/* ******************************************************************************** * Copyright (C) 1999-2010 International Business Machines Corporation and * others. All Rights Reserved. ******************************************************************************** * Date Name Description * 10/20/99 alan Creation. * 03/22/2000 Madhu Added additional tests ******************************************************************************** */ #include <stdio.h> #include <string.h> #include "unicode/utypes.h" #include "usettest.h" #include "unicode/ucnv.h" #include "unicode/uniset.h" #include "unicode/uchar.h" #include "unicode/usetiter.h" #include "unicode/ustring.h" #include "unicode/parsepos.h" #include "unicode/symtable.h" #include "unicode/uversion.h" #include "hash.h" #define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0])) #define TEST_ASSERT_SUCCESS(status) {if (U_FAILURE(status)) { \ dataerrln("fail in file \"%s\", line %d: \"%s\"", __FILE__, __LINE__, \ u_errorName(status));}} #define TEST_ASSERT(expr) {if (!(expr)) { \ dataerrln("fail in file \"%s\", line %d", __FILE__, __LINE__); }} UnicodeString operator+(const UnicodeString& left, const UnicodeSet& set) { UnicodeString pat; set.toPattern(pat); return left + UnicodeSetTest::escape(pat); } #define CASE(id,test) case id: \ name = #test; \ if (exec) { \ logln(#test "---"); \ logln(); \ test(); \ } \ break UnicodeSetTest::UnicodeSetTest() : utf8Cnv(NULL) { } UConverter *UnicodeSetTest::openUTF8Converter() { if(utf8Cnv==NULL) { UErrorCode errorCode=U_ZERO_ERROR; utf8Cnv=ucnv_open("UTF-8", &errorCode); } return utf8Cnv; } UnicodeSetTest::~UnicodeSetTest() { ucnv_close(utf8Cnv); } void UnicodeSetTest::runIndexedTest(int32_t index, UBool exec, const char* &name, char* /*par*/) { // if (exec) logln((UnicodeString)"TestSuite UnicodeSetTest"); switch (index) { CASE(0,TestPatterns); CASE(1,TestAddRemove); CASE(2,TestCategories); CASE(3,TestCloneEqualHash); CASE(4,TestMinimalRep); CASE(5,TestAPI); CASE(6,TestScriptSet); CASE(7,TestPropertySet); CASE(8,TestClone); CASE(9,TestExhaustive); CASE(10,TestToPattern); CASE(11,TestIndexOf); CASE(12,TestStrings); CASE(13,Testj2268); CASE(14,TestCloseOver); CASE(15,TestEscapePattern); CASE(16,TestInvalidCodePoint); CASE(17,TestSymbolTable); CASE(18,TestSurrogate); CASE(19,TestPosixClasses); CASE(20,TestIteration); CASE(21,TestFreezable); CASE(22,TestSpan); CASE(23,TestStringSpan); default: name = ""; break; } } static const char NOT[] = "%%%%"; /** * UVector was improperly copying contents * This code will crash this is still true */ void UnicodeSetTest::Testj2268() { UnicodeSet t; t.add(UnicodeString("abc")); UnicodeSet test(t); UnicodeString ustrPat; test.toPattern(ustrPat, TRUE); } /** * Test toPattern(). */ void UnicodeSetTest::TestToPattern() { UErrorCode ec = U_ZERO_ERROR; // Test that toPattern() round trips with syntax characters and // whitespace. { static const char* OTHER_TOPATTERN_TESTS[] = { "[[:latin:]&[:greek:]]", "[[:latin:]-[:greek:]]", "[:nonspacing mark:]", NULL }; for (int32_t j=0; OTHER_TOPATTERN_TESTS[j]!=NULL; ++j) { ec = U_ZERO_ERROR; UnicodeSet s(OTHER_TOPATTERN_TESTS[j], ec); if (U_FAILURE(ec)) { dataerrln((UnicodeString)"FAIL: bad pattern " + OTHER_TOPATTERN_TESTS[j] + " - " + UnicodeString(u_errorName(ec))); continue; } checkPat(OTHER_TOPATTERN_TESTS[j], s); } for (UChar32 i = 0; i <= 0x10FFFF; ++i) { if ((i <= 0xFF && !u_isalpha(i)) || u_isspace(i)) { // check various combinations to make sure they all work. if (i != 0 && !toPatternAux(i, i)){ continue; } if (!toPatternAux(0, i)){ continue; } if (!toPatternAux(i, 0xFFFF)){ continue; } } } } // Test pattern behavior of multicharacter strings. { ec = U_ZERO_ERROR; UnicodeSet* s = new UnicodeSet("[a-z {aa} {ab}]", ec); // This loop isn't a loop. It's here to make the compiler happy. // If you're curious, try removing it and changing the 'break' // statements (except for the last) to goto's. for (;;) { if (U_FAILURE(ec)) break; const char* exp1[] = {"aa", "ab", NOT, "ac", NULL}; expectToPattern(*s, "[a-z{aa}{ab}]", exp1); s->add("ac"); const char* exp2[] = {"aa", "ab", "ac", NOT, "xy", NULL}; expectToPattern(*s, "[a-z{aa}{ab}{ac}]", exp2); s->applyPattern(UNICODE_STRING_SIMPLE("[a-z {\\{l} {r\\}}]"), ec); if (U_FAILURE(ec)) break; const char* exp3[] = {"{l", "r}", NOT, "xy", NULL}; expectToPattern(*s, UNICODE_STRING_SIMPLE("[a-z{r\\}}{\\{l}]"), exp3); s->add("[]"); const char* exp4[] = {"{l", "r}", "[]", NOT, "xy", NULL}; expectToPattern(*s, UNICODE_STRING_SIMPLE("[a-z{\\[\\]}{r\\}}{\\{l}]"), exp4); s->applyPattern(UNICODE_STRING_SIMPLE("[a-z {\\u4E01\\u4E02}{\\n\\r}]"), ec); if (U_FAILURE(ec)) break; const char* exp5[] = {"\\u4E01\\u4E02", "\n\r", NULL}; expectToPattern(*s, UNICODE_STRING_SIMPLE("[a-z{\\u000A\\u000D}{\\u4E01\\u4E02}]"), exp5); // j2189 s->clear(); s->add(UnicodeString("abc", "")); s->add(UnicodeString("abc", "")); const char* exp6[] = {"abc", NOT, "ab", NULL}; expectToPattern(*s, "[{abc}]", exp6); break; } if (U_FAILURE(ec)) errln("FAIL: pattern parse error"); delete s; } // JB#3400: For 2 character ranges prefer [ab] to [a-b] UnicodeSet s; s.add((UChar)97, (UChar)98); // 'a', 'b' expectToPattern(s, "[ab]", NULL); } UBool UnicodeSetTest::toPatternAux(UChar32 start, UChar32 end) { // use Integer.toString because Utility.hex doesn't handle ints UnicodeString pat = ""; // TODO do these in hex //String source = "0x" + Integer.toString(start,16).toUpperCase(); //if (start != end) source += "..0x" + Integer.toString(end,16).toUpperCase(); UnicodeString source; source = source + (uint32_t)start; if (start != end) source = source + ".." + (uint32_t)end; UnicodeSet testSet; testSet.add(start, end); return checkPat(source, testSet); } UBool UnicodeSetTest::checkPat(const UnicodeString& source, const UnicodeSet& testSet) { // What we want to make sure of is that a pattern generated // by toPattern(), with or without escaped unprintables, can // be passed back into the UnicodeSet constructor. UnicodeString pat0; testSet.toPattern(pat0, TRUE); if (!checkPat(source + " (escaped)", testSet, pat0)) return FALSE; //String pat1 = unescapeLeniently(pat0); //if (!checkPat(source + " (in code)", testSet, pat1)) return false; UnicodeString pat2; testSet.toPattern(pat2, FALSE); if (!checkPat(source, testSet, pat2)) return FALSE; //String pat3 = unescapeLeniently(pat2); // if (!checkPat(source + " (in code)", testSet, pat3)) return false; //logln(source + " => " + pat0 + ", " + pat1 + ", " + pat2 + ", " + pat3); logln((UnicodeString)source + " => " + pat0 + ", " + pat2); return TRUE; } UBool UnicodeSetTest::checkPat(const UnicodeString& source, const UnicodeSet& testSet, const UnicodeString& pat) { UErrorCode ec = U_ZERO_ERROR; UnicodeSet testSet2(pat, ec); if (testSet2 != testSet) { errln((UnicodeString)"Fail toPattern: " + source + " => " + pat); return FALSE; } return TRUE; } void UnicodeSetTest::TestPatterns(void) { UnicodeSet set; expectPattern(set, UnicodeString("[[a-m]&[d-z]&[k-y]]", ""), "km"); expectPattern(set, UnicodeString("[[a-z]-[m-y]-[d-r]]", ""), "aczz"); expectPattern(set, UnicodeString("[a\\-z]", ""), "--aazz"); expectPattern(set, UnicodeString("[-az]", ""), "--aazz"); expectPattern(set, UnicodeString("[az-]", ""), "--aazz"); expectPattern(set, UnicodeString("[[[a-z]-[aeiou]i]]", ""), "bdfnptvz"); // Throw in a test of complement set.complement(); UnicodeString exp; exp.append((UChar)0x0000).append("aeeoouu").append((UChar)(0x007a+1)).append((UChar)0xFFFF); expectPairs(set, exp); } void UnicodeSetTest::TestCategories(void) { UErrorCode status = U_ZERO_ERROR; const char* pat = " [:Lu:] "; // Whitespace ok outside [:..:] UnicodeSet set(pat, status); if (U_FAILURE(status)) { dataerrln((UnicodeString)"Fail: Can't construct set with " + pat + " - " + UnicodeString(u_errorName(status))); return; } else { expectContainment(set, pat, "ABC", "abc"); } UChar32 i; int32_t failures = 0; // Make sure generation of L doesn't pollute cached Lu set // First generate L, then Lu set.applyPattern("[:L:]", status); if (U_FAILURE(status)) { errln("FAIL"); return; } for (i=0; i<0x200; ++i) { UBool l = u_isalpha((UChar)i); if (l != set.contains(i)) { errln((UnicodeString)"FAIL: L contains " + (unsigned short)i + " = " + set.contains(i)); if (++failures == 10) break; } } set.applyPattern("[:Lu:]", status); if (U_FAILURE(status)) { errln("FAIL"); return; } for (i=0; i<0x200; ++i) { UBool lu = (u_charType((UChar)i) == U_UPPERCASE_LETTER); if (lu != set.contains(i)) { errln((UnicodeString)"FAIL: Lu contains " + (unsigned short)i + " = " + set.contains(i)); if (++failures == 20) break; } } } void UnicodeSetTest::TestCloneEqualHash(void) { UErrorCode status = U_ZERO_ERROR; // set1 and set2 used to be built with the obsolete constructor taking // UCharCategory values; replaced with pattern constructors // markus 20030502 UnicodeSet *set1=new UnicodeSet(UNICODE_STRING_SIMPLE("\\p{Lowercase Letter}"), status); // :Ll: Letter, lowercase UnicodeSet *set1a=new UnicodeSet(UNICODE_STRING_SIMPLE("[:Ll:]"), status); // Letter, lowercase if (U_FAILURE(status)){ dataerrln((UnicodeString)"FAIL: Can't construst set with category->Ll" + " - " + UnicodeString(u_errorName(status))); return; } UnicodeSet *set2=new UnicodeSet(UNICODE_STRING_SIMPLE("\\p{Decimal Number}"), status); //Number, Decimal digit UnicodeSet *set2a=new UnicodeSet(UNICODE_STRING_SIMPLE("[:Nd:]"), status); //Number, Decimal digit if (U_FAILURE(status)){ errln((UnicodeString)"FAIL: Can't construct set with category->Nd"); return; } if (*set1 != *set1a) { errln("FAIL: category constructor for Ll broken"); } if (*set2 != *set2a) { errln("FAIL: category constructor for Nd broken"); } delete set1a; delete set2a; logln("Testing copy construction"); UnicodeSet *set1copy=new UnicodeSet(*set1); if(*set1 != *set1copy || *set1 == *set2 || getPairs(*set1) != getPairs(*set1copy) || set1->hashCode() != set1copy->hashCode()){ errln("FAIL : Error in copy construction"); return; } logln("Testing =operator"); UnicodeSet set1equal=*set1; UnicodeSet set2equal=*set2; if(set1equal != *set1 || set1equal != *set1copy || set2equal != *set2 || set2equal == *set1 || set2equal == *set1copy || set2equal == set1equal){ errln("FAIL: Error in =operator"); } logln("Testing clone()"); UnicodeSet *set1clone=(UnicodeSet*)set1->clone(); UnicodeSet *set2clone=(UnicodeSet*)set2->clone(); if(*set1clone != *set1 || *set1clone != *set1copy || *set1clone != set1equal || *set2clone != *set2 || *set2clone == *set1copy || *set2clone != set2equal || *set2clone == *set1 || *set2clone == set1equal || *set2clone == *set1clone){ errln("FAIL: Error in clone"); } logln("Testing hashcode"); if(set1->hashCode() != set1equal.hashCode() || set1->hashCode() != set1clone->hashCode() || set2->hashCode() != set2equal.hashCode() || set2->hashCode() != set2clone->hashCode() || set1copy->hashCode() != set1equal.hashCode() || set1copy->hashCode() != set1clone->hashCode() || set1->hashCode() == set2->hashCode() || set1copy->hashCode() == set2->hashCode() || set2->hashCode() == set1clone->hashCode() || set2->hashCode() == set1equal.hashCode() ){ errln("FAIL: Error in hashCode()"); } delete set1; delete set1copy; delete set2; delete set1clone; delete set2clone; } void UnicodeSetTest::TestAddRemove(void) { UnicodeSet set; // Construct empty set doAssert(set.isEmpty() == TRUE, "set should be empty"); doAssert(set.size() == 0, "size should be 0"); set.complement(); doAssert(set.size() == 0x110000, "size should be 0x110000"); set.clear(); set.add(0x0061, 0x007a); expectPairs(set, "az"); doAssert(set.isEmpty() == FALSE, "set should not be empty"); doAssert(set.size() != 0, "size should not be equal to 0"); doAssert(set.size() == 26, "size should be equal to 26"); set.remove(0x006d, 0x0070); expectPairs(set, "alqz"); doAssert(set.size() == 22, "size should be equal to 22"); set.remove(0x0065, 0x0067); expectPairs(set, "adhlqz"); doAssert(set.size() == 19, "size should be equal to 19"); set.remove(0x0064, 0x0069); expectPairs(set, "acjlqz"); doAssert(set.size() == 16, "size should be equal to 16"); set.remove(0x0063, 0x0072); expectPairs(set, "absz"); doAssert(set.size() == 10, "size should be equal to 10"); set.add(0x0066, 0x0071); expectPairs(set, "abfqsz"); doAssert(set.size() == 22, "size should be equal to 22"); set.remove(0x0061, 0x0067); expectPairs(set, "hqsz"); set.remove(0x0061, 0x007a); expectPairs(set, ""); doAssert(set.isEmpty() == TRUE, "set should be empty"); doAssert(set.size() == 0, "size should be 0"); set.add(0x0061); doAssert(set.isEmpty() == FALSE, "set should not be empty"); doAssert(set.size() == 1, "size should not be equal to 1"); set.add(0x0062); set.add(0x0063); expectPairs(set, "ac"); doAssert(set.size() == 