//===--- SemaTemplateInstantiateDecl.cpp - C++ Template Decl Instantiation ===/ // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. //===----------------------------------------------------------------------===/ // // This file implements C++ template instantiation for declarations. // //===----------------------------------------------------------------------===/ #include "clang/Sema/SemaInternal.h" #include "clang/Sema/Lookup.h" #include "clang/Sema/PrettyDeclStackTrace.h" #include "clang/Sema/Template.h" #include "clang/AST/ASTConsumer.h" #include "clang/AST/ASTContext.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/DeclVisitor.h" #include "clang/AST/DependentDiagnostic.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/TypeLoc.h" #include "clang/Lex/Preprocessor.h" using namespace clang; bool TemplateDeclInstantiator::SubstQualifier(const DeclaratorDecl *OldDecl, DeclaratorDecl *NewDecl) { if (!OldDecl->getQualifierLoc()) return false; NestedNameSpecifierLoc NewQualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(OldDecl->getQualifierLoc(), TemplateArgs); if (!NewQualifierLoc) return true; NewDecl->setQualifierInfo(NewQualifierLoc); return false; } bool TemplateDeclInstantiator::SubstQualifier(const TagDecl *OldDecl, TagDecl *NewDecl) { if (!OldDecl->getQualifierLoc()) return false; NestedNameSpecifierLoc NewQualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(OldDecl->getQualifierLoc(), TemplateArgs); if (!NewQualifierLoc) return true; NewDecl->setQualifierInfo(NewQualifierLoc); return false; } // FIXME: Is this still too simple? void Sema::InstantiateAttrs(const MultiLevelTemplateArgumentList &TemplateArgs, const Decl *Tmpl, Decl *New) { for (AttrVec::const_iterator i = Tmpl->attr_begin(), e = Tmpl->attr_end(); i != e; ++i) { const Attr *TmplAttr = *i; // FIXME: This should be generalized to more than just the AlignedAttr. if (const AlignedAttr *Aligned = dyn_cast<AlignedAttr>(TmplAttr)) { if (Aligned->isAlignmentDependent()) { // The alignment expression is not potentially evaluated. EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); if (Aligned->isAlignmentExpr()) { ExprResult Result = SubstExpr(Aligned->getAlignmentExpr(), TemplateArgs); if (!Result.isInvalid()) AddAlignedAttr(Aligned->getLocation(), New, Result.takeAs<Expr>()); } else { TypeSourceInfo *Result = SubstType(Aligned->getAlignmentType(), TemplateArgs, Aligned->getLocation(), DeclarationName()); if (Result) AddAlignedAttr(Aligned->getLocation(), New, Result); } continue; } } // FIXME: Is cloning correct for all attributes? Attr *NewAttr = TmplAttr->clone(Context); New->addAttr(NewAttr); } } Decl * TemplateDeclInstantiator::VisitTranslationUnitDecl(TranslationUnitDecl *D) { assert(false && "Translation units cannot be instantiated"); return D; } Decl * TemplateDeclInstantiator::VisitLabelDecl(LabelDecl *D) { LabelDecl *Inst = LabelDecl::Create(SemaRef.Context, Owner, D->getLocation(), D->getIdentifier()); Owner->addDecl(Inst); return Inst; } Decl * TemplateDeclInstantiator::VisitNamespaceDecl(NamespaceDecl *D) { assert(false && "Namespaces cannot be instantiated"); return D; } Decl * TemplateDeclInstantiator::VisitNamespaceAliasDecl(NamespaceAliasDecl *D) { NamespaceAliasDecl *Inst = NamespaceAliasDecl::Create(SemaRef.Context, Owner, D->getNamespaceLoc(), D->getAliasLoc(), D->getIdentifier(), D->getQualifierLoc(), D->getTargetNameLoc(), D->getNamespace()); Owner->addDecl(Inst); return Inst; } Decl *TemplateDeclInstantiator::InstantiateTypedefNameDecl(TypedefNameDecl *D, bool IsTypeAlias) { bool Invalid = false; TypeSourceInfo *DI = D->getTypeSourceInfo(); if (DI->getType()->isInstantiationDependentType() || DI->getType()->isVariablyModifiedType()) { DI = SemaRef.SubstType(DI, TemplateArgs, D->getLocation(), D->getDeclName()); if (!DI) { Invalid = true; DI = SemaRef.Context.getTrivialTypeSourceInfo(SemaRef.Context.IntTy); } } else { SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType()); } // Create the new typedef TypedefNameDecl *Typedef; if (IsTypeAlias) Typedef = TypeAliasDecl::Create(SemaRef.Context, Owner, D->getLocStart(), D->getLocation(), D->getIdentifier(), DI); else Typedef = TypedefDecl::Create(SemaRef.Context, Owner, D->getLocStart(), D->getLocation(), D->getIdentifier(), DI); if (Invalid) Typedef->setInvalidDecl(); // If the old typedef was the name for linkage purposes of an anonymous // tag decl, re-establish that relationship for the new typedef. if (const TagType *oldTagType = D->getUnderlyingType()->getAs<TagType>()) { TagDecl *oldTag = oldTagType->getDecl(); if (oldTag->getTypedefNameForAnonDecl() == D) { TagDecl *newTag = DI->getType()->castAs<TagType>()->getDecl(); assert(!newTag->getIdentifier() && !newTag->getTypedefNameForAnonDecl()); newTag->setTypedefNameForAnonDecl(Typedef); } } if (TypedefNameDecl *Prev = D->getPreviousDeclaration()) { NamedDecl *InstPrev = SemaRef.FindInstantiatedDecl(D->getLocation(), Prev, TemplateArgs); if (!InstPrev) return 0; Typedef->setPreviousDeclaration(cast<TypedefNameDecl>(InstPrev)); } SemaRef.InstantiateAttrs(TemplateArgs, D, Typedef); Typedef->setAccess(D->getAccess()); return Typedef; } Decl *TemplateDeclInstantiator::VisitTypedefDecl(TypedefDecl *D) { Decl *Typedef = InstantiateTypedefNameDecl(D, /*IsTypeAlias=*/false); Owner->addDecl(Typedef); return Typedef; } Decl *TemplateDeclInstantiator::VisitTypeAliasDecl(TypeAliasDecl *D) { Decl *Typedef = InstantiateTypedefNameDecl(D, /*IsTypeAlias=*/true); Owner->addDecl(Typedef); return Typedef; } Decl * TemplateDeclInstantiator::VisitTypeAliasTemplateDecl(TypeAliasTemplateDecl *D) { // Create a local instantiation scope for this type alias template, which // will contain the instantiations of the template parameters. LocalInstantiationScope Scope(SemaRef); TemplateParameterList *TempParams = D->getTemplateParameters(); TemplateParameterList *InstParams = SubstTemplateParams(TempParams); if (!InstParams) return 0; TypeAliasDecl *Pattern = D->getTemplatedDecl(); TypeAliasTemplateDecl *PrevAliasTemplate = 0; if (Pattern->getPreviousDeclaration()) { DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName()); if (Found.first != Found.second) { PrevAliasTemplate = dyn_cast<TypeAliasTemplateDecl>(*Found.first); } } TypeAliasDecl *AliasInst = cast_or_null<TypeAliasDecl>( InstantiateTypedefNameDecl(Pattern, /*IsTypeAlias=*/true)); if (!AliasInst) return 0; TypeAliasTemplateDecl *Inst = TypeAliasTemplateDecl::Create(SemaRef.Context, Owner, D->getLocation(), D->getDeclName(), InstParams, AliasInst); if (PrevAliasTemplate) Inst->setPreviousDeclaration(PrevAliasTemplate); Inst->setAccess(D->getAccess()); if (!PrevAliasTemplate) Inst->setInstantiatedFromMemberTemplate(D); Owner->addDecl(Inst); return Inst; } /// \brief Instantiate an initializer, breaking it into separate /// initialization arguments. /// /// \param Init The initializer to instantiate. /// /// \param TemplateArgs Template arguments to be substituted into the /// initializer. /// /// \param NewArgs Will be filled in with the instantiation arguments. /// /// \returns true if an error occurred, false otherwise bool Sema::InstantiateInitializer(Expr *Init, const MultiLevelTemplateArgumentList &TemplateArgs, SourceLocation &LParenLoc, ASTOwningVector<Expr*> &NewArgs, SourceLocation &RParenLoc) { NewArgs.clear(); LParenLoc = SourceLocation(); RParenLoc = SourceLocation(); if (!Init) return false; if (ExprWithCleanups *ExprTemp = dyn_cast<ExprWithCleanups>(Init)) Init = ExprTemp->getSubExpr(); while (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(Init)) Init = Binder->getSubExpr(); if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Init)) Init = ICE->getSubExprAsWritten(); if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) { LParenLoc = ParenList->getLParenLoc(); RParenLoc = ParenList->getRParenLoc(); return SubstExprs(ParenList->getExprs(), ParenList->getNumExprs(), true, TemplateArgs, NewArgs); } if (CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) { if (!isa<CXXTemporaryObjectExpr>(Construct)) { if (SubstExprs(Construct->getArgs(), Construct->getNumArgs(), true, TemplateArgs, NewArgs)) return true; // FIXME: Fake locations! LParenLoc = PP.getLocForEndOfToken(Init->getLocStart()); RParenLoc = LParenLoc; return false; } } ExprResult Result = SubstExpr(Init, TemplateArgs); if (Result.isInvalid()) return true; NewArgs.push_back(Result.takeAs<Expr>()); return false; } Decl *TemplateDeclInstantiator::VisitVarDecl(VarDecl *D) { // If this is the variable for an anonymous struct or union, // instantiate the anonymous struct/union type first. if (const RecordType *RecordTy = D->getType()->getAs<RecordType>()) if (RecordTy->getDecl()->isAnonymousStructOrUnion()) if (!VisitCXXRecordDecl(cast<CXXRecordDecl>(RecordTy->getDecl()))) return 0; // Do substitution on the type of the declaration TypeSourceInfo *DI = SemaRef.SubstType(D->getTypeSourceInfo(), TemplateArgs, D->getTypeSpecStartLoc(), D->getDeclName()); if (!DI) return 0; if (DI->getType()->isFunctionType()) { SemaRef.Diag(D->getLocation(), diag::err_variable_instantiates_to_function) << D->isStaticDataMember() << DI->getType(); return 0; } // Build the instantiated declaration VarDecl *Var = VarDecl::Create(SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(), D->getIdentifier(), DI->getType(), DI, D->getStorageClass(), D->getStorageClassAsWritten()); Var->setThreadSpecified(D->isThreadSpecified()); Var->setCXXDirectInitializer(D->hasCXXDirectInitializer()); Var->setCXXForRangeDecl(D->isCXXForRangeDecl()); // Substitute the nested name specifier, if any. if (SubstQualifier(D, Var)) return 0; // If we are instantiating a static data member defined // out-of-line, the instantiation will have the same lexical // context (which will be a namespace scope) as the template. if (D->isOutOfLine()) Var->setLexicalDeclContext(D->getLexicalDeclContext()); Var->setAccess(D->getAccess()); if (!D->isStaticDataMember()) { Var->setUsed(D->isUsed(false)); Var->setReferenced(D->isReferenced()); } // FIXME: In theory, we could have a previous declaration for variables that // are not static data members. bool Redeclaration = false; // FIXME: having to fake up a LookupResult is dumb. LookupResult Previous(SemaRef, Var->getDeclName(), Var->getLocation(), Sema::LookupOrdinaryName, Sema::ForRedeclaration); if (D->isStaticDataMember()) SemaRef.LookupQualifiedName(Previous, Owner, false); SemaRef.CheckVariableDeclaration(Var, Previous, Redeclaration); if (D->isOutOfLine()) { if (!D->isStaticDataMember()) D->getLexicalDeclContext()->addDecl(Var); Owner->makeDeclVisibleInContext(Var); } else { Owner->addDecl(Var); if (Owner->isFunctionOrMethod()) SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Var); } SemaRef.InstantiateAttrs(TemplateArgs, D, Var); // Link instantiations of static data members back to the template from // which they were instantiated. if (Var->isStaticDataMember()) SemaRef.Context.setInstantiatedFromStaticDataMember(Var, D, TSK_ImplicitInstantiation); if (Var->getAnyInitializer()) { // We already have an initializer in the class. } else if (D->getInit()) { if (Var->isStaticDataMember() && !D->isOutOfLine()) SemaRef.PushExpressionEvaluationContext(Sema::Unevaluated); else SemaRef.