//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements the ScheduleDAGInstrs class, which implements re-scheduling // of MachineInstrs. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "sched-instrs" #include "ScheduleDAGInstrs.h" #include "llvm/Operator.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/MC/MCInstrItineraries.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetSubtargetInfo.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/SmallSet.h" using namespace llvm; ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, const MachineLoopInfo &mli, const MachineDominatorTree &mdt) : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()), InstrItins(mf.getTarget().getInstrItineraryData()), Defs(TRI->getNumRegs()), Uses(TRI->getNumRegs()), LoopRegs(MLI, MDT), FirstDbgValue(0) { DbgValues.clear(); } /// Run - perform scheduling. /// void ScheduleDAGInstrs::Run(MachineBasicBlock *bb, MachineBasicBlock::iterator begin, MachineBasicBlock::iterator end, unsigned endcount) { BB = bb; Begin = begin; InsertPosIndex = endcount; ScheduleDAG::Run(bb, end); } /// getUnderlyingObjectFromInt - This is the function that does the work of /// looking through basic ptrtoint+arithmetic+inttoptr sequences. static const Value *getUnderlyingObjectFromInt(const Value *V) { do { if (const Operator *U = dyn_cast<Operator>(V)) { // If we find a ptrtoint, we can transfer control back to the // regular getUnderlyingObjectFromInt. if (U->getOpcode() == Instruction::PtrToInt) return U->getOperand(0); // If we find an add of a constant or a multiplied value, it's // likely that the other operand will lead us to the base // object. We don't have to worry about the case where the // object address is somehow being computed by the multiply, // because our callers only care when the result is an // identifibale object. if (U->getOpcode() != Instruction::Add || (!isa<ConstantInt>(U->getOperand(1)) && Operator::getOpcode(U->getOperand(1)) != Instruction::Mul)) return V; V = U->getOperand(0); } else { return V; } assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); } while (1); } /// getUnderlyingObject - This is a wrapper around GetUnderlyingObject /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences. static const Value *getUnderlyingObject(const Value *V) { // First just call Value::getUnderlyingObject to let it do what it does. do { V = GetUnderlyingObject(V); // If it found an inttoptr, use special code to continue climing. if (Operator::getOpcode(V) != Instruction::IntToPtr) break; const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); // If that succeeded in finding a pointer, continue the search. if (!O->getType()->isPointerTy()) break; V = O; } while (1); return V; } /// getUnderlyingObjectForInstr - If this machine instr has memory reference /// information and it can be tracked to a normal reference to a known /// object, return the Value for that object. Otherwise return null. static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI, const MachineFrameInfo *MFI, bool &MayAlias) { MayAlias = true; if (!MI->hasOneMemOperand() || !(*MI->memoperands_begin())->getValue() || (*MI->memoperands_begin())->isVolatile()) return 0; const Value *V = (*MI->memoperands_begin())->getValue(); if (!V) return 0; V = getUnderlyingObject(V); if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) { // For now, ignore PseudoSourceValues which may alias LLVM IR values // because the code that uses this function has no way to cope with // such aliases. if (PSV->isAliased(MFI)) return 0; MayAlias = PSV->mayAlias(MFI); return V; } if (isIdentifiedObject(V)) return V; return 0; } void ScheduleDAGInstrs::StartBlock(MachineBasicBlock *BB) { if (MachineLoop *ML = MLI.getLoopFor(BB)) if (BB == ML->getLoopLatch()) { MachineBasicBlock *Header = ML->getHeader(); for (MachineBasicBlock::livein_iterator I = Header->livein_begin(), E = Header->livein_end(); I != E; ++I) LoopLiveInRegs.insert(*I); LoopRegs.VisitLoop(ML); } } /// AddSchedBarrierDeps - Add dependencies from instructions in the current /// list of instructions being scheduled to scheduling barrier by adding /// the exit SU to the register defs and use list. This is because we want to /// make sure instructions which define registers that are either used by /// the terminator or are live-out are properly scheduled. This is /// especially important when the definition latency of the return value(s) /// are too high to be hidden by the branch