3, "size should not be equal to 3"); set.add(0x0070); set.add(0x0071); expectPairs(set, "acpq"); doAssert(set.size() == 5, "size should not be equal to 5"); set.clear(); expectPairs(set, ""); doAssert(set.isEmpty() == TRUE, "set should be empty"); doAssert(set.size() == 0, "size should be 0"); // Try removing an entire set from another set expectPattern(set, "[c-x]", "cx"); UnicodeSet set2; expectPattern(set2, "[f-ky-za-bc[vw]]", "acfkvwyz"); set.removeAll(set2); expectPairs(set, "deluxx"); // Try adding an entire set to another set expectPattern(set, "[jackiemclean]", "aacceein"); expectPattern(set2, "[hitoshinamekatajamesanderson]", "aadehkmort"); set.addAll(set2); expectPairs(set, "aacehort"); doAssert(set.containsAll(set2) == TRUE, "set should contain all the elements in set2"); // Try retaining an set of elements contained in another set (intersection) UnicodeSet set3; expectPattern(set3, "[a-c]", "ac"); doAssert(set.containsAll(set3) == FALSE, "set doesn't contain all the elements in set3"); set3.remove(0x0062); expectPairs(set3, "aacc"); doAssert(set.containsAll(set3) == TRUE, "set should contain all the elements in set3"); set.retainAll(set3); expectPairs(set, "aacc"); doAssert(set.size() == set3.size(), "set.size() should be set3.size()"); doAssert(set.containsAll(set3) == TRUE, "set should contain all the elements in set3"); set.clear(); doAssert(set.size() != set3.size(), "set.size() != set3.size()"); // Test commutativity expectPattern(set, "[hitoshinamekatajamesanderson]", "aadehkmort"); expectPattern(set2, "[jackiemclean]", "aacceein"); set.addAll(set2); expectPairs(set, "aacehort"); doAssert(set.containsAll(set2) == TRUE, "set should contain all the elements in set2"); } /** * Make sure minimal representation is maintained. */ void UnicodeSetTest::TestMinimalRep() { UErrorCode status = U_ZERO_ERROR; // This is pretty thoroughly tested by checkCanonicalRep() // run against the exhaustive operation results. Use the code // here for debugging specific spot problems. // 1 overlap against 2 UnicodeSet set("[h-km-q]", status); if (U_FAILURE(status)) { errln("FAIL"); return; } UnicodeSet set2("[i-o]", status); if (U_FAILURE(status)) { errln("FAIL"); return; } set.addAll(set2); expectPairs(set, "hq"); // right set.applyPattern("[a-m]", status); if (U_FAILURE(status)) { errln("FAIL"); return; } set2.applyPattern("[e-o]", status); if (U_FAILURE(status)) { errln("FAIL"); return; } set.addAll(set2); expectPairs(set, "ao"); // left set.applyPattern("[e-o]", status); if (U_FAILURE(status)) { errln("FAIL"); return; } set2.applyPattern("[a-m]", status); if (U_FAILURE(status)) { errln("FAIL"); return; } set.addAll(set2); expectPairs(set, "ao"); // 1 overlap against 3 set.applyPattern("[a-eg-mo-w]", status); if (U_FAILURE(status)) { errln("FAIL"); return; } set2.applyPattern("[d-q]", status); if (U_FAILURE(status)) { errln("FAIL"); return; } set.addAll(set2); expectPairs(set, "aw"); } void UnicodeSetTest::TestAPI() { UErrorCode status = U_ZERO_ERROR; // default ct UnicodeSet set; if (!set.isEmpty() || set.getRangeCount() != 0) { errln((UnicodeString)"FAIL, set should be empty but isn't: " + set); } // clear(), isEmpty() set.add(0x0061); if (set.isEmpty()) { errln((UnicodeString)"FAIL, set shouldn't be empty but is: " + set); } set.clear(); if (!set.isEmpty()) { errln((UnicodeString)"FAIL, set should be empty but isn't: " + set); } // size() set.clear(); if (set.size() != 0) { errln((UnicodeString)"FAIL, size should be 0, but is " + set.size() + ": " + set); } set.add(0x0061); if (set.size() != 1) { errln((UnicodeString)"FAIL, size should be 1, but is " + set.size() + ": " + set); } set.add(0x0031, 0x0039); if (set.size() != 10) { errln((UnicodeString)"FAIL, size should be 10, but is " + set.size() + ": " + set); } // contains(first, last) set.clear(); set.applyPattern("[A-Y 1-8 b-d l-y]", status); if (U_FAILURE(status)) { errln("FAIL"); return; } for (int32_t i = 0; i<set.getRangeCount(); ++i) { UChar32 a = set.getRangeStart(i); UChar32 b = set.getRangeEnd(i); if (!set.contains(a, b)) { errln((UnicodeString)"FAIL, should contain " + (unsigned short)a + '-' + (unsigned short)b + " but doesn't: " + set); } if (set.contains((UChar32)(a-1), b)) { errln((UnicodeString)"FAIL, shouldn't contain " + (unsigned short)(a-1) + '-' + (unsigned short)b + " but does: " + set); } if (set.contains(a, (UChar32)(b+1))) { errln((UnicodeString)"FAIL, shouldn't contain " + (unsigned short)a + '-' + (unsigned short)(b+1) + " but does: " + set); } } // Ported InversionList test. UnicodeSet a((UChar32)3,(UChar32)10); UnicodeSet b((UChar32)7,(UChar32)15); UnicodeSet c; logln((UnicodeString)"a [3-10]: " + a); logln((UnicodeString)"b [7-15]: " + b); c = a; c.addAll(b); UnicodeSet exp((UChar32)3,(UChar32)15); if (c == exp) { logln((UnicodeString)"c.set(a).add(b): " + c); } else { errln((UnicodeString)"FAIL: c.set(a).add(b) = " + c + ", expect " + exp); } c.complement(); exp.set((UChar32)0, (UChar32)2); exp.add((UChar32)16, UnicodeSet::MAX_VALUE); if (c == exp) { logln((UnicodeString)"c.complement(): " + c); } else { errln((UnicodeString)"FAIL: c.complement() = " + c + ", expect " + exp); } c.complement(); exp.set((UChar32)3, (UChar32)15); if (c == exp) { logln((UnicodeString)"c.complement(): " + c); } else { errln((UnicodeString)"FAIL: c.complement() = " + c + ", expect " + exp); } c = a; c.complementAll(b); exp.set((UChar32)3,(UChar32)6); exp.add((UChar32)11,(UChar32) 15); if (c == exp) { logln((UnicodeString)"c.set(a).exclusiveOr(b): " + c); } else { errln((UnicodeString)"FAIL: c.set(a).exclusiveOr(b) = " + c + ", expect " + exp); } exp = c; bitsToSet(setToBits(c), c); if (c == exp) { logln((UnicodeString)"bitsToSet(setToBits(c)): " + c); } else { errln((UnicodeString)"FAIL: bitsToSet(setToBits(c)) = " + c + ", expect " + exp); } // Additional tests for coverage JB#2118 //UnicodeSet::complement(class UnicodeString const &) //UnicodeSet::complementAll(class UnicodeString const &) //UnicodeSet::containsNone(class UnicodeSet const &) //UnicodeSet::containsNone(long,long) //UnicodeSet::containsSome(class UnicodeSet const &) //UnicodeSet::containsSome(long,long) //UnicodeSet::removeAll(class UnicodeString const &) //UnicodeSet::retain(long) //UnicodeSet::retainAll(class UnicodeString const &) //UnicodeSet::serialize(unsigned short *,long,enum UErrorCode &) //UnicodeSetIterator::getString(void) set.clear(); set.complement("ab"); exp.applyPattern("[{ab}]", status); if (U_FAILURE(status)) { errln("FAIL"); return; } if (set != exp) { errln("FAIL: complement(\"ab\")"); return; } UnicodeSetIterator iset(set); if (!iset.next() || !iset.isString()) { errln("FAIL: UnicodeSetIterator::next/isString"); } else if (iset.getString() != "ab") { errln("FAIL: UnicodeSetIterator::getString"); } set.add((UChar32)0x61, (UChar32)0x7A); set.complementAll("alan"); exp.applyPattern("[{ab}b-kmo-z]", status); if (U_FAILURE(status)) { errln("FAIL"); return; } if (set != exp) { errln("FAIL: complementAll(\"alan\")"); return; } exp.applyPattern("[a-z]", status); if (U_FAILURE(status)) { errln("FAIL"); return; } if (set.containsNone(exp)) { errln("FAIL: containsNone(UnicodeSet)"); } if (!set.containsSome(exp)) { errln("FAIL: containsSome(UnicodeSet)"); } exp.applyPattern("[aln]", status); if (U_FAILURE(status)) { errln("FAIL"); return; } if (!set.containsNone(exp)) { errln("FAIL: containsNone(UnicodeSet)"); } if (set.containsSome(exp)) { errln("FAIL: containsSome(UnicodeSet)"); } if (set.containsNone((UChar32)0x61, (UChar32)0x7A)) { errln("FAIL: containsNone(UChar32, UChar32)"); } if (!set.containsSome((UChar32)0x61, (UChar32)0x7A)) { errln("FAIL: containsSome(UChar32, UChar32)"); } if (!set.containsNone((UChar32)0x41, (UChar32)0x5A)) { errln("FAIL: containsNone(UChar32, UChar32)"); } if (set.containsSome((UChar32)0x41, (UChar32)0x5A)) { errln("FAIL: containsSome(UChar32, UChar32)"); } set.removeAll("liu"); exp.applyPattern("[{ab}b-hj-kmo-tv-z]", status); if (U_FAILURE(status)) { errln("FAIL"); return; } if (set != exp) { errln("FAIL: removeAll(\"liu\")"); return; } set.retainAll("star"); exp.applyPattern("[rst]", status); if (U_FAILURE(status)) { errln("FAIL"); return; } if (set != exp) { errln("FAIL: retainAll(\"star\")"); return; } set.retain((UChar32)0x73); exp.applyPattern("[s]", status); if (U_FAILURE(status)) { errln("FAIL"); return; } if (set != exp) { errln("FAIL: retain('s')"); return; } uint16_t buf[32]; int32_t slen = set.serialize(buf, sizeof(buf)/sizeof(buf[0]), status); if (U_FAILURE(status)) { errln("FAIL: serialize"); return; } if (slen != 3 || buf[0] != 2 || buf[1] != 0x73 || buf[2] != 0x74) { errln("FAIL: serialize"); return; } // Conversions to and from USet UnicodeSet *uniset = &set; USet *uset = uniset->toUSet(); TEST_ASSERT((void *)uset == (void *)uniset); UnicodeSet *setx = UnicodeSet::fromUSet(uset); TEST_ASSERT((void *)setx == (void *)uset); const UnicodeSet *constSet = uniset; const USet *constUSet = constSet->toUSet(); TEST_ASSERT((void *)constUSet == (void *)constSet); const UnicodeSet *constSetx = UnicodeSet::fromUSet(constUSet); TEST_ASSERT((void *)constSetx == (void *)constUSet); // span(UnicodeString) and spanBack(UnicodeString) convenience methods UnicodeString longString=UNICODE_STRING_SIMPLE("aaaaaaaaaabbbbbbbbbbcccccccccc"); UnicodeSet ac(0x61, 0x63); ac.remove(0x62).freeze(); if( ac.span(longString, -5, USET_SPAN_CONTAINED)!=10 || ac.span(longString, 0, USET_SPAN_CONTAINED)!=10 || ac.span(longString, 5, USET_SPAN_CONTAINED)!=10 || ac.span(longString, 10, USET_SPAN_CONTAINED)!=10 || ac.span(longString, 15, USET_SPAN_CONTAINED)!=15 || ac.span(longString, 20, USET_SPAN_CONTAINED)!=30 || ac.span(longString, 25, USET_SPAN_CONTAINED)!=30 || ac.span(longString, 30, USET_SPAN_CONTAINED)!=30 || ac.span(longString, 35, USET_SPAN_CONTAINED)!=30 || ac.span(longString, INT32_MAX, USET_SPAN_CONTAINED)!=30 ) { errln("UnicodeSet.span(UnicodeString, ...) returns incorrect end indexes"); } if( ac.spanBack(longString, -5, USET_SPAN_CONTAINED)!=0 || ac.spanBack(longString, 0, USET_SPAN_CONTAINED)!=0 || ac.spanBack(longString, 5, USET_SPAN_CONTAINED)!=0 || ac.spanBack(longString, 10, USET_SPAN_CONTAINED)!=0 || ac.spanBack(longString, 15, USET_SPAN_CONTAINED)!=15 || ac.spanBack(longString, 20, USET_SPAN_CONTAINED)!=20 || ac.spanBack(longString, 25, USET_SPAN_CONTAINED)!=20 || ac.spanBack(longString, 30, USET_SPAN_CONTAINED)!=20 || ac.spanBack(longString, 35, USET_SPAN_CONTAINED)!=20 || ac.spanBack(longString, INT32_MAX, USET_SPAN_CONTAINED)!=20 ) { errln("UnicodeSet.spanBack(UnicodeString, ...) returns incorrect start indexes"); } } void UnicodeSetTest::TestIteration() { UErrorCode ec = U_ZERO_ERROR; int i = 0; int outerLoop; // 6 code points, 3 ranges, 2 strings, 8 total elements // Iteration will access them in sorted order - a, b, c, y, z, U0001abcd, "str1", "str2" UnicodeSet set(UNICODE_STRING_SIMPLE("[zabyc\\U0001abcd{str1}{str2}]"), ec); TEST_ASSERT_SUCCESS(ec); UnicodeSetIterator it(set); for (outerLoop=0; outerLoop<3; outerLoop++) { // Run the test multiple times, to check that iterator.reset() is working. for (i=0; i<10; i++) { UBool nextv = it.next(); UBool isString = it.isString(); int32_t codePoint = it.getCodepoint(); //int32_t codePointEnd = it.getCodepointEnd(); UnicodeString s = it.getString(); switch (i) { case 0: TEST_ASSERT(nextv == TRUE); TEST_ASSERT(isString == FALSE); TEST_ASSERT(codePoint==0x61); TEST_ASSERT(s == "a"); break; case 1: TEST_ASSERT(nextv == TRUE); TEST_ASSERT(isString == FALSE); TEST_ASSERT(codePoint==0x62); TEST_ASSERT(s == "b"); break; case 2: TEST_ASSERT(nextv == TRUE); TEST_ASSERT(isString == FALSE); TEST_ASSERT(codePoint==0x63); TEST_ASSERT(s == "c"); break; case 3: TEST_ASSERT(nextv == TRUE); TEST_ASSERT(isString == FALSE); TEST_ASSERT(codePoint==0x79); TEST_ASSERT(s == "y"); break; case 4: TEST_ASSERT(nextv == TRUE); TEST_ASSERT(isString == FALSE); TEST_ASSERT(codePoint==0x7a); TEST_ASSERT(s == "z"); break; case 5: TEST_ASSERT(nextv == TRUE); TEST_ASSERT(isString == FALSE); TEST_ASSERT(codePoint==0x1abcd); TEST_ASSERT(s == UnicodeString((UChar32)0x1abcd)); break; case 6: TEST_ASSERT(nextv == TRUE); TEST_ASSERT(isString == TRUE); TEST_ASSERT(s == "str1"); break; case 7: TEST_ASSERT(nextv == TRUE); TEST_ASSERT(isString == TRUE); TEST_ASSERT(s == "str2"); break; case 8: TEST_ASSERT(nextv == FALSE); break; case 9: TEST_ASSERT(nextv == FALSE); break; } } it.reset(); // prepare to run the iteration again. } } void UnicodeSetTest::TestStrings() { UErrorCode ec = U_ZERO_ERROR; UnicodeSet* testList[] = { UnicodeSet::createFromAll("abc"), new UnicodeSet("[a-c]", ec), &(UnicodeSet::createFrom("ch")->add('a','z').add("ll")), new