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated); // Instantiate the initializer. SourceLocation LParenLoc, RParenLoc; ASTOwningVector<Expr*> InitArgs(SemaRef); if (!SemaRef.InstantiateInitializer(D->getInit(), TemplateArgs, LParenLoc, InitArgs, RParenLoc)) { bool TypeMayContainAuto = true; // Attach the initializer to the declaration, if we have one. if (InitArgs.size() == 0) SemaRef.ActOnUninitializedDecl(Var, TypeMayContainAuto); else if (D->hasCXXDirectInitializer()) { // Add the direct initializer to the declaration. SemaRef.AddCXXDirectInitializerToDecl(Var, LParenLoc, move_arg(InitArgs), RParenLoc, TypeMayContainAuto); } else { assert(InitArgs.size() == 1); Expr *Init = InitArgs.take()[0]; SemaRef.AddInitializerToDecl(Var, Init, false, TypeMayContainAuto); } } else { // FIXME: Not too happy about invalidating the declaration // because of a bogus initializer. Var->setInvalidDecl(); } SemaRef.PopExpressionEvaluationContext(); } else if ((!Var->isStaticDataMember() || Var->isOutOfLine()) && !Var->isCXXForRangeDecl()) SemaRef.ActOnUninitializedDecl(Var, false); // Diagnose unused local variables with dependent types, where the diagnostic // will have been deferred. if (!Var->isInvalidDecl() && Owner->isFunctionOrMethod() && !Var->isUsed() && D->getType()->isDependentType()) SemaRef.DiagnoseUnusedDecl(Var); return Var; } Decl *TemplateDeclInstantiator::VisitAccessSpecDecl(AccessSpecDecl *D) { AccessSpecDecl* AD = AccessSpecDecl::Create(SemaRef.Context, D->getAccess(), Owner, D->getAccessSpecifierLoc(), D->getColonLoc()); Owner->addHiddenDecl(AD); return AD; } Decl *TemplateDeclInstantiator::VisitFieldDecl(FieldDecl *D) { bool Invalid = false; TypeSourceInfo *DI = D->getTypeSourceInfo(); if (DI->getType()->isInstantiationDependentType() || DI->getType()->isVariablyModifiedType()) { DI = SemaRef.SubstType(DI, TemplateArgs, D->getLocation(), D->getDeclName()); if (!DI) { DI = D->getTypeSourceInfo(); Invalid = true; } else if (DI->getType()->isFunctionType()) { // C++ [temp.arg.type]p3: // If a declaration acquires a function type through a type // dependent on a template-parameter and this causes a // declaration that does not use the syntactic form of a // function declarator to have function type, the program is // ill-formed. SemaRef.Diag(D->getLocation(), diag::err_field_instantiates_to_function) << DI->getType(); Invalid = true; } } else { SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType()); } Expr *BitWidth = D->getBitWidth(); if (Invalid) BitWidth = 0; else if (BitWidth) { // The bit-width expression is not potentially evaluated. EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated); ExprResult InstantiatedBitWidth = SemaRef.SubstExpr(BitWidth, TemplateArgs); if (InstantiatedBitWidth.isInvalid()) { Invalid = true; BitWidth = 0; } else BitWidth = InstantiatedBitWidth.takeAs<Expr>(); } FieldDecl *Field = SemaRef.CheckFieldDecl(D->getDeclName(), DI->getType(), DI, cast<RecordDecl>(Owner), D->getLocation(), D->isMutable(), BitWidth, D->hasInClassInitializer(), D->getTypeSpecStartLoc(), D->getAccess(), 0); if (!Field) { cast<Decl>(Owner)->setInvalidDecl(); return 0; } SemaRef.InstantiateAttrs(TemplateArgs, D, Field); if (Invalid) Field->setInvalidDecl(); if (!Field->getDeclName()) { // Keep track of where this decl came from. SemaRef.Context.setInstantiatedFromUnnamedFieldDecl(Field, D); } if (CXXRecordDecl *Parent= dyn_cast<CXXRecordDecl>(Field->getDeclContext())) { if (Parent->isAnonymousStructOrUnion() && Parent->getRedeclContext()->isFunctionOrMethod()) SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Field); } Field->setImplicit(D->isImplicit()); Field->setAccess(D->getAccess()); Owner->addDecl(Field); return