or when the liveout registers /// used by instructions in the fallthrough block. void ScheduleDAGInstrs::AddSchedBarrierDeps() { MachineInstr *ExitMI = InsertPos != BB->end() ? &*InsertPos : 0; ExitSU.setInstr(ExitMI); bool AllDepKnown = ExitMI && (ExitMI->getDesc().isCall() || ExitMI->getDesc().isBarrier()); if (ExitMI && AllDepKnown) { // If it's a call or a barrier, add dependencies on the defs and uses of // instruction. for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = ExitMI->getOperand(i); if (!MO.isReg() || MO.isDef()) continue; unsigned Reg = MO.getReg(); if (Reg == 0) continue; assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!"); Uses[Reg].push_back(&ExitSU); } } else { // For others, e.g. fallthrough, conditional branch, assume the exit // uses all the registers that are livein to the successor blocks. SmallSet<unsigned, 8> Seen; for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), SE = BB->succ_end(); SI != SE; ++SI) for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), E = (*SI)->livein_end(); I != E; ++I) { unsigned Reg = *I; if (Seen.insert(Reg)) Uses[Reg].push_back(&ExitSU); } } } void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) { // We'll be allocating one SUnit for each instruction, plus one for // the region exit node. SUnits.reserve(BB->size()); // We build scheduling units by walking a block's instruction list from bottom // to top. // Remember where a generic side-effecting instruction is as we procede. SUnit *BarrierChain = 0, *AliasChain = 0; // Memory references to specific known memory locations are tracked // so that they can be given more precise dependencies. We track // separately the known memory locations that may alias and those // that are known not to alias std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs; std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses; // Check to see if the scheduler cares about latencies. bool UnitLatencies = ForceUnitLatencies(); // Ask the target if address-backscheduling is desirable, and if so how much. const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); unsigned SpecialAddressLatency = ST.getSpecialAddressLatency(); // Remove any stale debug info; sometimes BuildSchedGraph is called again // without emitting the info from the previous call. DbgValues.clear(); FirstDbgValue = NULL; // Model data dependencies between instructions being scheduled and the // ExitSU. AddSchedBarrierDeps(); for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) { assert(Defs[i].empty() && "Only BuildGraph should push/pop Defs"); } // Walk the list of instructions, from bottom moving up. MachineInstr *PrevMI = NULL; for (MachineBasicBlock::iterator MII = InsertPos, MIE = Begin; MII != MIE; --MII) { MachineInstr *MI = prior(MII); if (MI && PrevMI) { DbgValues.push_back(std::make_pair(PrevMI, MI)); PrevMI = NULL; } if (MI->isDebugValue()) { PrevMI = MI; continue; } const MCInstrDesc &MCID = MI->getDesc(); assert(!MCID.isTerminator() && !MI->isLabel() && "Cannot schedule terminators or labels!"); // Create the SUnit for this MI. SUnit *SU = NewSUnit(MI); SU->isCall = MCID.isCall(); SU->isCommutable = MCID.isCommutable(); // Assign the Latency field of SU using target-provided information. if (UnitLatencies) SU->Latency = 1; else ComputeLatency(SU); // Add register-based dependencies (data, anti, and output). for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) { const MachineOperand &MO = MI->getOperand(j); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (Reg == 0) continue; assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!"); std::vector<SUnit *> &UseList = Uses[Reg]; // Defs are push in the order they are visited and never reordered. std::vector<SUnit *> &DefList = Defs[Reg]; // Optionally add output and anti dependencies. For anti // dependencies we use a latency of 0 because for a multi-issue // target we want to allow the defining instruction to issue // in the same cycle as the using instruction. // TODO: Using a latency of 1 here for output dependencies assumes // there's no cost for reusing registers. SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; unsigned AOLatency = (Kind == SDep::Anti) ? 