UnicodeSet("[{ll}{ch}a-z]", ec), UnicodeSet::createFrom("ab}c"), new UnicodeSet("[{ab\\}c}]", ec), &((new UnicodeSet('a','z'))->add('A', 'Z').retain('M','m').complement('X')), new UnicodeSet("[[a-zA-Z]&[M-m]-[X]]", ec), NULL }; if (U_FAILURE(ec)) { errln("FAIL: couldn't construct test sets"); } for (int32_t i = 0; testList[i] != NULL; i+=2) { if (U_SUCCESS(ec)) { UnicodeString pat0, pat1; testList[i]->toPattern(pat0, TRUE); testList[i+1]->toPattern(pat1, TRUE); if (*testList[i] == *testList[i+1]) { logln((UnicodeString)"Ok: " + pat0 + " == " + pat1); } else { logln((UnicodeString)"FAIL: " + pat0 + " != " + pat1); } } delete testList[i]; delete testList[i+1]; } } /** * Test the [:Latin:] syntax. */ void UnicodeSetTest::TestScriptSet() { expectContainment(UNICODE_STRING_SIMPLE("[:Latin:]"), "aA", CharsToUnicodeString("\\u0391\\u03B1")); expectContainment(UNICODE_STRING_SIMPLE("[:Greek:]"), CharsToUnicodeString("\\u0391\\u03B1"), "aA"); /* Jitterbug 1423 */ expectContainment(UNICODE_STRING_SIMPLE("[[:Common:][:Inherited:]]"), CharsToUnicodeString("\\U00003099\\U0001D169\\u0000"), "aA"); } /** * Test the [:Latin:] syntax. */ void UnicodeSetTest::TestPropertySet() { static const char* const DATA[] = { // Pattern, Chars IN, Chars NOT in "[:Latin:]", "aA", "\\u0391\\u03B1", "[\\p{Greek}]", "\\u0391\\u03B1", "aA", "\\P{ GENERAL Category = upper case letter }", "abc", "ABC", #if !UCONFIG_NO_NORMALIZATION // Combining class: @since ICU 2.2 // Check both symbolic and numeric "\\p{ccc=Nukta}", "\\u0ABC", "abc", "\\p{Canonical Combining Class = 11}", "\\u05B1", "\\u05B2", "[:c c c = iota subscript :]", "\\u0345", "xyz", #endif // Bidi class: @since ICU 2.2 "\\p{bidiclass=lefttoright}", "abc", "\\u0671\\u0672", // Binary properties: @since ICU 2.2 "\\p{ideographic}", "\\u4E0A", "x", "[:math=false:]", "q)*(", // weiv: )(and * were removed from math in Unicode 4.0.1 //"(*+)", "+<>^", // JB#1767 \N{}, \p{ASCII} "[:Ascii:]", "abc\\u0000\\u007F", "\\u0080\\u4E00", "[\\N{ latin small letter a }[:name= latin small letter z:]]", "az", "qrs", // JB#2015 "[:any:]", "a\\U0010FFFF", "", "[:nv=0.5:]", "\\u00BD\\u0F2A", "\\u00BC", // JB#2653: Age "[:Age=1.1:]", "\\u03D6", // 1.1 "\\u03D8\\u03D9", // 3.2 "[:Age=3.1:]", "\\u1800\\u3400\\U0002f800", "\\u0220\\u034f\\u30ff\\u33ff\\ufe73\\U00010000\\U00050000", // JB#2350: Case_Sensitive "[:Case Sensitive:]", "A\\u1FFC\\U00010410", ";\\u00B4\\U00010500", // JB#2832: C99-compatibility props "[:blank:]", " \\u0009", "1-9A-Z", "[:graph:]", "19AZ", " \\u0003\\u0007\\u0009\\u000A\\u000D", "[:punct:]", "!@#%&*()[]{}-_\\/;:,.?'\"", "09azAZ", "[:xdigit:]", "09afAF", "gG!", // Regex compatibility test "[-b]", // leading '-' is literal "-b", "ac", "[^-b]", // leading '-' is literal "ac", "-b", "[b-]", // trailing '-' is literal "-b", "ac", "[^b-]", // trailing '-' is literal "ac", "-b", "[a-b-]", // trailing '-' is literal "ab-", "c=", "[[a-q]&[p-z]-]", // trailing '-' is literal "pq-", "or=", "[\\s|\\)|:|$|\\>]", // from regex tests "s|):$>", "abc", "[\\uDC00cd]", // JB#2906: isolated trail at start "cd\\uDC00", "ab\\uD800\\U00010000", "[ab\\uD800]", // JB#2906: isolated trail at start "ab\\uD800", "cd\\uDC00\\U00010000", "[ab\\uD800cd]", // JB#2906: isolated lead in middle "abcd\\uD800", "ef\\uDC00\\U00010000", "[ab\\uDC00cd]", // JB#2906: isolated trail in middle "abcd\\uDC00", "ef\\uD800\\U00010000", #if !UCONFIG_NO_NORMALIZATION "[:^lccc=0:]", // Lead canonical class "\\u0300\\u0301", "abcd\\u00c0\\u00c5", "[:^tccc=0:]", // Trail canonical class "\\u0300\\u0301\\u00c0\\u00c5", "abcd", "[[:^lccc=0:][:^tccc=0:]]", // Lead and trail canonical class "\\u0300\\u0301\\u00c0\\u00c5", "abcd", "[[:^lccc=0:]-[:^tccc=0:]]", // Stuff that starts with an accent but ends with a base (none right now) "", "abcd\\u0300\\u0301\\u00c0\\u00c5", "[[:ccc=0:]-[:lccc=0:]-[:tccc=0:]]", // Weirdos. Complete canonical class is zero, but both lead and trail are not "\\u0F73\\u0F75\\u0F81", "abcd\\u0300\\u0301\\u00c0\\u00c5", #endif /* !UCONFIG_NO_NORMALIZATION */ "[:Assigned:]", "A\\uE000\\uF8FF\\uFDC7\\U00010000\\U0010FFFD", "\\u0888\\uFDD3\\uFFFE\\U00050005", // Script_Extensions, new in Unicode 6.0 "[:scx=Arab:]", "\\u061E\\u061F\\u0620\\u0621\\u063F\\u0640\\u0650\\u065E\\uFDF1\\uFDF2\\uFDF3", "\\u061D\\u065F\\uFDEF\\uFDFE", // U+FDF2 has Script=Arabic and also Arab in its Script_Extensions, // so scx-sc is missing U+FDF2. "[[:Script_Extensions=Arabic:]-[:Arab:]]", "\\u0640\\u064B\\u0650\\u0655\\uFDFD", "\\uFDF2" }; static const int32_t DATA_LEN = sizeof(DATA)/sizeof(DATA[0]); for (int32_t i=0; i<DATA_LEN; i+=3) { expectContainment(UnicodeString(DATA[i], -1, US_INV), CharsToUnicodeString(DATA[i+1]), CharsToUnicodeString(DATA[i+2])); } } /** * Test that Posix style character classes [:digit:], etc. * have the Unicode definitions from TR 18. */ void UnicodeSetTest::TestPosixClasses() { { UErrorCode status = U_ZERO_ERROR; UnicodeSet s1("[:alpha:]", status); UnicodeSet s2(UNICODE_STRING_SIMPLE("\\p{Alphabetic}"), status); TEST_ASSERT_SUCCESS(status); TEST_ASSERT(s1==s2); } { UErrorCode status = U_ZERO_ERROR; UnicodeSet s1("[:lower:]", status); UnicodeSet s2(UNICODE_STRING_SIMPLE("\\p{lowercase}"), status); TEST_ASSERT_SUCCESS(status); TEST_ASSERT(s1==s2); } { UErrorCode status = U_ZERO_ERROR; UnicodeSet s1("[:upper:]", status); UnicodeSet s2(UNICODE_STRING_SIMPLE("\\p{Uppercase}"), status); TEST_ASSERT_SUCCESS(status); TEST_ASSERT(s1==s2); } { UErrorCode status = U_ZERO_ERROR; UnicodeSet s1("[:punct:]", status); UnicodeSet s2(UNICODE_STRING_SIMPLE("\\p{gc=Punctuation}"), status); TEST_ASSERT_SUCCESS(status); TEST_ASSERT(s1==s2); } { UErrorCode status = U_ZERO_ERROR; UnicodeSet s1("[:digit:]", status); UnicodeSet s2(UNICODE_STRING_SIMPLE("\\p{gc=DecimalNumber}"), status); TEST_ASSERT_SUCCESS(status); TEST_ASSERT(s1==s2); } { UErrorCode status = U_ZERO_ERROR; UnicodeSet s1("[:xdigit:]", status); UnicodeSet s2(UNICODE_STRING_SIMPLE("[\\p{DecimalNumber}\\p{HexDigit}]"), status); TEST_ASSERT_SUCCESS(status); TEST_ASSERT(s1==s2); } { UErrorCode status = U_ZERO_ERROR; UnicodeSet s1("[:alnum:]", status); UnicodeSet s2(UNICODE_STRING_SIMPLE("[\\p{Alphabetic}\\p{DecimalNumber}]"), status); TEST_ASSERT_SUCCESS(status); TEST_ASSERT(s1==s2); } { UErrorCode status = U_ZERO_ERROR; UnicodeSet s1("[:space:]", status); UnicodeSet s2(UNICODE_STRING_SIMPLE("\\p{Whitespace}"), status); TEST_ASSERT_SUCCESS(status); TEST_ASSERT(s1==s2); } { UErrorCode status = U_ZERO_ERROR; UnicodeSet s1("[:blank:]", status); TEST_ASSERT_SUCCESS(status); UnicodeSet s2(UNICODE_STRING_SIMPLE("[\\p{Whitespace}-[\\u000a\\u000B\\u000c\\u000d\\u0085\\p{LineSeparator}\\p{ParagraphSeparator}]]"), status); TEST_ASSERT_SUCCESS(status); TEST_ASSERT(s1==s2); } { UErrorCode status = U_ZERO_ERROR; UnicodeSet s1("[:cntrl:]", status); TEST_ASSERT_SUCCESS(status); UnicodeSet s2(UNICODE_STRING_SIMPLE("\\p{Control}"), status); TEST_ASSERT_SUCCESS(status); TEST_ASSERT(s1==s2); } { UErrorCode status = U_ZERO_ERROR; UnicodeSet s1("[:graph:]", status); TEST_ASSERT_SUCCESS(status); UnicodeSet s2(UNICODE_STRING_SIMPLE("[^\\p{Whitespace}\\p{Control}\\p{Surrogate}\\p{Unassigned}]"), status); TEST_ASSERT_SUCCESS(status); TEST_ASSERT(s1==s2); } { UErrorCode status = U_ZERO_ERROR; UnicodeSet s1("[:print:]", status); TEST_ASSERT_SUCCESS(status); UnicodeSet s2(UNICODE_STRING_SIMPLE("[[:graph:][:blank:]-[\\p{Control}]]") ,status); TEST_ASSERT_SUCCESS(status); TEST_ASSERT(s1==s2); } } /** * Test cloning of UnicodeSet. For C++, we test the copy constructor. */ void UnicodeSetTest::TestClone() { UErrorCode ec = U_ZERO_ERROR; UnicodeSet s("[abcxyz]", ec); UnicodeSet t(s); expectContainment(t, "abc", "def"); } /** * Test the indexOf() and charAt() methods. */ void UnicodeSetTest::TestIndexOf() { UErrorCode ec = U_ZERO_ERROR; UnicodeSet set("[a-cx-y3578]", ec); if (U_FAILURE(ec)) { errln("FAIL: UnicodeSet constructor"); return; } for (int32_t i=0; i<set.size(); ++i) { UChar32 c = set.charAt(i); if (set.indexOf(c) != i) { errln("FAIL: charAt(%d) = %X => indexOf() => %d", i, c, set.indexOf(c)); } } UChar32 c = set.charAt(set.size()); if (c != -1) { errln("FAIL: charAt(<out of range>) = %X", c); } int32_t j = set.indexOf((UChar32)0x71/*'q'*/); if (j != -1) { errln((UnicodeString)"FAIL: indexOf('q') = " + j); } } /** * Test closure API. */ void UnicodeSetTest::TestCloseOver() { UErrorCode ec = U_ZERO_ERROR; char CASE[] = {(char)USET_CASE_INSENSITIVE}; char CASE_MAPPINGS[] = {(char)USET_ADD_CASE_MAPPINGS}; const char* DATA[] = { // selector, input, output CASE, "[aq\\u00DF{Bc}{bC}{Fi}]", "[aAqQ\\u00DF\\u1E9E\\uFB01{ss}{bc}{fi}]", // U+1E9E LATIN CAPITAL LETTER SHARP S is new in Unicode 5.1 CASE, "[\\u01F1]", // 'DZ' "[\\u01F1\\u01F2\\u01F3]", CASE, "[\\u1FB4]", "[\\u1FB4{\\u03AC\\u03B9}]", CASE, "[{F\\uFB01}]", "[\\uFB03{ffi}]", CASE, // make sure binary search finds limits "[a\\uFF3A]", "[aA\\uFF3A\\uFF5A]", CASE, "[a-z]","[A-Za-z\\u017F\\u212A]", CASE, "[abc]","[A-Ca-c]", CASE, "[ABC]","[A-Ca-c]", CASE, "[i]", "[iI]", CASE, "[\\u0130]", "[\\u0130{i\\u0307}]", // dotted I CASE, "[{i\\u0307}]", "[\\u0130{i\\u0307}]", // i with dot CASE, "[\\u0131]", "[\\u0131]", // dotless i CASE, "[\\u0390]", "[\\u0390\\u1FD3{\\u03B9\\u0308\\u0301}]", CASE, "[\\u03c2]", "[\\u03a3\\u03c2\\u03c3]", // sigmas CASE, "[\\u03f2]", "[\\u03f2\\u03f9]", // lunate sigmas CASE, "[\\u03f7]", "[\\u03f7\\u03f8]", CASE, "[\\u1fe3]", "[\\u03b0\\u1fe3{\\u03c5\\u0308\\u0301}]", CASE, "[\\ufb05]", "[\\ufb05\\ufb06{st}]", CASE, "[{st}]", "[\\ufb05\\ufb06{st}]", CASE, "[\\U0001044F]", "[\\U00010427\\U0001044F]", CASE, "[{a\\u02BE}]", "[\\u1E9A{a\\u02BE}]", // first in sorted table CASE, "[{\\u1f7c\\u03b9}]", "[\\u1ff2{\\u1f7c\\u03b9}]", // last in sorted table #if !UCONFIG_NO_FILE_IO CASE_MAPPINGS, "[aq\\u00DF{Bc}{bC}{Fi}]", "[aAqQ\\u00DF{ss}{Ss}{SS}{Bc}{BC}{bC}{bc}{FI}{Fi}{fi}]", #endif CASE_MAPPINGS, "[\\u01F1]", // 'DZ' "[\\u01F1\\u01F2\\u01F3]", CASE_MAPPINGS, "[a-z]", "[A-Za-z]", NULL }; UnicodeSet s; UnicodeSet t; UnicodeString buf; for (int32_t i=0; DATA[i]!=NULL; i+=3) { int32_t selector = DATA[i][0]; UnicodeString pat(DATA[i+1], -1, US_INV); UnicodeString exp(DATA[i+2], -1, US_INV); s.applyPattern(pat, ec); s.closeOver(selector); t.applyPattern(exp, ec); if (U_FAILURE(ec)) { errln("FAIL: applyPattern failed"); continue; } if (s == t) { logln((UnicodeString)"Ok: " + pat + ".closeOver(" + selector + ") => " + exp); } else { dataerrln((UnicodeString)"FAIL: " + pat + ".closeOver(" + selector + ") => " + s.toPattern(buf, TRUE) + ", expected " + exp); } } #if 0 /* * Unused test code. * This was used to compare the old implementation (using USET_CASE) * with the new one (using 0x100 temporarily) * while transitioning from hardcoded case closure tables in uniset.cpp * (moved to uniset_props.cpp) to building the data by gencase into ucase.icu. * and using ucase.c functions for closure. * See Jitterbug 3432 RFE: Move uniset.cpp data to a data file * * Note: The old and new implementation never fully matched because * the old implementation turned out to not map U+0130 and U+0131 correctly * (dotted I and dotless i) and because the old implementation's data tables * were outdated compared to Unicode 4.0.1 at the time of the change to the * new implementation. (So sigmas and some other characters were not handled * according to the newer Unicode version.) */ UnicodeSet sens("[:case_sensitive:]", ec), sens2, s2; UnicodeSetIterator si(sens); UnicodeString str, buf2; const UnicodeString *pStr; UChar32 c; while(si.next()) { if(!si.isString()) { c=si.getCodepoint(); s.clear(); s.add(c); str.setTo(c); str.foldCase(); sens2.add(str); t=s; s.closeOver(USET_CASE); t.closeOver(0x100); if(s!=t) { errln("FAIL: closeOver(U+%04x) differs: ", c); errln((UnicodeString)"old "+s.toPattern(buf, TRUE)+" new: "+t.toPattern(buf2, TRUE)); } } } // remove all code points // should contain all full case folding mapping strings sens2.remove(0, 0x10ffff); si.reset(sens2); while(si.next()) { if(si.isString()) { pStr=&si.getString(); s.clear(); s.add(*pStr); t=s2=s; s.closeOver(USET_CASE); t.closeOver(0x100); if(s!