX<(outs RegI64:$d), (ins i64imm:$a), "mov.u64\t$d, $a", [(set RegI64:$d, (PTXcopyaddress tglobaladdr:$a))]>; } // Loads defm LDg : PTX_LD_ALL<"ld.global", load_global>; defm LDc : PTX_LD_ALL<"ld.const", load_constant>; defm LDl : PTX_LD_ALL<"ld.local", load_local>; defm LDs : PTX_LD_ALL<"ld.shared", load_shared>; // These instructions are used to load/store from the .param space for // device and kernel parameters let hasSideEffects = 1 in { def LDpiPred : InstPTX<(outs RegPred:$d), (ins MEMpi:$a), "ld.param.pred\t$d, [$a]", [(set RegPred:$d, (PTXloadparam timm:$a))]>; def LDpiU16 : InstPTX<(outs RegI16:$d), (ins MEMpi:$a), "ld.param.u16\t$d, [$a]", [(set RegI16:$d, (PTXloadparam timm:$a))]>; def LDpiU32 : InstPTX<(outs RegI32:$d), (ins MEMpi:$a), "ld.param.u32\t$d, [$a]", [(set RegI32:$d, (PTXloadparam timm:$a))]>; def LDpiU64 : InstPTX<(outs RegI64:$d), (ins MEMpi:$a), "ld.param.u64\t$d, [$a]", [(set RegI64:$d, (PTXloadparam timm:$a))]>; def LDpiF32 : InstPTX<(outs RegF32:$d), (ins MEMpi:$a), "ld.param.f32\t$d, [$a]", [(set RegF32:$d, (PTXloadparam timm:$a))]>; def LDpiF64 : InstPTX<(outs RegF64:$d), (ins MEMpi:$a), "ld.param.f64\t$d, [$a]", [(set RegF64:$d, (PTXloadparam timm:$a))]>; def STpiPred : InstPTX<(outs), (ins MEMret:$d, RegPred:$a), "st.param.pred\t[$d], $a", [(PTXstoreparam timm:$d, RegPred:$a)]>; def STpiU16 : InstPTX<(outs), (ins MEMret:$d, RegI16:$a), "st.param.u16\t[$d], $a", [(PTXstoreparam timm:$d, RegI16:$a)]>; def STpiU32 : InstPTX<(outs), (ins MEMret:$d, RegI32:$a), "st.param.u32\t[$d], $a", [(PTXstoreparam timm:$d, RegI32:$a)]>; def STpiU64 : InstPTX<(outs), (ins MEMret:$d, RegI64:$a), "st.param.u64\t[$d], $a", [(PTXstoreparam timm:$d, RegI64:$a)]>; def STpiF32 : InstPTX<(outs), (ins MEMret:$d, RegF32:$a), "st.param.f32\t[$d], $a", [(PTXstoreparam timm:$d, RegF32:$a)]>; def STpiF64 : InstPTX<(outs), (ins MEMret:$d, RegF64:$a), "st.param.f64\t[$d], $a", [(PTXstoreparam timm:$d, RegF64:$a)]>; } // Stores defm STg : PTX_ST_ALL<"st.global", store_global>; defm STl : PTX_ST_ALL<"st.local", store_local>; defm STs : PTX_ST_ALL<"st.shared", store_shared>; // defm STp : PTX_ST_ALL<"st.param", store_parameter>; // defm LDp : PTX_LD_ALL<"ld.param", load_parameter>; // TODO: Do something with st.param if/when it is needed. // Conversion to pred // PTX does not directly support converting to a predicate type, so we fake it // by performing a greater-than test between the value and zero. This follows // the C convention that any non-zero value is equivalent to 'true'. def CVT_pred_u16 : InstPTX<(outs RegPred:$d), (ins RegI16:$a), "setp.gt.u16\t$d, $a, 0", [(set RegPred:$d, (trunc RegI16:$a))]>; def CVT_pred_u32 : InstPTX<(outs RegPred:$d), (ins RegI32:$a), "setp.gt.u32\t$d, $a, 0", [(set RegPred:$d, (trunc RegI32:$a))]>; def CVT_pred_u64 : InstPTX<(outs RegPred:$d), (ins RegI64:$a), "setp.gt.u64\t$d, $a, 0", [(set RegPred:$d, (trunc RegI64:$a))]>; def CVT_pred_f32 : InstPTX<(outs RegPred:$d), (ins RegF32:$a), "setp.gt.f32\t$d, $a, 0", [(set RegPred:$d, (fp_to_uint RegF32:$a))]>; def CVT_pred_f64 : InstPTX<(outs RegPred:$d), (ins RegF64:$a), "setp.gt.f64\t$d, $a, 0", [(set RegPred:$d, (fp_to_uint RegF64:$a))]>; // Conversion