0 : 1; for (unsigned i = 0, e = DefList.size(); i != e; ++i) { SUnit *DefSU = DefList[i]; if (DefSU == &ExitSU) continue; if (DefSU != SU && (Kind != SDep::Output || !MO.isDead() || !DefSU->getInstr()->registerDefIsDead(Reg))) DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/Reg)); } for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { std::vector<SUnit *> &MemDefList = Defs[*Alias]; for (unsigned i = 0, e = MemDefList.size(); i != e; ++i) { SUnit *DefSU = MemDefList[i]; if (DefSU == &ExitSU) continue; if (DefSU != SU && (Kind != SDep::Output || !MO.isDead() || !DefSU->getInstr()->registerDefIsDead(*Alias))) DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/ *Alias)); } } if (MO.isDef()) { // Add any data dependencies. unsigned DataLatency = SU->Latency; for (unsigned i = 0, e = UseList.size(); i != e; ++i) { SUnit *UseSU = UseList[i]; if (UseSU == SU) continue; unsigned LDataLatency = DataLatency; // Optionally add in a special extra latency for nodes that // feed addresses. // TODO: Do this for register aliases too. // TODO: Perhaps we should get rid of // SpecialAddressLatency and just move this into // adjustSchedDependency for the targets that care about it. if (SpecialAddressLatency != 0 && !UnitLatencies && UseSU != &ExitSU) { MachineInstr *UseMI = UseSU->getInstr(); const MCInstrDesc &UseMCID = UseMI->getDesc(); int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg); assert(RegUseIndex >= 0 && "UseMI doesn's use register!"); if (RegUseIndex >= 0 && (UseMCID.mayLoad() || UseMCID.mayStore()) && (unsigned)RegUseIndex < UseMCID.getNumOperands() && UseMCID.OpInfo[RegUseIndex].isLookupPtrRegClass()) LDataLatency += SpecialAddressLatency; } // Adjust the dependence latency using operand def/use // information (if any), and then allow the target to // perform its own adjustments. const SDep& dep = SDep(SU, SDep::Data, LDataLatency, Reg); if (!UnitLatencies) { ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep)); ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep)); } UseSU->addPred(dep); } for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { std::vector<SUnit *> &UseList = Uses[*Alias]; for (unsigned i = 0, e = UseList.size(); i != e; ++i) { SUnit *UseSU = UseList[i]; if (UseSU == SU) continue; const SDep& dep = SDep(SU, SDep::Data, DataLatency, *Alias); if (!UnitLatencies) { ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep)); ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep)); } UseSU->addPred(dep); } } // If a def is going to wrap back around to the top of the loop, // backschedule it. if (!UnitLatencies && DefList.empty()) { LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg); if (I != LoopRegs.Deps.end()) { const MachineOperand *UseMO = I->second.first; unsigned Count = I->second.second; const MachineInstr *UseMI = UseMO->getParent(); unsigned UseMOIdx = UseMO - &UseMI->getOperand(0); const MCInstrDesc &UseMCID = UseMI->getDesc(); // TODO: If we knew the total depth of the region here, we could // handle the case where the whole loop is inside the region but // is large enough that the isScheduleHigh trick isn't needed. if (UseMOIdx < UseMCID.getNumOperands()) { // Currently, we only support scheduling regions consisting of // single basic blocks. Check to see if the instruction is in // the same region by checking to see if it has the same parent. if (UseMI->getParent() != MI->getParent()) { unsigned Latency = SU->Latency; if (UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass()) Latency += SpecialAddressLatency; // This is a wild guess as to the portion of the latency which // will be overlapped by work done outside the current // scheduling region. Latency -= std::min(Latency, Count); // Add the artificial edge. ExitSU.addPred(SDep(SU, SDep::Order, Latency, /*Reg=*/0, /*isNormalMemory=*/false, /*isMustAlias=*/false, /*isArtificial=*/true)); } else if (SpecialAddressLatency > 0 && UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass()) { // The entire loop body is within the current scheduling region // and the latency of this operation is assumed to be greater // than the latency of the loop. // TODO: Recursively mark data-edge predecessors as // isScheduleHigh too. SU->isScheduleHigh = true; } } LoopRegs.Deps.erase(I); } } UseList.clear(); if (!MO.isDead()) DefList.clear(); // Calls will not be reordered because of chain dependencies (see // below). Since call operands are dead, calls may continue to be added // to the DefList making dependence checking quadratic in the size of // the block. Instead, we leave only one call at the back of the // DefList. if (SU->isCall) { while (!DefList.empty() && DefList.back()->isCall) DefList.pop_back(); } DefList.push_back(SU); } else { UseList.push_back(SU); } } // Add chain dependencies. // Chain dependencies used to enforce memory order should have // latency of 0 (except for true dependency of Store followed by // aliased Load... we estimate that with a single cycle of latency // assuming the hardware will bypass) // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable // after stack slots are lowered to actual addresses. // TODO: Use an AliasAnalysis and do real alias-analysis queries, and // produce more precise dependence information. #define STORE_LOAD_LATENCY 1 unsigned TrueMemOrderLatency = 0; if (MCID.isCall() || MI->hasUnmodeledSideEffects() || (MI->hasVolatileMemoryRef() && (!MCID.mayLoad() || !MI->isInvariantLoad(AA)))) { // Be conservative with these and add dependencies on all memory // references, even those that are known to not alias. for (std::map<const Value *, SUnit *>::iterator I = NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) { I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); } for (std::map<const Value *, std::vector<SUnit *> >::iterator I = NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) { for (unsigned i = 0, e = I->second.size(); i != e; ++i) I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency)); } NonAliasMemDefs.clear(); NonAliasMemUses.clear(); // Add SU to the barrier chain. if (BarrierChain) BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); BarrierChain = SU; // fall-through new_alias_chain: // Chain all possibly aliasing memory references though SU. if (AliasChain) AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); AliasChain = SU; for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency)); for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) { I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); } for (std::map<const Value *, std::vector<SUnit *> >::iterator I = AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) { for (unsigned i = 0, e = I->second.size(); i != e; ++i) I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency)); } PendingLoads.clear(); AliasMemDefs.clear(); AliasMemUses.clear(); } else if (MCID.mayStore()) { bool MayAlias = true; TrueMemOrderLatency = STORE_LOAD_LATENCY; if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) { // A store to a specific PseudoSourceValue. Add precise dependencies. // Record the def in MemDefs, first adding a dep if there is // an existing def. std::map<const Value *, SUnit *>::iterator I = ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); std::map<const Value *, SUnit *>::iterator IE = ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); if (I != IE) { I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0, /*isNormalMemory=*/true)); I->second = SU; } else { if (MayAlias) AliasMemDefs[V] = SU; else NonAliasMemDefs[V] = SU; } // Handle the uses in MemUses, if there are any. std::map<const Value *, std::vector<SUnit *> >::iterator J = ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V)); std::map<const Value *, std::vector<SUnit *> >::iterator JE = ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end()); if (J != JE) { for (unsigned i = 0, e = J->second.size(); i != e; ++i) J->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency, /*Reg=*/0, /*isNormalMemory=*/true)); J->second.clear(); } if (MayAlias) { // Add dependencies from all the PendingLoads, i.e. loads // with no underlying object. for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency)); // Add dependence on alias chain, if needed. if (AliasChain) AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); } // Add dependence on barrier chain, if needed. if (BarrierChain) BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); } else { // Treat all other stores conservatively. goto new_alias_chain; } if (!ExitSU.isPred(SU)) // Push store's up a bit to avoid them getting in between cmp // and branches. ExitSU.addPred(SDep(SU, SDep::Order, 0, /*Reg=*/0, /*isNormalMemory=*/false, /*isMustAlias=*/false, /*isArtificial=*/true)); } else if (MCID.mayLoad()) { bool MayAlias = true; TrueMemOrderLatency = 0; if (MI->isInvariantLoad(AA)) { // Invariant load, no chain dependencies needed! } else { if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) { // A load from a specific PseudoSourceValue. Add precise dependencies. std::map<const Value *, SUnit *>::iterator I = ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); std::map<const Value *, SUnit *>::iterator IE = ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); if (I != IE) I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0, /*isNormalMemory=*/true)); if (MayAlias) AliasMemUses[V].push_back(SU); else NonAliasMemUses[V].push_back(SU); } else { // A load with no underlying object. Depend on all // potentially aliasing stores. for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); PendingLoads.push_back(SU); MayAlias = true; } // Add dependencies on alias and barrier chains, if needed. if (MayAlias && AliasChain) AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); if (BarrierChain) BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); } } } if (PrevMI) FirstDbgValue = PrevMI; for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) { Defs[i].clear(); Uses[i].clear(); } PendingLoads.clear(); } void ScheduleDAGInstrs::FinishBlock() { // Nothing to do. } void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) { // Compute the latency for the node. if (!InstrItins || InstrItins->isEmpty()) { SU->Latency = 1; // Simplistic target-independent heuristic: assume that loads take // extra time. if (SU->getInstr()->getDesc().mayLoad()) SU->Latency += 2; } else { SU->Latency = TII->getInstrLatency(InstrItins, SU->getInstr()); } } void ScheduleDAGInstrs::ComputeOperandLatency(SUnit *Def, SUnit *Use, SDep& dep) const { if (!InstrItins || InstrItins->isEmpty()) return; // For a data dependency with a known register... if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0)) return; const unsigned Reg = dep.getReg(); // ... find the definition of the register in the defining // instruction MachineInstr *DefMI = Def->getInstr(); int DefIdx = DefMI->findRegisterDefOperandIdx(Reg); if (DefIdx != -1) { const MachineOperand &MO = DefMI->getOperand(DefIdx); if (MO.isReg() && MO.isImplicit() && DefIdx >= (int)DefMI->getDesc().getNumOperands()) { // This is an implicit def, getOperandLatency() won't return the correct // latency. e.g. // %D6<def>, %D7<def> = VLD1q16 %R2<kill>, 0, ..., %Q3<imp-def> // %Q1<def> = VMULv8i16 %Q1<kill>, %Q3<kill>, ... // What we want is to compute latency between def of %D6/%D7 and use of // %Q3 instead. DefIdx = DefMI->findRegisterDefOperandIdx(Reg, false, true, TRI); } MachineInstr *UseMI = Use->getInstr(); // For all uses of the register, calculate the maxmimum latency int Latency = -1; if (UseMI) { for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = UseMI->getOperand(i); if (!MO.isReg() || !MO.isUse()) continue; unsigned MOReg = MO.getReg(); if (MOReg != Reg) continue; int UseCycle = TII->getOperandLatency(InstrItins, DefMI, DefIdx, UseMI, i); Latency = std::max(Latency, UseCycle); } } else { // UseMI is null, then it must be a scheduling barrier. if (!InstrItins || InstrItins->isEmpty()) return; unsigned DefClass = DefMI->getDesc().getSchedClass(); Latency = InstrItins->getOperandCycle(DefClass, DefIdx); } // If we found a latency, then replace the existing dependence latency. if (Latency >= 0) dep.setLatency(Latency); } } void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const { SU->getInstr()->dump(); } std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { std::string s; raw_string_ostream oss(s); if (SU == &EntrySU) oss << "<entry>"; else if (SU == &ExitSU) oss << "<exit>"; else SU->getInstr()->print(oss); return oss.str(); } // EmitSchedule - Emit the machine code in scheduled order. MachineBasicBlock *ScheduleDAGInstrs::EmitSchedule() { // For MachineInstr-based scheduling, we're rescheduling the instructions in // the block, so start by removing them from the block. while (Begin != InsertPos) { MachineBasicBlock::iterator I = Begin; ++Begin; BB->remove(I); } // If first instruction was a DBG_VALUE then put it back. if (FirstDbgValue) BB->insert(InsertPos, FirstDbgValue); // Then re-insert them according to the given schedule. for (unsigned i = 0, e = Sequence.size(); i != e; i++) { if (SUnit *SU = Sequence[i]) BB->insert(InsertPos, SU->getInstr()); else // Null SUnit* is a noop. EmitNoop(); } // Update the Begin iterator, as the first instruction in the block // may have been scheduled later. if (!Sequence.empty()) Begin = Sequence[0]->getInstr(); // Reinsert any remaining debug_values. for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { std::pair<MachineInstr *, MachineInstr *> P = *prior(DI); MachineInstr *DbgValue = P.first; MachineInstr *OrigPrivMI = P.second; BB->insertAfter(OrigPrivMI, DbgValue); } DbgValues.clear(); FirstDbgValue = NULL; return BB; }