=t) { errln((UnicodeString)"FAIL: closeOver("+s2.toPattern(buf, TRUE)+") differs: "); errln((UnicodeString)"old "+s.toPattern(buf, TRUE)+" new: "+t.toPattern(buf2, TRUE)); } } } #endif // Test the pattern API s.applyPattern("[abc]", USET_CASE_INSENSITIVE, NULL, ec); if (U_FAILURE(ec)) { errln("FAIL: applyPattern failed"); } else { expectContainment(s, "abcABC", "defDEF"); } UnicodeSet v("[^abc]", USET_CASE_INSENSITIVE, NULL, ec); if (U_FAILURE(ec)) { errln("FAIL: constructor failed"); } else { expectContainment(v, "defDEF", "abcABC"); } UnicodeSet cm("[abck]", USET_ADD_CASE_MAPPINGS, NULL, ec); if (U_FAILURE(ec)) { errln("FAIL: construct w/case mappings failed"); } else { expectContainment(cm, "abckABCK", CharsToUnicodeString("defDEF\\u212A")); } } void UnicodeSetTest::TestEscapePattern() { const char pattern[] = "[\\uFEFF \\u200A-\\u200E \\U0001D173-\\U0001D17A \\U000F0000-\\U000FFFFD ]"; const char exp[] = "[\\u200A-\\u200E\\uFEFF\\U0001D173-\\U0001D17A\\U000F0000-\\U000FFFFD]"; // We test this with two passes; in the second pass we // pre-unescape the pattern. Since U+200E is rule whitespace, // this fails -- which is what we expect. for (int32_t pass=1; pass<=2; ++pass) { UErrorCode ec = U_ZERO_ERROR; UnicodeString pat(pattern, -1, US_INV); if (pass==2) { pat = pat.unescape(); } // Pattern is only good for pass 1 UBool isPatternValid = (pass==1); UnicodeSet set(pat, ec); if (U_SUCCESS(ec) != isPatternValid){ errln((UnicodeString)"FAIL: applyPattern(" + escape(pat) + ") => " + u_errorName(ec)); continue; } if (U_FAILURE(ec)) { continue; } if (set.contains((UChar)0x0644)){ errln((UnicodeString)"FAIL: " + escape(pat) + " contains(U+0664)"); } UnicodeString newpat; set.toPattern(newpat, TRUE); if (newpat == UnicodeString(exp, -1, US_INV)) { logln(escape(pat) + " => " + newpat); } else { errln((UnicodeString)"FAIL: " + escape(pat) + " => " + newpat); } for (int32_t i=0; i<set.getRangeCount(); ++i) { UnicodeString str("Range "); str.append((UChar)(0x30 + i)) .append(": ") .append((UChar32)set.getRangeStart(i)) .append(" - ") .append((UChar32)set.getRangeEnd(i)); str = str + " (" + set.getRangeStart(i) + " - " + set.getRangeEnd(i) + ")"; if (set.getRangeStart(i) < 0) { errln((UnicodeString)"FAIL: " + escape(str)); } else { logln(escape(str)); } } } } void UnicodeSetTest::expectRange(const UnicodeString& label, const UnicodeSet& set, UChar32 start, UChar32 end) { UnicodeSet exp(start, end); UnicodeString pat; if (set == exp) { logln(label + " => " + set.toPattern(pat, TRUE)); } else { UnicodeString xpat; errln((UnicodeString)"FAIL: " + label + " => " + set.toPattern(pat, TRUE) + ", expected " + exp.toPattern(xpat, TRUE)); } } void UnicodeSetTest::TestInvalidCodePoint() { const UChar32 DATA[] = { // Test range Expected range 0, 0x10FFFF, 0, 0x10FFFF, (UChar32)-1, 8, 0, 8, 8, 0x110000, 8, 0x10FFFF }; const int32_t DATA_LENGTH = sizeof(DATA)/sizeof(DATA[0]); UnicodeString pat; int32_t i; for (i=0; i<DATA_LENGTH; i+=4) { UChar32 start = DATA[i]; UChar32 end = DATA[i+1]; UChar32 xstart = DATA[i+2]; UChar32 xend = DATA[i+3]; // Try various API using the test code points UnicodeSet set(start, end); expectRange((UnicodeString)"ct(" + start + "," + end + ")", set, xstart, xend); set.clear(); set.set(start, end); expectRange((UnicodeString)"set(" + start + "," + end + ")", set, xstart, xend); UBool b = set.contains(start); b = set.contains(start, end); b = set.containsNone(start, end); b = set.containsSome(start, end); /*int32_t index = set.indexOf(start);*/ set.clear(); set.add(start); set.add(start, end); expectRange((UnicodeString)"add(" + start + "," + end + ")", set, xstart, xend); set.set(0, 0x10FFFF); set.retain(start, end); expectRange((UnicodeString)"retain(" + start + "," + end + ")", set, xstart, xend); set.retain(start); set.set(0, 0x10FFFF); set.remove(start); set.remove(start, end); set.complement(); expectRange((UnicodeString)"!remove(" + start + "," + end + ")", set, xstart, xend); set.set(0, 0x10FFFF); set.complement(start, end); set.complement(); expectRange((UnicodeString)"!complement(" + start + "," + end + ")", set, xstart, xend); set.complement(start); } const UChar32 DATA2[] = { 0, 0x10FFFF, (UChar32)-1, 0x110000 }; const int32_t DATA2_LENGTH = sizeof(DATA2)/sizeof(DATA2[0]); for (i=0; i<DATA2_LENGTH; ++i) { UChar32 c = DATA2[i], end = 0x10FFFF; UBool valid = (c >= 0 && c <= 0x10FFFF); UnicodeSet set(0, 0x10FFFF); // For single-codepoint contains, invalid codepoints are NOT contained UBool b = set.contains(c); if (b == valid) { logln((UnicodeString)"[\\u0000-\\U0010FFFF].contains(" + c + ") = " + b); } else { errln((UnicodeString)"FAIL: [\\u0000-\\U0010FFFF].contains(" + c + ") = " + b); } // For codepoint range contains, containsNone, and containsSome, // invalid or empty (start > end) ranges have UNDEFINED behavior. b = set.contains(c, end); logln((UnicodeString)"* [\\u0000-\\U0010FFFF].contains(" + c + "," + end + ") = " + b); b = set.containsNone(c, end); logln((UnicodeString)"* [\\u0000-\\U0010FFFF].containsNone(" + c + "," + end + ") = " + b); b = set.containsSome(c, end); logln((UnicodeString)"* [\\u0000-\\U0010FFFF].containsSome(" + c + "," + end + ") = " + b); int32_t index = set.indexOf(c); if ((index >= 0) == valid) { logln((UnicodeString)"[\\u0000-\\U0010FFFF].indexOf(" + c + ") = " + index); } else { errln((UnicodeString)"FAIL: [\\u0000-\\U0010FFFF].indexOf(" + c + ") = " + index); } } } // Used by TestSymbolTable class TokenSymbolTable : public SymbolTable { public: Hashtable contents; TokenSymbolTable(UErrorCode& ec) : contents(FALSE, ec) { contents.setValueDeleter(uhash_deleteUnicodeString); } ~TokenSymbolTable() {} /** * (Non-SymbolTable API) Add the given variable and value to * the table. Variable should NOT contain leading '$'. */ void add(const UnicodeString& var, const UnicodeString& value, UErrorCode& ec) { if (U_SUCCESS(ec)) { contents.put(var, new UnicodeString(value), ec); } } /** * SymbolTable API */ virtual const UnicodeString* lookup(const UnicodeString& s) const { return (const UnicodeString*) contents.get(s); } /** * SymbolTable API */ virtual const UnicodeFunctor* lookupMatcher(UChar32 /*ch*/) const { return NULL; } /** * SymbolTable API */ virtual UnicodeString parseReference(const UnicodeString& text, ParsePosition& pos, int32_t limit) const { int32_t start = pos.getIndex(); int32_t i = start; UnicodeString result; while (i < limit) { UChar c = text.charAt(i); if ((i==start && !u_isIDStart(c)) || !u_isIDPart(c)) { break; } ++i; } if (i == start) { // No valid name chars return result; // Indicate failure with empty string } pos.setIndex(i); text.extractBetween(start, i, result); return result; } }; void UnicodeSetTest::TestSymbolTable() { // Multiple test cases can be set up here. Each test case // is terminated by null: // var, value, var, value,..., input pat., exp. output pat., null const char* DATA[] = { "us", "a-z", "[0-1$us]", "[0-1a-z]", NULL, "us", "[a-z]", "[0-1$us]", "[0-1[a-z]]", NULL, "us", "\\[a\\-z\\]", "[0-1$us]", "[-01\\[\\]az]", NULL, NULL }; for (int32_t i=0; DATA[i]!=NULL; ++i) { UErrorCode ec = U_ZERO_ERROR; TokenSymbolTable sym(ec); if (U_FAILURE(ec)) { errln("FAIL: couldn't construct TokenSymbolTable"); continue; } // Set up variables while (DATA[i+2] != NULL) { sym.add(UnicodeString(DATA[i], -1, US_INV), UnicodeString(DATA[i+1], -1, US_INV), ec); if (U_FAILURE(ec)) { errln("FAIL: couldn't add to TokenSymbolTable"); continue; } i += 2; } // Input pattern and expected output pattern UnicodeString inpat = UnicodeString(DATA[i], -1, US_INV), exppat = UnicodeString(DATA[i+1], -1, US_INV); i += 2; ParsePosition pos(0); UnicodeSet us(inpat, pos, USET_IGNORE_SPACE, &sym, ec); if (U_FAILURE(ec)) { errln("FAIL: couldn't construct UnicodeSet"); continue; } // results if (pos.getIndex() != inpat.length()) { errln((UnicodeString)"Failed to read to end of string \"" + inpat + "\": read to " + pos.getIndex() + ", length is " + inpat.length()); } UnicodeSet us2(exppat, ec); if (U_FAILURE(ec)) { errln("FAIL: couldn't construct expected UnicodeSet"); continue; } UnicodeString a, b; if (us != us2) { errln((UnicodeString)"Failed, got " + us.toPattern(a, TRUE) + ", expected " + us2.toPattern(b, TRUE)); } else { logln((UnicodeString)"Ok, got " + us.toPattern(a, TRUE)); } } } void UnicodeSetTest::TestSurrogate() { const char* DATA[] = { // These should all behave identically "[abc\\uD800\\uDC00]", // "[abc\uD800\uDC00]", // Can't do this on C -- only Java "[abc\\U00010000]", 0 }; for (int i=0; DATA[i] != 0; ++i) { UErrorCode ec = U_ZERO_ERROR; logln((UnicodeString)"Test pattern " + i + " :" + UnicodeString(DATA[i], -1, US_INV)); UnicodeString str = UnicodeString(DATA[i], -1, US_INV); UnicodeSet set(str, ec); if (U_FAILURE(ec)) { errln("FAIL: UnicodeSet constructor"); continue; } expectContainment(set, CharsToUnicodeString("abc\\U00010000"), CharsToUnicodeString("\\uD800;\\uDC00")); // split apart surrogate-pair if (set.size() != 4) { errln((UnicodeString)"FAIL: " + UnicodeString(DATA[i], -1, US_INV) + ".size() == " + set.size() + ", expected 4"); } } } void UnicodeSetTest::TestExhaustive() { // exhaustive tests. Simulate UnicodeSets with integers. // That gives us very solid tests (except for large memory tests). int32_t limit = 128; UnicodeSet x, y, z, aa; for (int32_t i = 0; i < limit; ++i) { bitsToSet(i, x); logln((UnicodeString)"Testing " + i + ", " + x); _testComplement(i, x, y); // AS LONG AS WE ARE HERE, check roundtrip checkRoundTrip(bitsToSet(i, aa)); for (int32_t j = 0; j < limit; ++j) { _testAdd(i,j, x,y,z); _testXor(i,j, x,y,z); _testRetain(i,j, x,y,z); _testRemove(i,j, x,y,z); } } } void UnicodeSetTest::_testComplement(int32_t a, UnicodeSet& x, UnicodeSet& z) { bitsToSet(a, x); z = x; z.complement(); int32_t c = setToBits(z); if (c != (~a)) { errln((UnicodeString)"FAILED: add: ~" + x + " != " + z); errln((UnicodeString)"FAILED: add: ~" + a + " != " + c); } checkCanonicalRep(z, (UnicodeString)"complement " + a); } void UnicodeSetTest::_testAdd(int32_t a, int32_t b, UnicodeSet& x, UnicodeSet& y, UnicodeSet& z) { bitsToSet(a, x); bitsToSet(b, y); z = x; z.addAll(y); int32_t c = setToBits(z); if (c != (a | b)) { errln((UnicodeString)"FAILED: add: " + x + " | " + y + " != " + z); errln((UnicodeString)"FAILED: add: " + a + " | " + b + " != " + c); } checkCanonicalRep(z, (UnicodeString)"add " + a + "," + b); } void UnicodeSetTest::_testRetain(int32_t a, int32_t b, UnicodeSet& x, UnicodeSet& y, UnicodeSet& z) { bitsToSet(a, x); bitsToSet(b, y); z = x; z.retainAll(y); int32_t c = setToBits(z); if (c != (a & b)) { errln((UnicodeString)"FAILED: retain: " + x + " & " + y + " != " + z); errln((UnicodeString)"FAILED: retain: " + a + " & " + b + " != " + c); } checkCanonicalRep(z, (UnicodeString)"retain " + a + "," + b); } void UnicodeSetTest::_testRemove(int32_t a, int32_t b, UnicodeSet& x, UnicodeSet& y, UnicodeSet& z) { bitsToSet(a, x); bitsToSet(b, y); z = x; z.removeAll(y); int32_t c = setToBits(z); if (c != (a &~ b)) { errln((UnicodeString)"FAILED: remove: " + x + " &~ " + y + " != " + z); errln((UnicodeString)"FAILED: remove: " + a + " &~ " + b + " != " + c); } checkCanonicalRep(z, (UnicodeString)"remove " + a + "," + b); } void UnicodeSetTest::_testXor(int32_t a, int32_t b, UnicodeSet& x, UnicodeSet& y, UnicodeSet& z) { bitsToSet(a, x); bitsToSet(b, y); z = x; z.complementAll(y); int32_t c = setToBits(z); if (c != (a ^ b)) { errln((UnicodeString)"FAILED: complement: " + x + " ^ " + y + " != " + z); errln((UnicodeString)"FAILED: complement: " + a + " ^ " + b + " != " + c); } checkCanonicalRep(z, (UnicodeString)"complement " + a + "," + b); } /** * Check that ranges are monotonically increasing and non- * overlapping. */ void UnicodeSetTest::checkCanonicalRep(const UnicodeSet& set, const UnicodeString& msg) { int32_t n = set.getRangeCount(); if (n < 0) { errln((UnicodeString)"FAIL result of " + msg + ": range count should be >= 0 but is " + n /*+ " for " + set.toPattern())*/); return; } UChar32 last = 0; for (int32_t i=0; i<n; ++i) { UChar32 start = set.getRangeStart(i); UChar32 end = set.getRangeEnd(i); if (start > end) { errln((UnicodeString)"FAIL result of " + msg + ": range " + (i+1) + " start > end: " + (int)start + ", " + (int)end + " for " + set); } if (i > 0 && start <= last) { errln((UnicodeString)"FAIL result of " + msg + ": range " + (i+1) + " overlaps previous range: " + (int)start + ", " + (int)end + " for " + set); } last = end; } } /** * Convert a bitmask to a UnicodeSet. */ UnicodeSet& UnicodeSetTest::bitsToSet(int32_t a, UnicodeSet& result) { result.clear(); for (UChar32 i = 0; i < 32; ++i) { if ((a & (1<<i)) != 0) { result.add(i); } } return result; } /** * Convert a UnicodeSet to a bitmask. Only the characters * U+0000 to U+0020 are represented in the bitmask. */ int32_t UnicodeSetTest::setToBits(const UnicodeSet& x) { int32_t result = 0; for (int32_t i = 0; i < 32; ++i) { if (x.contains((UChar32)i)) { result |= (1<<i); } } return result; } /** * Return the representation of an inversion list based UnicodeSet * as a pairs list. Ranges are listed in ascending Unicode order. * For example, the set [a-zA-M3] is represented as "33AMaz". */ UnicodeString UnicodeSetTest::getPairs(const UnicodeSet& set) { UnicodeString pairs; for (int32_t i=0; i<set.getRangeCount(); ++i) { UChar32 start = set.getRangeStart(i); UChar32 end = set.getRangeEnd(i); if (end > 0xFFFF) { end = 0xFFFF; i = set.getRangeCount(); // Should be unnecessary } pairs.append((UChar)start).append((UChar)end); } return pairs; } /** * Basic consistency check for a few items. * That the iterator works, and that we can create a pattern and * get the same thing back */ void UnicodeSetTest::checkRoundTrip(const UnicodeSet& s) { UErrorCode ec = U_ZERO_ERROR; UnicodeSet t(s); checkEqual(s, t, "copy ct"); t = s; checkEqual(s, t, "operator="); copyWithIterator(t, s, FALSE); checkEqual(s, t, "iterator roundtrip"); copyWithIterator(t, s, TRUE); // try range checkEqual(s, t, "iterator roundtrip"); UnicodeString pat; s.toPattern(pat, FALSE); t.applyPattern(pat, ec); if (U_FAILURE(ec)) { errln("FAIL: applyPattern"); return; } else { checkEqual(s, t, "toPattern(false)"); } s.toPattern(pat, TRUE); t.applyPattern(pat, ec); if (U_FAILURE(ec)) { errln("FAIL: applyPattern"); return; } else { checkEqual(s, t, "toPattern(true)"); } } void UnicodeSetTest::copyWithIterator(UnicodeSet& t, const UnicodeSet& s, UBool withRange) { t.clear(); UnicodeSetIterator it(s); if (withRange) { while (it.nextRange()) { if (it.isString()) { t.add(it.getString()); } else { t.add(it.getCodepoint(), it.getCodepointEnd()); } } } else { while (it.next()) { if (it.isString()) { t.add(it.getString()); } else { t.add(it.getCodepoint()); } } } } UBool UnicodeSetTest::checkEqual(const UnicodeSet& s, const UnicodeSet& t, const char* message) { UnicodeString source; s.toPattern(source, TRUE); UnicodeString result; t.toPattern(result, TRUE); if (s != t) { errln((UnicodeString)"FAIL: " + message + "; source = " + source + "; result = " + result ); return FALSE; } else { logln((UnicodeString)"Ok: " + message + "; source = " + source + "; result = " + result ); } return TRUE; } void UnicodeSetTest::expectContainment(const UnicodeString& pat, const UnicodeString& charsIn, const UnicodeString& charsOut) { UErrorCode ec = U_ZERO_ERROR; UnicodeSet set(pat, ec); if (U_FAILURE(ec)) { dataerrln((UnicodeString)"FAIL: pattern \"" + pat + "\" => " + u_errorName(ec)); return; } expectContainment(set, pat, charsIn, charsOut); } void UnicodeSetTest::expectContainment(const UnicodeSet& set, const UnicodeString& charsIn, const UnicodeString& charsOut) { UnicodeString pat; set.toPattern(pat); expectContainment(set, pat, charsIn, charsOut); } void UnicodeSetTest::expectContainment(const UnicodeSet& set, const UnicodeString& setName, const UnicodeString& charsIn, const UnicodeString& charsOut) { UnicodeString bad; UChar32 c; int32_t i; for (i=0; i<charsIn.length(); i+=U16_LENGTH(c)) { c = charsIn.char32At(i); if (!set.contains(c)) { bad.append(c); } } if (bad.length() > 0) { errln((UnicodeString)"Fail: set " + setName + " does not contain " + prettify(bad) + ", expected containment of " + prettify(charsIn)); } else { logln((UnicodeString)"Ok: set " + setName + " contains " + prettify(charsIn)); } bad.truncate(0); for (i=0; i<charsOut.length(); i+=U16_LENGTH(c)) { c = charsOut.char32At(i); if (set.contains(c)) { bad.append(c); } } if (bad.length() > 0) { errln((UnicodeString)"Fail: set " + setName + " contains " + prettify(bad) + ", expected non-containment of " + prettify(charsOut)); } else { logln((UnicodeString)"Ok: set " + setName + " does not contain " + prettify(charsOut)); } } void UnicodeSetTest::expectPattern(UnicodeSet& set, const UnicodeString& pattern, const UnicodeString& expectedPairs){ UErrorCode status = U_ZERO_ERROR; set.applyPattern(pattern, status); if (U_FAILURE(status)) { errln(UnicodeString("FAIL: applyPattern(\"") + pattern + "\") failed"); return; } else { if (getPairs(set) != expectedPairs ) { errln(UnicodeString("FAIL: applyPattern(\"") + pattern + "\") => pairs \"" + escape(getPairs(set)) + "\", expected \"" + escape(expectedPairs) + "\""); } else { logln(UnicodeString("Ok: applyPattern(\"") + pattern + "\") => pairs \"" + escape(getPairs(set)) + "\""); } } // the result of calling set.toPattern(), which is the string representation of // this set(set), is passed to a UnicodeSet constructor, and tested that it // will produce another set that is equal to this one. UnicodeString temppattern; set.toPattern(temppattern); UnicodeSet *tempset=new UnicodeSet(temppattern, status); if (U_FAILURE(status)) { errln(UnicodeString("FAIL: applyPattern(\""+ pattern + "\").toPattern() => " + temppattern + " => invalid pattern")); return; } if(*tempset != set || getPairs(*tempset) != getPairs(set)){ errln(UnicodeString("FAIL: applyPattern(\""+ pattern + "\").toPattern() => " + temppattern + " => pairs \""+ escape(getPairs(*tempset)) + "\", expected pairs \"" + escape(getPairs(set)) + "\"")); } else{ logln(UnicodeString("Ok: applyPattern(\""+ pattern + "\").toPattern() => " + temppattern + " => pairs \"" + escape(getPairs(*tempset)) + "\"")); } delete tempset; } void UnicodeSetTest::expectPairs(const UnicodeSet& set, const UnicodeString& expectedPairs) { if (getPairs(set) != expectedPairs) { errln(UnicodeString("FAIL: Expected pair list \"") + escape(expectedPairs) + "\", got \"" + escape(getPairs(set)) + "\""); } } void UnicodeSetTest::expectToPattern(const UnicodeSet& set, const UnicodeString& expPat, const char** expStrings) { UnicodeString pat; set.toPattern(pat, TRUE); if (pat == expPat) { logln((UnicodeString)"Ok: toPattern() => \"" + pat + "\""); } else { errln((UnicodeString)"FAIL: toPattern() => \"" + pat + "\", expected \"" + expPat + "\""); return; } if (expStrings == NULL) { return; } UBool in = TRUE; for (int32_t i=0; expStrings[i] != NULL; ++i) { if (expStrings[i] == NOT) { // sic; pointer comparison in = FALSE; continue; } UnicodeString s = CharsToUnicodeString(expStrings[i]); UBool contained = set.contains(s); if (contained == in) { logln((UnicodeString)"Ok: " + expPat + (contained ? " contains {" : " does not contain {") + escape(expStrings[i]) + "}"); } else { errln((UnicodeString)"FAIL: " + expPat + (contained ? " contains {" : " does not contain {") + escape(expStrings[i]) + "}"); } } } static UChar toHexString(int32_t i) { return (UChar)(i + (i < 10 ? 0x30 : (0x41 - 10))); } void UnicodeSetTest::doAssert(UBool condition, const char *message) { if (!condition) { errln(UnicodeString("ERROR : ") + message); } } UnicodeString UnicodeSetTest::escape(const UnicodeString& s) { UnicodeString buf; for (int32_t i=0; i<s.length(); ) { UChar32 c = s.char32At(i); if (0x0020 <= c && c <= 0x007F) { buf += c; } else { if (c <= 0xFFFF) { buf += (UChar)0x5c; buf += (UChar)0x75; } else { buf += (UChar)0x5c; buf += (UChar)0x55; buf += toHexString((c & 0xF0000000) >> 28); buf += toHexString((c & 0x0F000000) >> 24); buf += toHexString((c & 0x00F00000) >> 20); buf += toHexString((c & 0x000F0000) >> 16); } buf += toHexString((c & 0xF000) >> 12); buf += toHexString((c & 0x0F00) >> 8); buf += toHexString((c & 0x00F0) >> 4); buf += toHexString(c & 0x000F); } i += U16_LENGTH(c); } return buf; } void UnicodeSetTest::TestFreezable() { UErrorCode errorCode=U_ZERO_ERROR; UnicodeString idPattern=UNICODE_STRING("[:ID_Continue:]", 15); UnicodeSet idSet(idPattern, errorCode); if(U_FAILURE(errorCode)) { dataerrln("FAIL: unable to create UnicodeSet([:ID_Continue:]) - %s", u_errorName(errorCode)); return; } UnicodeString wsPattern=UNICODE_STRING("[:White_Space:]", 15); UnicodeSet wsSet(wsPattern, errorCode); if(U_FAILURE(errorCode)) { dataerrln("FAIL: unable to create UnicodeSet([:White_Space:]) - %s", u_errorName(errorCode)); return; } idSet.add(idPattern); UnicodeSet frozen(idSet); frozen.freeze(); if(idSet.isFrozen() || !frozen.isFrozen()) { errln("FAIL: isFrozen() is wrong"); } if(frozen!=idSet || !(frozen==idSet)) { errln("FAIL: a copy-constructed frozen set differs from its original"); } frozen=wsSet; if(frozen!=idSet || !(frozen==idSet)) { errln("FAIL: a frozen set was modified by operator="); } UnicodeSet frozen2(frozen); if(frozen2!=frozen || frozen2!=idSet) { errln("FAIL: a copied frozen set differs from its frozen original"); } if(!frozen2.isFrozen()) { errln("FAIL: copy-constructing a frozen set results in a thawed one"); } UnicodeSet frozen3(5, 55); // Set to some values to really test assignment below, not copy construction. if(frozen3.contains(0, 4) || !frozen3.contains(5, 55) || frozen3.contains(56, 0x10ffff)) { errln("FAIL: UnicodeSet(5, 55) failed"); } frozen3=frozen; if(!frozen3.isFrozen()) { errln("FAIL: copying a frozen set results in a thawed one"); } UnicodeSet *cloned=(UnicodeSet *)frozen.clone(); if(!cloned->isFrozen() || *cloned!=frozen || cloned->containsSome(0xd802, 0xd805)) { errln("FAIL: clone() failed"); } cloned->add(0xd802, 0xd805); if(cloned->containsSome(0xd802, 0xd805)) { errln("FAIL: unable to modify clone"); } delete cloned; UnicodeSet *thawed=(UnicodeSet *)frozen.cloneAsThawed(); if(thawed->isFrozen() || *thawed!=frozen || thawed->containsSome(0xd802, 0xd805)) { errln("FAIL: cloneAsThawed() failed"); } thawed->add(0xd802, 0xd805); if(!thawed->contains(0xd802, 0xd805)) { errln("FAIL: unable to modify thawed clone"); } delete thawed; frozen.set(5, 55); if(frozen!=idSet || !(frozen==idSet)) { errln("FAIL: UnicodeSet::set() modified a frozen set"); } frozen.clear(); if(frozen!=idSet || !(frozen==idSet)) { errln("FAIL: UnicodeSet::clear() modified a frozen set"); } frozen.closeOver(USET_CASE_INSENSITIVE); if(frozen!=idSet || !(frozen==idSet)) { errln("FAIL: UnicodeSet::closeOver() modified a frozen set"); } frozen.compact(); if(frozen!=idSet || !(frozen==idSet)) { errln("FAIL: UnicodeSet::compact() modified a frozen set"); } ParsePosition pos; frozen. applyPattern(wsPattern, errorCode). applyPattern(wsPattern, USET_IGNORE_SPACE, NULL, errorCode). applyPattern(wsPattern, pos, USET_IGNORE_SPACE, NULL, errorCode). applyIntPropertyValue(UCHAR_CANONICAL_COMBINING_CLASS, 230, errorCode). applyPropertyAlias(UNICODE_STRING_SIMPLE("Assigned"), UnicodeString(), errorCode); if(frozen!=idSet || !(frozen==idSet)) { errln("FAIL: UnicodeSet::applyXYZ() modified a frozen set"); } frozen. add(0xd800). add(0xd802, 0xd805). add(wsPattern). addAll(idPattern). addAll(wsSet); if(frozen!=idSet || !(frozen==idSet)) { errln("FAIL: UnicodeSet::addXYZ() modified a frozen set"); } frozen. retain(0x62). retain(0x64, 0x69). retainAll(wsPattern). retainAll(wsSet); if(frozen!=idSet || !(frozen==idSet)) { errln("FAIL: UnicodeSet::retainXYZ() modified a frozen set"); } frozen. remove(0x62). remove(0x64, 0x69). remove(idPattern). removeAll(idPattern). removeAll(idSet); if(frozen!=idSet || !(frozen==idSet)) { errln("FAIL: UnicodeSet::removeXYZ() modified a frozen set"); } frozen. complement(). complement(0x62). complement(0x64, 0x69). complement(idPattern). complementAll(idPattern). complementAll(idSet); if(frozen!=idSet || !(frozen==idSet)) { errln("FAIL: UnicodeSet::complementXYZ() modified a frozen set"); } } // Test span() etc. -------------------------------------------------------- *** // Append the UTF-8 version of the string to t and return the appended UTF-8 length. static int32_t appendUTF8(const UChar *s, int32_t length, char *t, int32_t capacity) { UErrorCode errorCode=U_ZERO_ERROR; int32_t length8=0; u_strToUTF8(t, capacity, &length8, s, length, &errorCode); if(U_SUCCESS(errorCode)) { return length8; } else { // The string contains an unpaired surrogate. // Ignore this string. return 0; } } class UnicodeSetWithStringsIterator; // Make the strings in a UnicodeSet easily accessible. class UnicodeSetWithStrings { public: UnicodeSetWithStrings(const UnicodeSet &normalSet) : set(normalSet), stringsLength(0), hasSurrogates(FALSE) { int32_t size=set.size(); if(size>0 && set.charAt(size-1)<0) { // If a set's last element is not a code point, then it must contain strings. // Iterate over the set, skip all code point ranges, and cache the strings. // Convert them to UTF-8 for spanUTF8(). UnicodeSetIterator iter(set); const UnicodeString *s; char *s8=utf8; int32_t length8, utf8Count=0; while(iter.nextRange() && stringsLength<LENGTHOF(strings)) { if(iter.isString()) { // Store the pointer to the set's string element // which we happen to know is a stable pointer. strings[stringsLength]=s=&iter.getString(); utf8Count+= utf8Lengths[stringsLength]=length8= appendUTF8(s->getBuffer(), s->length(), s8, (int32_t)(sizeof(utf8)-utf8Count)); if(length8==0) { hasSurrogates=TRUE; // Contains unpaired surrogates. } s8+=length8; ++stringsLength; } } } } const UnicodeSet &getSet() const { return set; } UBool hasStrings() const { return (UBool)(stringsLength>0); } UBool hasStringsWithSurrogates() const { return hasSurrogates; } private: friend class UnicodeSetWithStringsIterator; const UnicodeSet &set; const UnicodeString *strings[20]; int32_t stringsLength; UBool hasSurrogates; char utf8[1024]; int32_t utf8Lengths[20]; int32_t nextStringIndex; int32_t nextUTF8Start; }; class UnicodeSetWithStringsIterator { public: UnicodeSetWithStringsIterator(const UnicodeSetWithStrings &set) : fSet(set), nextStringIndex(0), nextUTF8Start(0) { } void reset() { nextStringIndex=nextUTF8Start=0; } const UnicodeString *nextString() { if(nextStringIndex<fSet.stringsLength) { return fSet.strings[nextStringIndex++]; } else { return NULL; } } // Do not mix with calls to nextString(). const char *nextUTF8(int32_t &length) { if(nextStringIndex<fSet.stringsLength) { const char *s8=fSet.utf8+nextUTF8Start; nextUTF8Start+=length=fSet.utf8Lengths[nextStringIndex++]; return s8; } else { length=0; return NULL; } } private: const UnicodeSetWithStrings &fSet; int32_t nextStringIndex; int32_t nextUTF8Start; }; // Compare 16-bit Unicode strings (which may be malformed UTF-16) // at code point boundaries. // That is, each edge of a match must not be in the middle of a surrogate pair. static inline UBool matches16CPB(const UChar *s, int32_t start, int32_t limit, const UnicodeString &t) { s+=start; limit-=start; int32_t length=t.length(); return 0==t.compare(s, length) && !