to u16 // PTX does not directly support converting a predicate to a value, so we // use a select instruction to select either 0 or 1 (integer or fp) based // on the truth value of the predicate. def CVT_u16_preda : InstPTX<(outs RegI16:$d), (ins RegPred:$a), "selp.u16\t$d, 1, 0, $a", [(set RegI16:$d, (anyext RegPred:$a))]>; def CVT_u16_pred : InstPTX<(outs RegI16:$d), (ins RegPred:$a), "selp.u16\t$d, 1, 0, $a", [(set RegI16:$d, (zext RegPred:$a))]>; def CVT_u16_preds : InstPTX<(outs RegI16:$d), (ins RegPred:$a), "selp.u16\t$d, 1, 0, $a", [(set RegI16:$d, (sext RegPred:$a))]>; def CVT_u16_u32 : InstPTX<(outs RegI16:$d), (ins RegI32:$a), "cvt.u16.u32\t$d, $a", [(set RegI16:$d, (trunc RegI32:$a))]>; def CVT_u16_u64 : InstPTX<(outs RegI16:$d), (ins RegI64:$a), "cvt.u16.u64\t$d, $a", [(set RegI16:$d, (trunc RegI64:$a))]>; def CVT_u16_f32 : InstPTX<(outs RegI16:$d), (ins RegF32:$a), "cvt.rzi.u16.f32\t$d, $a", [(set RegI16:$d, (fp_to_uint RegF32:$a))]>; def CVT_u16_f64 : InstPTX<(outs RegI16:$d), (ins RegF64:$a), "cvt.rzi.u16.f64\t$d, $a", [(set RegI16:$d, (fp_to_uint RegF64:$a))]>; // Conversion to u32 def CVT_u32_pred : InstPTX<(outs RegI32:$d), (ins RegPred:$a), "selp.u32\t$d, 1, 0, $a", [(set RegI32:$d, (zext RegPred:$a))]>; def CVT_u32_b16 : InstPTX<(outs RegI32:$d), (ins RegI16:$a), "cvt.u32.u16\t$d, $a", [(set RegI32:$d, (anyext RegI16:$a))]>; def CVT_u32_u16 : InstPTX<(outs RegI32:$d), (ins RegI16:$a), "cvt.u32.u16\t$d, $a", [(set RegI32:$d, (zext RegI16:$a))]>; def CVT_u32_preds : InstPTX<(outs RegI32:$d), (ins RegPred:$a), "selp.u32\t$d, 1, 0, $a", [(set RegI32:$d, (sext RegPred:$a))]>; def CVT_u32_s16 : InstPTX<(outs RegI32:$d), (ins RegI16:$a), "cvt.u32.s16\t$d, $a", [(set RegI32:$d, (sext RegI16:$a))]>; def CVT_u32_u64 : InstPTX<(outs RegI32:$d), (ins RegI64:$a), "cvt.u32.u64\t$d, $a", [(set RegI32:$d, (trunc RegI64:$a))]>; def CVT_u32_f32 : InstPTX<(outs RegI32:$d), (ins RegF32:$a), "cvt.rzi.u32.f32\t$d, $a", [(set RegI32:$d, (fp_to_uint RegF32:$a))]>; def CVT_u32_f64 : InstPTX<(outs RegI32:$d), (ins RegF64:$a), "cvt.rzi.u32.f64\t$d, $a", [(set RegI32:$d, (fp_to_uint RegF64:$a))]>; // Conversion to u64 def CVT_u64_pred : InstPTX<(outs RegI64:$d), (ins RegPred:$a), "selp.u64\t$d, 1, 0, $a", [(set RegI64:$d, (zext RegPred:$a))]>; def CVT_u64_preds : InstPTX<(outs RegI64:$d), (ins RegPred:$a), "selp.u64\t$d, 1, 0, $a", [(set RegI64:$d, (sext RegPred:$a))]>; def CVT_u64_u16 : InstPTX<(outs RegI64:$d), (ins RegI16:$a), "cvt.u64.u16\t$d, $a", [(set RegI64:$d, (zext RegI16:$a))]>; def CVT_u64_s16 : InstPTX<(outs RegI64:$d), (ins RegI16:$a), "cvt.u64.s16\t$d, $a", [(set RegI64:$d, (sext RegI16:$a))]>; def CVT_u64_u32 : InstPTX<(outs RegI64:$d), (ins RegI32:$a), "cvt.u64.u32\t$d, $a", [(set RegI64:$d, (zext RegI32:$a))]>; def CVT_u64_s32 : InstPTX<(outs RegI64:$d), (ins RegI32:$a), "cvt.u64.s32\t$d, $a", [(set RegI64:$d, (sext RegI32:$a))]>; def CVT_u64_f32 : InstPTX<(outs RegI64:$d), (ins RegF32:$a), "cvt.rzi.u64.f32\t$d, $a", [(set RegI64:$d, (fp_to_uint RegF32:$a))]>; def CVT_u64_f64 : InstPTX<(outs RegI64:$d), (ins RegF64:$a), "cvt.rzi.u64.f64\t$d, $a", [(set RegI64:$d, (fp_to_uint RegF64:$a))]>; // Conversion to f32 