(0<start && U16_IS_LEAD(s[-1]) && U16_IS_TRAIL(s[0])) && !(length<limit && U16_IS_LEAD(s[length-1]) && U16_IS_TRAIL(s[length])); } // Implement span() with contains() for comparison. static int32_t containsSpanUTF16(const UnicodeSetWithStrings &set, const UChar *s, int32_t length, USetSpanCondition spanCondition) { const UnicodeSet &realSet(set.getSet()); if(!set.hasStrings()) { if(spanCondition!=USET_SPAN_NOT_CONTAINED) { spanCondition=USET_SPAN_CONTAINED; // Pin to 0/1 values. } UChar32 c; int32_t start=0, prev; while((prev=start)<length) { U16_NEXT(s, start, length, c); if(realSet.contains(c)!=spanCondition) { break; } } return prev; } else if(spanCondition==USET_SPAN_NOT_CONTAINED) { UnicodeSetWithStringsIterator iter(set); UChar32 c; int32_t start, next; for(start=next=0; start<length;) { U16_NEXT(s, next, length, c); if(realSet.contains(c)) { break; } const UnicodeString *str; iter.reset(); while((str=iter.nextString())!=NULL) { if(str->length()<=(length-start) && matches16CPB(s, start, length, *str)) { // spanNeedsStrings=TRUE; return start; } } start=next; } return start; } else /* USET_SPAN_CONTAINED or USET_SPAN_SIMPLE */ { UnicodeSetWithStringsIterator iter(set); UChar32 c; int32_t start, next, maxSpanLimit=0; for(start=next=0; start<length;) { U16_NEXT(s, next, length, c); if(!realSet.contains(c)) { next=start; // Do not span this single, not-contained code point. } const UnicodeString *str; iter.reset(); while((str=iter.nextString())!=NULL) { if(str->length()<=(length-start) && matches16CPB(s, start, length, *str)) { // spanNeedsStrings=TRUE; int32_t matchLimit=start+str->length(); if(matchLimit==length) { return length; } if(spanCondition==USET_SPAN_CONTAINED) { // Iterate for the shortest match at each position. // Recurse for each but the shortest match. if(next==start) { next=matchLimit; // First match from start. } else { if(matchLimit<next) { // Remember shortest match from start for iteration. int32_t temp=next; next=matchLimit; matchLimit=temp; } // Recurse for non-shortest match from start. int32_t spanLength=containsSpanUTF16(set, s+matchLimit, length-matchLimit, USET_SPAN_CONTAINED); if((matchLimit+spanLength)>maxSpanLimit) { maxSpanLimit=matchLimit+spanLength; if(maxSpanLimit==length) { return length; } } } } else /* spanCondition==USET_SPAN_SIMPLE */ { if(matchLimit>next) { // Remember longest match from start. next=matchLimit; } } } } if(next==start) { break; // No match from start. } start=next; } if(start>maxSpanLimit) { return start; } else { return maxSpanLimit; } } } static int32_t containsSpanBackUTF16(const UnicodeSetWithStrings &set, const UChar *s, int32_t length, USetSpanCondition spanCondition) { if(length==0) { return 0; } const UnicodeSet &realSet(set.getSet()); if(!set.hasStrings()) { if(spanCondition!=USET_SPAN_NOT_CONTAINED) { spanCondition=USET_SPAN_CONTAINED; // Pin to 0/1 values. } UChar32 c; int32_t prev=length; do { U16_PREV(s, 0, length, c); if(realSet.contains(c)!=spanCondition) { break; } } while((prev=length)>0); return prev; } else if(spanCondition==USET_SPAN_NOT_CONTAINED) { UnicodeSetWithStringsIterator iter(set); UChar32 c; int32_t prev=length, length0=length; do { U16_PREV(s, 0, length, c); if(realSet.contains(c)) { break; } const UnicodeString *str; iter.reset(); while((str=iter.nextString())!=NULL) { if(str->length()<=prev && matches16CPB(s, prev-str->length(), length0, *str)) { // spanNeedsStrings=TRUE; return prev; } } } while((prev=length)>0); return prev; } else /* USET_SPAN_CONTAINED or USET_SPAN_SIMPLE */ { UnicodeSetWithStringsIterator iter(set); UChar32 c; int32_t prev=length, minSpanStart=length, length0=length; do { U16_PREV(s, 0, length, c); if(!realSet.contains(c)) { length=prev; // Do not span this single, not-contained code point. } const UnicodeString *str; iter.reset(); while((str=iter.nextString())!=NULL) { if(str->length()<=prev && matches16CPB(s, prev-str->length(), length0, *str)) { // spanNeedsStrings=TRUE; int32_t matchStart=prev-str->length(); if(matchStart==0) { return 0; } if(spanCondition==USET_SPAN_CONTAINED) { // Iterate for the shortest match at each position. // Recurse for each but the shortest match. if(length==prev) { length=matchStart; // First match from prev. } else { if(matchStart>length) { // Remember shortest match from prev for iteration. int32_t temp=length; length=matchStart; matchStart=temp; } // Recurse for non-shortest match from prev. int32_t spanStart=containsSpanBackUTF16(set, s, matchStart, USET_SPAN_CONTAINED); if(spanStart<minSpanStart) { minSpanStart=spanStart; if(minSpanStart==0) { return 0; } } } } else /* spanCondition==USET_SPAN_SIMPLE */ { if(matchStart<length) { // Remember longest match from prev. length=matchStart; } } } } if(length==prev) { break; // No match from prev. } } while((prev=length)>0); if(prev<minSpanStart) { return prev; } else { return minSpanStart; } } } static int32_t containsSpanUTF8(const UnicodeSetWithStrings &set, const char *s, int32_t length, USetSpanCondition spanCondition) { const UnicodeSet &realSet(set.getSet()); if(!set.hasStrings()) { if(spanCondition!=USET_SPAN_NOT_CONTAINED) { spanCondition=USET_SPAN_CONTAINED; // Pin to 0/1 values. } UChar32 c; int32_t start=0, prev; while((prev=start)<length) { U8_NEXT(s, start, length, c); if(c<0) { c=0xfffd; } if(realSet.contains(c)!=spanCondition) { break; } } return prev; } else if(spanCondition==USET_SPAN_NOT_CONTAINED) { UnicodeSetWithStringsIterator iter(set); UChar32 c; int32_t start, next; for(start=next=0; start<length;) { U8_NEXT(s, next, length, c); if(c<0) { c=0xfffd; } if(realSet.contains(c)) { break; } const char *s8; int32_t length8; iter.reset(); while((s8=iter.nextUTF8(length8))!=NULL) { if(length8!=0 && length8<=(length-start) && 0==memcmp(s+start, s8, length8)) { // spanNeedsStrings=TRUE; return start; } } start=next; } return start; } else /* USET_SPAN_CONTAINED or USET_SPAN_SIMPLE */ { UnicodeSetWithStringsIterator iter(set); UChar32 c; int32_t start, next, maxSpanLimit=0; for(start=next=0; start<length;) { U8_NEXT(s, next, length, c); if(c<0) { c=0xfffd; } if(!realSet.contains(c)) { next=start; // Do not span this single, not-contained code point. } const char *s8; int32_t length8; iter.reset(); while((s8=iter.nextUTF8(length8))!=NULL) { if(length8!=0 && length8<=(length-start) && 0==memcmp(s+start, s8, length8)) { // spanNeedsStrings=TRUE; int32_t matchLimit=start+length8; if(matchLimit==length) { return length; } if(spanCondition==USET_SPAN_CONTAINED) { // Iterate for the shortest match at each position. // Recurse for each but the shortest match. if(next==start) { next=matchLimit; // First match from start. } else { if(matchLimit<next) { // Remember shortest match from start for iteration. int32_t temp=next; next=matchLimit; matchLimit=temp; } // Recurse for non-shortest match from start. int32_t spanLength=containsSpanUTF8(set, s+matchLimit, length-matchLimit, USET_SPAN_CONTAINED); if((matchLimit+spanLength)>maxSpanLimit) { maxSpanLimit=matchLimit+spanLength; if(maxSpanLimit==length) { return length; } } } } else /* spanCondition==USET_SPAN_SIMPLE */ { if(matchLimit>next) { // Remember longest match from start. next=matchLimit; } } } } if(next==start) { break; // No match from start. } start=next; } if(start>maxSpanLimit) { return start; } else { return maxSpanLimit; } } } static int32_t containsSpanBackUTF8(const UnicodeSetWithStrings &set, const char *s, int32_t length, USetSpanCondition spanCondition) { if(length==0) { return 0; } const UnicodeSet &realSet(set.getSet()); if(!set.hasStrings()) { if(spanCondition!=USET_SPAN_NOT_CONTAINED) { spanCondition=USET_SPAN_CONTAINED; // Pin to 0/1 values. } UChar32 c; int32_t prev=length; do { U8_PREV(s, 0, length, c); if(c<0) { c=0xfffd; } if(realSet.contains(c)!=spanCondition) { break; } } while((prev=length)>0); return prev; } else if(spanCondition==USET_SPAN_NOT_CONTAINED) { UnicodeSetWithStringsIterator iter(set); UChar32 c; int32_t prev=length; do { U8_PREV(s, 0, length, c); if(c<0) { c=0xfffd; } if(realSet.contains(c)) { break; } const char *s8; int32_t length8; iter.reset(); while((s8=iter.nextUTF8(length8))!=NULL) { if(length8!=0 && length8<=prev && 0==memcmp(s+prev-length8, s8, length8)) { // spanNeedsStrings=TRUE; return prev; } } } while((prev=length)>0); return prev; } else /* USET_SPAN_CONTAINED or USET_SPAN_SIMPLE */ { UnicodeSetWithStringsIterator iter(set); UChar32 c; int32_t prev=length, minSpanStart=length; do { U8_PREV(s, 0, length, c); if(c<0) { c=0xfffd; } if(!realSet.contains(c)) { length=prev; // Do not span this single, not-contained code point. } const char *s8; int32_t length8; iter.reset(); while((s8=iter.nextUTF8(length8))!=NULL) { if(length8!=0 && length8<=prev && 0==memcmp(s+prev-length8, s8, length8)) { // spanNeedsStrings=TRUE; int32_t matchStart=prev-length8; if(matchStart==0) { return 0; } if(spanCondition==USET_SPAN_CONTAINED) { // Iterate for the shortest match at each position. // Recurse for each but the shortest match. if(length==prev) { length=matchStart; // First match from prev. } else { if(matchStart>length) { // Remember shortest match from prev for iteration. int32_t temp=length; length=matchStart; matchStart=temp; } // Recurse for non-shortest match from prev. int32_t spanStart=containsSpanBackUTF8(set, s, matchStart, USET_SPAN_CONTAINED); if(spanStart<minSpanStart) { minSpanStart=spanStart; if(minSpanStart==0) { return 0; } } } } else /* spanCondition==USET_SPAN_SIMPLE */ { if(matchStart<length) { // Remember longest match from prev. length=matchStart; } } } } if(length==prev) { break; // No match from prev. } } while((prev=length)>0); if(prev<minSpanStart) { return prev; } else { return minSpanStart; } } } // spans to be performed and compared enum { SPAN_UTF16 =1, SPAN_UTF8 =2, SPAN_UTFS =3, SPAN_SET =4, SPAN_COMPLEMENT =8, SPAN_POLARITY =0xc, SPAN_FWD =0x10, SPAN_BACK =0x20, SPAN_DIRS =0x30, SPAN_CONTAINED =0x100, SPAN_SIMPLE =0x200, SPAN_CONDITION =0x300, SPAN_ALL =0x33f }; static inline USetSpanCondition invertSpanCondition(USetSpanCondition spanCondition, USetSpanCondition contained) { return spanCondition == USET_SPAN_NOT_CONTAINED ? contained : USET_SPAN_NOT_CONTAINED; } static inline int32_t slen(const void *s, UBool isUTF16) { return isUTF16 ? u_strlen((const UChar *)s) : strlen((const char *)s); } /* * Count spans on a string with the method according to type and set the span limits. * The set may be the complement of the original. * When using spanBack() and comparing with span(), use a span condition for the first spanBack() * according to the expected number of spans. * Sets typeName to an empty string if there is no such type. * Returns -1 if the span option is filtered out. */ static int32_t getSpans(const UnicodeSetWithStrings &set, UBool isComplement, const void *s, int32_t length, UBool isUTF16, uint32_t whichSpans, int type, const char *&typeName, int32_t limits[], int32_t limitsCapacity, int32_t expectCount) { const UnicodeSet &realSet(set.getSet()); int32_t start, count; USetSpanCondition spanCondition, firstSpanCondition, contained; UBool isForward; if(type<0 || 7<type) { typeName=""; return 0; } static const char *const typeNames16[]={ "contains", "contains(LM)", "span", "span(LM)", "containsBack", "containsBack(LM)", "spanBack", "spanBack(LM)" }; static const char *const typeNames8[]={ "containsUTF8", "containsUTF8(LM)", "spanUTF8", "spanUTF8(LM)", "containsBackUTF8", "containsBackUTF8(LM)", // not implemented "spanBackUTF8", "spanBackUTF8(LM)" }; typeName= isUTF16 ? typeNames16[type] : typeNames8[type]; // filter span options if(type<=3) { // span forward if((whichSpans&SPAN_FWD)==0) { return -1; } isForward=TRUE; } else { // span backward if((whichSpans&SPAN_BACK)==0) { return -1; } isForward=FALSE; } if((type&1)==0) { // use USET_SPAN_CONTAINED if((whichSpans&SPAN_CONTAINED)==0) { return -1; } contained=USET_SPAN_CONTAINED; } else { // use USET_SPAN_SIMPLE if((whichSpans&SPAN_SIMPLE)==0) { return -1; } contained=USET_SPAN_SIMPLE; } // Default first span condition for going forward with an uncomplemented set. spanCondition=USET_SPAN_NOT_CONTAINED; if(isComplement) { spanCondition=invertSpanCondition(spanCondition, contained); } // First span condition for span(), used to terminate the spanBack() iteration. firstSpanCondition=spanCondition; // spanBack(): Its initial span condition is span()'s last span condition, // which is the opposite of span()'s first span condition // if we expect an even number of spans. // (The loop inverts spanCondition (expectCount-1) times // before the expectCount'th span() call.) // If we do not compare forward and backward directions, then we do not have an // expectCount and just start with firstSpanCondition. if(!isForward && (whichSpans&SPAN_FWD)!