def CVT_f32_pred : InstPTX<(outs RegF32:$d), (ins RegPred:$a), "selp.f32\t$d, 0F3F800000, 0F00000000, $a", // 1.0 [(set RegF32:$d, (uint_to_fp RegPred:$a))]>; def CVT_f32_u16 : InstPTX<(outs RegF32:$d), (ins RegI16:$a), "cvt.rn.f32.u16\t$d, $a", [(set RegF32:$d, (uint_to_fp RegI16:$a))]>; def CVT_f32_u32 : InstPTX<(outs RegF32:$d), (ins RegI32:$a), "cvt.rn.f32.u32\t$d, $a", [(set RegF32:$d, (uint_to_fp RegI32:$a))]>; def CVT_f32_u64 : InstPTX<(outs RegF32:$d), (ins RegI64:$a), "cvt.rn.f32.u64\t$d, $a", [(set RegF32:$d, (uint_to_fp RegI64:$a))]>; def CVT_f32_f64 : InstPTX<(outs RegF32:$d), (ins RegF64:$a), "cvt.rn.f32.f64\t$d, $a", [(set RegF32:$d, (fround RegF64:$a))]>; // Conversion to f64 def CVT_f64_pred : InstPTX<(outs RegF64:$d), (ins RegPred:$a), "selp.f64\t$d, 0D3F80000000000000, 0D0000000000000000, $a", // 1.0 [(set RegF64:$d, (uint_to_fp RegPred:$a))]>; def CVT_f64_u16 : InstPTX<(outs RegF64:$d), (ins RegI16:$a), "cvt.rn.f64.u16\t$d, $a", [(set RegF64:$d, (uint_to_fp RegI16:$a))]>; def CVT_f64_u32 : InstPTX<(outs RegF64:$d), (ins RegI32:$a), "cvt.rn.f64.u32\t$d, $a", [(set RegF64:$d, (uint_to_fp RegI32:$a))]>; def CVT_f64_u64 : InstPTX<(outs RegF64:$d), (ins RegI64:$a), "cvt.rn.f64.u64\t$d, $a", [(set RegF64:$d, (uint_to_fp RegI64:$a))]>; def CVT_f64_f32 : InstPTX<(outs RegF64:$d), (ins RegF32:$a), "cvt.f64.f32\t$d, $a", [(set RegF64:$d, (fextend RegF32:$a))]>; ///===- Control Flow Instructions -----------------------------------------===// let isBranch = 1, isTerminator = 1, isBarrier = 1 in { def BRAd : InstPTX<(outs), (ins brtarget:$d), "bra\t$d", [(br bb:$d)]>; } let isBranch = 1, isTerminator = 1 in { // FIXME: The pattern part is blank because I cannot (or do not yet know // how to) use the first operand of PredicateOperand (a RegPred register) here def BRAdp : InstPTX<(outs), (ins brtarget:$d), "bra\t$d", [/*(brcond pred:$_p, bb:$d)*/]>; } let isReturn = 1, isTerminator = 1, isBarrier = 1 in { def EXIT : InstPTX<(outs), (ins), "exit", [(PTXexit)]>; def RET : InstPTX<(outs), (ins), "ret", [(PTXret)]>; } ///===- Spill Instructions ------------------------------------------------===// // Special instructions used for stack spilling def STACKSTOREI16 : InstPTX<(outs), (ins i32imm:$d, RegI16:$a), "mov.u16\ts$d, $a", []>; def STACKSTOREI32 : InstPTX<(outs), (ins i32imm:$d, RegI32:$a), "mov.u32\ts$d, $a", []>; def STACKSTOREI64 : InstPTX<(outs), (ins i32imm:$d, RegI64:$a), "mov.u64\ts$d, $a", []>; def STACKSTOREF32 : InstPTX<(outs), (ins i32imm:$d, RegF32:$a), "mov.f32\ts$d, $a", []>; def STACKSTOREF64 : InstPTX<(outs), (ins i32imm:$d, RegF64:$a), "mov.f64\ts$d, $a", []>; def STACKLOADI16 : InstPTX<(outs), (ins RegI16:$d, i32imm:$a), "mov.u16\t$d, s$a", []>; def STACKLOADI32 : InstPTX<(outs), (ins RegI32:$d, i32imm:$a), "mov.u32\t$d, s$a", []>; def STACKLOADI64 : InstPTX<(outs), (ins RegI64:$d, i32imm:$a), "mov.u64\t$d, s$a", []>; def STACKLOADF32 : InstPTX<(outs), (ins RegF32:$d, i32imm:$a), "mov.f32\t$d, s$a", []>; def STACKLOADF64 : InstPTX<(outs), (ins RegF64:$d, i32imm:$a), "mov.f64\t$d, s$a", []>; ///===- Intrinsic Instructions --------------------------------------------===// include "PTXIntrinsicInstrInfo.td"