=0 && (expectCount&1)==0) { spanCondition=invertSpanCondition(spanCondition, contained); } count=0; switch(type) { case 0: case 1: start=0; if(length<0) { length=slen(s, isUTF16); } for(;;) { start+= isUTF16 ? containsSpanUTF16(set, (const UChar *)s+start, length-start, spanCondition) : containsSpanUTF8(set, (const char *)s+start, length-start, spanCondition); if(count<limitsCapacity) { limits[count]=start; } ++count; if(start>=length) { break; } spanCondition=invertSpanCondition(spanCondition, contained); } break; case 2: case 3: start=0; for(;;) { start+= isUTF16 ? realSet.span((const UChar *)s+start, length>=0 ? length-start : length, spanCondition) : realSet.spanUTF8((const char *)s+start, length>=0 ? length-start : length, spanCondition); if(count<limitsCapacity) { limits[count]=start; } ++count; if(length>=0 ? start>=length : isUTF16 ? ((const UChar *)s)[start]==0 : ((const char *)s)[start]==0 ) { break; } spanCondition=invertSpanCondition(spanCondition, contained); } break; case 4: case 5: if(length<0) { length=slen(s, isUTF16); } for(;;) { ++count; if(count<=limitsCapacity) { limits[limitsCapacity-count]=length; } length= isUTF16 ? containsSpanBackUTF16(set, (const UChar *)s, length, spanCondition) : containsSpanBackUTF8(set, (const char *)s, length, spanCondition); if(length==0 && spanCondition==firstSpanCondition) { break; } spanCondition=invertSpanCondition(spanCondition, contained); } if(count<limitsCapacity) { memmove(limits, limits+(limitsCapacity-count), count*4); } break; case 6: case 7: for(;;) { ++count; if(count<=limitsCapacity) { limits[limitsCapacity-count]= length >=0 ? length : slen(s, isUTF16); } // Note: Length<0 is tested only for the first spanBack(). // If we wanted to keep length<0 for all spanBack()s, we would have to // temporarily modify the string by placing a NUL where the previous spanBack() stopped. length= isUTF16 ? realSet.spanBack((const UChar *)s, length, spanCondition) : realSet.spanBackUTF8((const char *)s, length, spanCondition); if(length==0 && spanCondition==firstSpanCondition) { break; } spanCondition=invertSpanCondition(spanCondition, contained); } if(count<limitsCapacity) { memmove(limits, limits+(limitsCapacity-count), count*4); } break; default: typeName=""; return -1; } return count; } // sets to be tested; odd index=isComplement enum { SLOW, SLOW_NOT, FAST, FAST_NOT, SET_COUNT }; static const char *const setNames[SET_COUNT]={ "slow", "slow.not", "fast", "fast.not" }; /* * Verify that we get the same results whether we look at text with contains(), * span() or spanBack(), using unfrozen or frozen versions of the set, * and using the set or its complement (switching the spanConditions accordingly). * The latter verifies that * set.span(spanCondition) == set.complement().span(!spanCondition). * * The expectLimits[] are either provided by the caller (with expectCount>=0) * or returned to the caller (with an input expectCount<0). */ void UnicodeSetTest::testSpan(const UnicodeSetWithStrings *sets[4], const void *s, int32_t length, UBool isUTF16, uint32_t whichSpans, int32_t expectLimits[], int32_t &expectCount, const char *testName, int32_t index) { int32_t limits[500]; int32_t limitsCount; int i, j; const char *typeName; int type; for(i=0; i<SET_COUNT; ++i) { if((i&1)==0) { // Even-numbered sets are original, uncomplemented sets. if((whichSpans&SPAN_SET)==0) { continue; } } else { // Odd-numbered sets are complemented. if((whichSpans&SPAN_COMPLEMENT)==0) { continue; } } for(type=0;; ++type) { limitsCount=getSpans(*sets[i], (UBool)(i&1), s, length, isUTF16, whichSpans, type, typeName, limits, LENGTHOF(limits), expectCount); if(typeName[0]==0) { break; // All types tried. } if(limitsCount<0) { continue; // Span option filtered out. } if(expectCount<0) { expectCount=limitsCount; if(limitsCount>LENGTHOF(limits)) { errln("FAIL: %s[0x%lx].%s.%s span count=%ld > %ld capacity - too many spans", testName, (long)index, setNames[i], typeName, (long)limitsCount, (long)LENGTHOF(limits)); return; } memcpy(expectLimits, limits, limitsCount*4); } else if(limitsCount!=expectCount) { errln("FAIL: %s[0x%lx].%s.%s span count=%ld != %ld", testName, (long)index, setNames[i], typeName, (long)limitsCount, (long)expectCount); } else { for(j=0; j<limitsCount; ++j) { if(limits[j]!=expectLimits[j]) { errln("FAIL: %s[0x%lx].%s.%s span count=%ld limits[%d]=%ld != %ld", testName, (long)index, setNames[i], typeName, (long)limitsCount, j, (long)limits[j], (long)expectLimits[j]); break; } } } } } // Compare span() with containsAll()/containsNone(), // but only if we have expectLimits[] from the uncomplemented set. if(isUTF16 && (whichSpans&SPAN_SET)!=0) { const UChar *s16=(const UChar *)s; UnicodeString string; int32_t prev=0, limit, length; for(i=0; i<expectCount; ++i) { limit=expectLimits[i]; length=limit-prev; if(length>0) { string.setTo(FALSE, s16+prev, length); // read-only alias if(i&1) { if(!sets[SLOW]->getSet().containsAll(string)) { errln("FAIL: %s[0x%lx].%s.containsAll(%ld..%ld)==FALSE contradicts span()", testName, (long)index, setNames[SLOW], (long)prev, (long)limit); return; } if(!sets[FAST]->getSet().containsAll(string)) { errln("FAIL: %s[0x%lx].%s.containsAll(%ld..%ld)==FALSE contradicts span()", testName, (long)index, setNames[FAST], (long)prev, (long)limit); return; } } else { if(!sets[SLOW]->getSet().containsNone(string)) { errln("FAIL: %s[0x%lx].%s.containsNone(%ld..%ld)==FALSE contradicts span()", testName, (long)index, setNames[SLOW], (long)prev, (long)limit); return; } if(!sets[FAST]->getSet().containsNone(string)) { errln("FAIL: %s[0x%lx].%s.containsNone(%ld..%ld)==FALSE contradicts span()", testName, (long)index, setNames[FAST], (long)prev, (long)limit); return; } } } prev=limit; } } } // Specifically test either UTF-16 or UTF-8. void UnicodeSetTest::testSpan(const UnicodeSetWithStrings *sets[4], const void *s, int32_t length, UBool isUTF16, uint32_t whichSpans, const char *testName, int32_t index) { int32_t expectLimits[500]; int32_t expectCount=-1; testSpan(sets, s, length, isUTF16, whichSpans, expectLimits, expectCount, testName, index); } UBool stringContainsUnpairedSurrogate(const UChar *s, int32_t length) { UChar c, c2; if(length>=0) { while(length>0) { c=*s++; --length; if(0xd800<=c && c<0xe000) { if(c>=0xdc00 || length==0 || !U16_IS_TRAIL(c2=*s++)) { return TRUE; } --length; } } } else { while((c=*s++)!=0) { if(0xd800<=c && c<0xe000) { if(c>=0xdc00 || !U16_IS_TRAIL(c2=*s++)) { return TRUE; } } } } return FALSE; } // Test both UTF-16 and UTF-8 versions of span() etc. on the same sets and text, // unless either UTF is turned off in whichSpans. // Testing UTF-16 and UTF-8 together requires that surrogate code points // have the same contains(c) value as U+FFFD. void UnicodeSetTest::testSpanBothUTFs(const UnicodeSetWithStrings *sets[4], const UChar *s16, int32_t length16, uint32_t whichSpans, const char *testName, int32_t index) { int32_t expectLimits[500]; int32_t expectCount; expectCount=-1; // Get expectLimits[] from testSpan(). if((whichSpans&SPAN_UTF16)!=0) { testSpan(sets, s16, length16, TRUE, whichSpans, expectLimits, expectCount, testName, index); } if((whichSpans&SPAN_UTF8)==0) { return; } // Convert s16[] and expectLimits[] to UTF-8. uint8_t s8[3000]; int32_t offsets[3000]; const UChar *s16Limit=s16+length16; char *t=(char *)s8; char *tLimit=t+sizeof(s8); int32_t *o=offsets; UErrorCode errorCode=U_ZERO_ERROR; // Convert with substitution: Turn unpaired surrogates into U+FFFD. ucnv_fromUnicode(openUTF8Converter(), &t, tLimit, &s16, s16Limit, o, TRUE, &errorCode); if(U_FAILURE(errorCode)) { errln("FAIL: %s[0x%lx] ucnv_fromUnicode(to UTF-8) fails with %s", testName, (long)index, u_errorName(errorCode)); ucnv_resetFromUnicode(utf8Cnv); return; } int32_t length8=(int32_t)(t-(char *)s8); // Convert expectLimits[]. int32_t i, j, expect; for(i=j=0; i<expectCount; ++i) { expect=expectLimits[i]; if(expect==length16) { expectLimits[i]=length8; } else { while(offsets[j]<expect) { ++j; } expectLimits[i]=j; } } testSpan(sets, s8, length8, FALSE, whichSpans, expectLimits, expectCount, testName, index); } static UChar32 nextCodePoint(UChar32 c) { // Skip some large and boring ranges. switch(c) { case 0x3441: return 0x4d7f; case 0x5100: return 0x9f00; case 0xb040: return 0xd780; case 0xe041: return 0xf8fe; case 0x10100: return 0x20000; case 0x20041: return 0xe0000; case 0xe0101: return 0x10fffd; default: return c+1; } } // Verify that all implementations represent the same set. void UnicodeSetTest::testSpanContents(const UnicodeSetWithStrings *sets[4], uint32_t whichSpans, const char *testName) { // contains(U+FFFD) is inconsistent with contains(some surrogates), // or the set contains strings with unpaired surrogates which don't translate to valid UTF-8: // Skip the UTF-8 part of the test - if the string contains surrogates - // because it is likely to produce a different result. UBool inconsistentSurrogates= (!(sets[0]->getSet().contains(0xfffd) ? sets[0]->getSet().contains(0xd800, 0xdfff) : sets[0]->getSet().containsNone(0xd800, 0xdfff)) || sets[0]->hasStringsWithSurrogates()); UChar s[1000]; int32_t length=0; uint32_t localWhichSpans; UChar32 c, first; for(first=c=0;; c=nextCodePoint(c)) { if(c>0x10ffff || length>(LENGTHOF(s)-U16_MAX_LENGTH)) { localWhichSpans=whichSpans; if(stringContainsUnpairedSurrogate(s, length) && inconsistentSurrogates) { localWhichSpans&=~SPAN_UTF8; } testSpanBothUTFs(sets, s, length, localWhichSpans, testName, first); if(c>0x10ffff) { break; } length=0; first=c; } U16_APPEND_UNSAFE(s, length, c); } } // Test with a particular, interesting string. // Specify length and try NUL-termination. void UnicodeSetTest::testSpanUTF16String(const UnicodeSetWithStrings *sets[4], uint32_t whichSpans, const char *testName) { static const UChar s[]={ 0x61, 0x62, 0x20, // Latin, space 0x3b1, 0x3b2, 0x3b3, // Greek 0xd900, // lead surrogate 0x3000, 0x30ab, 0x30ad, // wide space, Katakana 0xdc05, // trail surrogate 0xa0, 0xac00, 0xd7a3, // nbsp, Hangul 0xd900, 0xdc05, // unassigned supplementary 0xd840, 0xdfff, 0xd860, 0xdffe, // Han supplementary 0xd7a4, 0xdc05, 0xd900, 0x2028, // unassigned, surrogates in wrong order, LS 0 // NUL }; if((whichSpans&SPAN_UTF16)==0) { return; } testSpan(sets, s, -1, TRUE, (whichSpans&~SPAN_UTF8), testName, 0); testSpan(sets, s, LENGTHOF(s)-1, TRUE, (whichSpans&~SPAN_UTF8), testName, 1); } void UnicodeSetTest::testSpanUTF8String(const UnicodeSetWithStrings *sets[4], uint32_t whichSpans, const char *testName) { static const char s[]={ "abc" // Latin /* trail byte in lead position */ "\x80" " " // space /* truncated multi-byte sequences */ "\xd0" "\xe0" "\xe1" "\xed" "\xee" "\xf0" "\xf1" "\xf4" "\xf8" "\xfc" "\xCE\xB1\xCE\xB2\xCE\xB3" // Greek /* trail byte in lead position */ "\x80" "\xe0\x80" "\xe0\xa0" "\xe1\x80" "\xed\x80" "\xed\xa0" "\xee\x80" "\xf0\x80" "\xf0\x90" "\xf1\x80" "\xf4\x80" "\xf4\x90" "\xf8\x80" "\xfc\x80" "\xE3\x80\x80\xE3\x82\xAB\xE3\x82\xAD" // wide space, Katakana /* trail byte in lead position */ "\x80" "\xf0\x80\x80" "\xf0\x90\x80" "\xf1\x80\x80" "\xf4\x80\x80" "\xf4\x90\x80" "\xf8\x80\x80" "\xfc\x80\x80" "\xC2\xA0\xEA\xB0\x80\xED\x9E\xA3" // nbsp, Hangul /* trail byte in lead position */ "\x80" "\xf8\x80\x80\x80" "\xfc\x80\x80\x80" "\xF1\x90\x80\x85" // unassigned supplementary /* trail byte in lead position */ "\x80" "\xfc\x80\x80\x80\x80" "\xF0\xA0\x8F\xBF\xF0\xA8\x8F\xBE" // Han supplementary /* trail byte in lead position */ "\x80" /* complete sequences but non-shortest forms or out of range etc. */ "\xc0\x80" "\xe0\x80\x80" "\xed\xa0\x80" "\xf0\x80\x80\x80" "\xf4\x90\x80\x80" "\xf8\x80\x80\x80\x80" "\xfc\x80\x80\x80\x80\x80" "\xfe" "\xff" /* trail byte in lead position */ "\x80" "\xED\x9E\xA4\xE2\x80\xA8" // unassigned, LS, NUL-terminated }; if((whichSpans&SPAN_UTF8)==0) { return; } testSpan(sets, s, -1, FALSE, (whichSpans&~SPAN_UTF16), testName, 0); testSpan(sets, s, LENGTHOF(s)-1, FALSE, (whichSpans&~SPAN_UTF16), testName, 1); } // Take a set of span options and multiply them so that // each portion only has one of the options a, b and c. // If b==0, then the set of options is just modified with mask and a. // If b!=0 and c==0, then the set of options is just modified with mask, a and b. static int32_t addAlternative(uint32_t whichSpans[], int32_t whichSpansCount, uint32_t mask, uint32_t a, uint32_t b, uint32_t c) { uint32_t s; int32_t i; for(i=0; i<whichSpansCount; ++i) { s=whichSpans[i]&mask; whichSpans[i]=s|a; if(b!=0) { whichSpans[whichSpansCount+i]=s|b; if(c!=0) { whichSpans[2*whichSpansCount+i]=s|c; } } } return b==0 ? whichSpansCount : c==0 ? 2*whichSpansCount : 3*whichSpansCount; } #define _63_a "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" #define _64_a "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" #define _63_b "bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb" #define _64_b "bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb" void UnicodeSetTest::TestSpan() { // "[...]" is a UnicodeSet pattern. // "*" performs tests on all Unicode code points and on a selection of // malformed UTF-8/16 strings. // "-options" limits the scope of testing for the current set. // By default, the test verifies that equivalent boundaries are found // for UTF-16 and UTF-8, going forward and backward, // alternating USET_SPAN_NOT_CONTAINED with // either USET_SPAN_CONTAINED or USET_SPAN_SIMPLE. // Single-character options: // 8 -- UTF-16 and UTF-8 boundaries may differ. // Cause: contains(U+FFFD) is inconsistent with contains(some surrogates), // or the set contains strings with unpaired surrogates // which do not translate to valid UTF-8. // c -- set.span() and set.complement().span() boundaries may differ. // Cause: Set strings are not complemented. // b -- span() and spanBack() boundaries may differ. // Cause: Strings in the set overlap, and spanBack(USET_SPAN_CONTAINED) // and spanBack(USET_SPAN_SIMPLE) are defined to // match with non-overlapping substrings. // For example, with a set containing "ab" and "ba", // span() of "aba" yields boundaries { 0, 2, 3 } // because the initial "ab" matches from 0 to 2, // while spanBack() yields boundaries { 0, 1, 3 } // because the final "ba" matches from 1 to 3. // l -- USET_SPAN_CONTAINED and USET_SPAN_SIMPLE boundaries may differ. // Cause: Strings in the set overlap, and a longer match may // require a sequence including non-longest substrings. // For example, with a set containing "ab", "abc" and "cd", // span(contained) of "abcd" spans the entire string // but span(longest match) only spans the first 3 characters. // Each "-options" first resets all options and then applies the specified options. // A "-" without options resets the options. // The options are also reset for each new set. // Other strings will be spanned. static const char *const testdata[]={ "[:ID_Continue:]", "*", "[:White_Space:]", "*", "[]", "*", "[\\u0000-\\U0010FFFF]", "*", "[\\u0000\\u0080\\u0800\\U00010000]", "*", "[\\u007F\\u07FF\\uFFFF\\U0010FFFF]", "*", "[[[:ID_Continue:]-[\\u30ab\\u30ad]]{\\u3000\\u30ab}{\\u3000\\u30ab\\u30ad}]", "-c", "*", "[[[:ID_Continue:]-[\\u30ab\\u30ad]]{\\u30ab\\u30ad}{\\u3000\\u30ab\\u30ad}]", "-c", "*", // Overlapping strings cause overlapping attempts to match. "[x{xy}{xya}{axy}{ax}]", "-cl", // More repetitions of "xya" would take too long with the recursive // reference implementation. // containsAll()=FALSE // test_string 0x14 "xx" "xyaxyaxyaxya" // set.complement().span(longest match) will stop here. "xx" // set.complement().span(contained) will stop between the two 'x'es. "xyaxyaxyaxya" "xx" "xyaxyaxyaxya" // span() ends here. "aaa", // containsAll()=TRUE // test_string 0x15 "xx" "xyaxyaxyaxya" "xx" "xyaxyaxyaxya" "xx" "xyaxyaxyaxy", "-bc", // test_string 0x17 "byayaxya", // span() -> { 4, 7, 8 } spanBack() -> { 5, 8 } "-c", "byayaxy", // span() -> { 4, 7 } complement.span() -> { 7 } "byayax", // span() -> { 4, 6 } complement.span() -> { 6 } "-", "byaya", // span() -> { 5 } "byay", // span() -> { 4 } "bya", // span() -> { 3 } // span(longest match) will not span the whole string. "[a{ab}{bc}]", "-cl", // test_string 0x21 "abc", "[a{ab}{abc}{cd}]", "-cl", "acdabcdabccd", // spanBack(longest match) will not span the whole string. "[c{ab}{bc}]", "-cl", "abc", "[d{cd}{bcd}{ab}]", "-cl", "abbcdabcdabd", // Test with non-ASCII set strings - test proper handling of surrogate pairs // and UTF-8 trail bytes. // Copies of above test sets and strings, but transliterated to have // different code points with similar trail units. // Previous: a b c d // Unicode: 042B 30AB 200AB 204AB // UTF-16: 042B 30AB D840 DCAB D841 DCAB // UTF-8: D0 AB E3 82 AB F0 A0 82 AB F0 A0 92 AB "[\\u042B{\\u042B\\u30AB}{\\u042B\\u30AB\\U000200AB}{\\U000200AB\\U000204AB}]", "-cl", "\\u042B\\U000200AB\\U000204AB\\u042B\\u30AB\\U000200AB\\U000204AB\\u042B\\u30AB\\U000200AB\\U000200AB\\U000204AB", "[\\U000204AB{\\U000200AB\\U000204AB}{\\u30AB\\U000200AB\\U000204AB}{\\u042B\\u30AB}]", "-cl", "\\u042B\\u30AB\\u30AB\\U000200AB\\U000204AB\\u042B\\u30AB\\U000200AB\\U000204AB\\u042B\\u30AB\\U000204AB", // Stress bookkeeping and recursion. // The following strings are barely doable with the recursive // reference implementation. // The not-contained character at the end prevents an early exit from the span(). "[b{bb}]", "-c", // test_string 0x33 "bbbbbbbbbbbbbbbbbbbbbbbb-", // On complement sets, span() and spanBack() get different results // because b is not in the complement set and there is an odd number of b's // in the test string. "-bc", "bbbbbbbbbbbbbbbbbbbbbbbbb-", // Test with set strings with an initial or final code point span // longer than 254. "[a{" _64_a _64_a _64_a _64_a "b}" "{a" _64_b _64_b _64_b _64_b "}]", "-c", _64_a _64_a _64_a _63_a "b", _64_a _64_a _64_a _64_a "b", _64_a _64_a _64_a _64_a "aaaabbbb", "a" _64_b _64_b _64_b _63_b, "a" _64_b _64_b _64_b _64_b, "aaaabbbb" _64_b _64_b _64_b _64_b, // Test with strings containing unpaired surrogates. // They are not representable in UTF-8, and a leading trail surrogate // and a trailing lead surrogate must not match in the middle of a proper surrogate pair. // U+20001 == \\uD840\\uDC01 // U+20400 == \\uD841\\uDC00 "[a\\U00020001\\U00020400{ab}{b\\uD840}{\\uDC00a}]", "-8cl", "aaab\\U00020001ba\\U00020400aba\\uD840ab\\uD840\\U00020000b\\U00020000a\\U00020000\\uDC00a\\uDC00babbb" }; uint32_t whichSpans[96]={ SPAN_ALL }; int32_t whichSpansCount=1; UnicodeSet *sets[SET_COUNT]={ NULL }; const UnicodeSetWithStrings *sets_with_str[SET_COUNT]={ NULL }; char testName[1024]; char *testNameLimit=testName; int32_t i, j; for(i=0; i<LENGTHOF(testdata); ++i) { const char *s=testdata[i]; if(s[0]=='[') { // Create new test sets from this pattern. for(j=0; j<SET_COUNT; ++j) { delete sets_with_str[j]; delete sets[j]; } UErrorCode errorCode=U_ZERO_ERROR; sets[SLOW]=new UnicodeSet(UnicodeString(s, -1, US_INV).unescape(), errorCode); if(U_FAILURE(errorCode)) { dataerrln("FAIL: Unable to create UnicodeSet(%s) - %s", s, u_errorName(errorCode)); break; } sets[SLOW_NOT]=new UnicodeSet(*sets[SLOW]); sets[SLOW_NOT]->complement(); // Intermediate set: Test cloning of a frozen set. UnicodeSet *fast=new UnicodeSet(*sets[SLOW]); fast->freeze(); sets[FAST]=(UnicodeSet *)fast->clone(); delete fast; UnicodeSet *fastNot=new UnicodeSet(*sets[SLOW_NOT]); fastNot->freeze(); sets[FAST_NOT]=(UnicodeSet *)fastNot->clone(); delete fastNot; for(j=0; j<SET_COUNT; ++j) { sets_with_str[j]=new UnicodeSetWithStrings(*sets[j]); } strcpy(testName, s); testNameLimit=strchr(testName, 0); *testNameLimit++=':'; *testNameLimit=0; whichSpans[0]=SPAN_ALL; whichSpansCount=1; } else if(s[0]=='-') { whichSpans[0]=SPAN_ALL; whichSpansCount=1; while(*++s!=0) { switch(*s) { case 'c': whichSpansCount=addAlternative(whichSpans, whichSpansCount, ~SPAN_POLARITY, SPAN_SET, SPAN_COMPLEMENT, 0); break; case 'b': whichSpansCount=addAlternative(whichSpans, whichSpansCount, ~SPAN_DIRS, SPAN_FWD, SPAN_BACK, 0); break; case 'l': // test USET_SPAN_CONTAINED FWD & BACK, and separately // USET_SPAN_SIMPLE only FWD, and separately // USET_SPAN_SIMPLE only BACK whichSpansCount=addAlternative(whichSpans, whichSpansCount, ~(SPAN_DIRS|SPAN_CONDITION), SPAN_DIRS|SPAN_CONTAINED, SPAN_FWD|SPAN_SIMPLE, SPAN_BACK|SPAN_SIMPLE); break; case '8': whichSpansCount=addAlternative(whichSpans, whichSpansCount, ~SPAN_UTFS, SPAN_UTF16, SPAN_UTF8, 0); break; default: errln("FAIL: unrecognized span set option in \"%s\"", testdata[i]); break; } } } else if(0==strcmp(s, "*")) { strcpy(testNameLimit, "bad_string"); for(j=0; j<whichSpansCount; ++j) { if(whichSpansCount>1) { sprintf(testNameLimit+10 /* strlen("bad_string") */, "%%0x%3x", whichSpans[j]); } testSpanUTF16String(sets_with_str, whichSpans[j], testName); testSpanUTF8String(sets_with_str, whichSpans[j], testName); } strcpy(testNameLimit, "contents"); for(j=0; j<whichSpansCount; ++j) { if(whichSpansCount>1) { sprintf(testNameLimit+8 /* strlen("contents") */, "%%0x%3x", whichSpans[j]); } testSpanContents(sets_with_str, whichSpans[j], testName); } } else { UnicodeString string=UnicodeString(s, -1, US_INV).unescape(); strcpy(testNameLimit, "test_string"); for(j=0; j<whichSpansCount; ++j) { if(whichSpansCount>1) { sprintf(testNameLimit+11 /* strlen("test_string") */, "%%0x%3x", whichSpans[j]); } testSpanBothUTFs(sets_with_str, string.getBuffer(), string.length(), whichSpans[j], testName, i); } } } for(j=0; j<SET_COUNT; ++j) { delete sets_with_str[j]; delete sets[j]; } } // Test select patterns and strings, and test USET_SPAN_SIMPLE. void UnicodeSetTest::TestStringSpan() { static const char *pattern="[x{xy}{xya}{axy}{ax}]"; static const char *const string= "xx" "xyaxyaxyaxyaxyaxyaxyaxyaxyaxyaxyaxyaxyaxyaxyaxyaxyaxyaxyaxyaxya" "xx" "xyaxyaxyaxyaxyaxyaxyaxyaxyaxyaxyaxyaxyaxyaxyaxyaxyaxyaxyaxyaxya" "xx" "xyaxyaxyaxyaxyaxyaxyaxyaxyaxyaxyaxyaxyaxyaxyaxyaxyaxyaxyaxyaxy" "aaaa"; UErrorCode errorCode=U_ZERO_ERROR; UnicodeString pattern16=UnicodeString(pattern, -1, US_INV); UnicodeSet set(pattern16, errorCode); if(U_FAILURE(errorCode)) { errln("FAIL: Unable to create UnicodeSet(%s) - %s", pattern, u_errorName(errorCode)); return; } UnicodeString string16=UnicodeString(string, -1, US_INV).unescape(); if(set.containsAll(string16)) { errln("FAIL: UnicodeSet(%s).containsAll(%s) should be FALSE", pattern, string); } // Remove trailing "aaaa". string16.truncate(string16.length()-4); if(!set.containsAll(string16)) { errln("FAIL: UnicodeSet(%s).containsAll(%s[:-4]) should be TRUE", pattern, string); } string16=UNICODE_STRING_SIMPLE("byayaxya"); const UChar *s16=string16.getBuffer(); int32_t length16=string16.length(); if( set.span(s16, 8, USET_SPAN_NOT_CONTAINED)!=4 || set.span(s16, 7, USET_SPAN_NOT_CONTAINED)!=4 || set.span(s16, 6, USET_SPAN_NOT_CONTAINED)!=4 || set.span(s16, 5, USET_SPAN_NOT_CONTAINED)!=5 || set.span(s16, 4, USET_SPAN_NOT_CONTAINED)!=4 || set.span(s16, 3, USET_SPAN_NOT_CONTAINED)!=3 ) { errln("FAIL: UnicodeSet(%s).span(while not) returns the wrong value", pattern); } pattern="[a{ab}{abc}{cd}]"; pattern16=UnicodeString(pattern, -1, US_INV); set.applyPattern(pattern16, errorCode); if(U_FAILURE(errorCode)) { errln("FAIL: Unable to create UnicodeSet(%s) - %s", pattern, u_errorName(errorCode)); return; } string16=UNICODE_STRING_SIMPLE("acdabcdabccd"); s16=string16.getBuffer(); length16=string16.length(); if( set.span(s16, 12, USET_SPAN_CONTAINED)!=12 || set.span(s16, 12, USET_SPAN_SIMPLE)!=6 || set.span(s16+7, 5, USET_SPAN_SIMPLE)!=5 ) { errln("FAIL: UnicodeSet(%s).span(while longest match) returns the wrong value", pattern); } pattern="[d{cd}{bcd}{ab}]"; pattern16=UnicodeString(pattern, -1, US_INV); set.applyPattern(pattern16, errorCode).freeze(); if(U_FAILURE(errorCode)) { errln("FAIL: Unable to create UnicodeSet(%s) - %s", pattern, u_errorName(errorCode)); return; } string16=UNICODE_STRING_SIMPLE("abbcdabcdabd"); s16=string16.getBuffer(); length16=string16.length(); if( set.spanBack(s16, 12, USET_SPAN_CONTAINED)!=0 || set.spanBack(s16, 12, USET_SPAN_SIMPLE)!=6 || set.spanBack(s16, 5, USET_SPAN_SIMPLE)!=0 ) { errln("FAIL: UnicodeSet(%s).spanBack(while longest match) returns the wrong value", pattern); } }