Field; } Decl *TemplateDeclInstantiator::VisitIndirectFieldDecl(IndirectFieldDecl *D) { NamedDecl **NamedChain = new (SemaRef.Context)NamedDecl*[D->getChainingSize()]; int i = 0; for (IndirectFieldDecl::chain_iterator PI = D->chain_begin(), PE = D->chain_end(); PI != PE; ++PI) { NamedDecl *Next = SemaRef.FindInstantiatedDecl(D->getLocation(), *PI, TemplateArgs); if (!Next) return 0; NamedChain[i++] = Next; } QualType T = cast<FieldDecl>(NamedChain[i-1])->getType(); IndirectFieldDecl* IndirectField = IndirectFieldDecl::Create(SemaRef.Context, Owner, D->getLocation(), D->getIdentifier(), T, NamedChain, D->getChainingSize()); IndirectField->setImplicit(D->isImplicit()); IndirectField->setAccess(D->getAccess()); Owner->addDecl(IndirectField); return IndirectField; } Decl *TemplateDeclInstantiator::VisitFriendDecl(FriendDecl *D) { // Handle friend type expressions by simply substituting template // parameters into the pattern type and checking the result. if (TypeSourceInfo *Ty = D->getFriendType()) { TypeSourceInfo *InstTy; // If this is an unsupported friend, don't bother substituting template // arguments into it. The actual type referred to won't be used by any // parts of Clang, and may not be valid for instantiating. Just use the // same info for the instantiated friend. if (D->isUnsupportedFriend()) { InstTy = Ty; } else { InstTy = SemaRef.SubstType(Ty, TemplateArgs, D->getLocation(), DeclarationName()); } if (!InstTy) return 0; FriendDecl *FD = SemaRef.CheckFriendTypeDecl(D->getFriendLoc(), InstTy); if (!FD) return 0; FD->setAccess(AS_public); FD->setUnsupportedFriend(D->isUnsupportedFriend()); Owner->addDecl(FD); return FD; } NamedDecl *ND = D->getFriendDecl(); assert(ND && "friend decl must be a decl or a type!"); // All of the Visit implementations for the various potential friend // declarations have to be carefully written to work for friend // objects, with the most important detail being that the target // decl should almost certainly not be placed in Owner. Decl *NewND = Visit(ND); if (!NewND) return 0; FriendDecl *FD = FriendDecl::Create(SemaRef.Context, Owner, D->getLocation(), cast<NamedDecl>(NewND), D->getFriendLoc()); FD->setAccess(AS_public); FD->setUnsupportedFriend(D->isUnsupportedFriend()); Owner->addDecl(FD); return FD; } Decl *TemplateDeclInstantiator::VisitStaticAssertDecl(StaticAssertDecl *D) { Expr *AssertExpr = D->getAssertExpr(); // The expression in a static assertion is not potentially evaluated. EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated); ExprResult InstantiatedAssertExpr = SemaRef.SubstExpr(AssertExpr, TemplateArgs); if (InstantiatedAssertExpr.isInvalid()) return 0; ExprResult Message(D->getMessage()); D->getMessage(); return SemaRef.ActOnStaticAssertDeclaration(D->getLocation(), InstantiatedAssertExpr.get(), Message.get(), D->getRParenLoc()); } Decl *TemplateDeclInstantiator::VisitEnumDecl(EnumDecl *D) { EnumDecl *Enum = EnumDecl::Create(SemaRef.Context, Owner, D->getLocStart(), D->getLocation(), D->getIdentifier(), /*PrevDecl=*/0, D->isScoped(), D->isScopedUsingClassTag(), D->isFixed()); if (D->isFixed()) { if (TypeSourceInfo* TI = D->getIntegerTypeSourceInfo()) { // If we have type source information for the underlying type, it means it // has been explicitly set by the user. Perform substitution on it before // moving on. SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc(); Enum->setIntegerTypeSourceInfo(SemaRef.SubstType(TI, TemplateArgs, UnderlyingLoc, DeclarationName())); if (!Enum->getIntegerTypeSourceInfo()) Enum->setIntegerType(SemaRef.Context.IntTy); } else { assert(!D->getIntegerType()->isDependentType() && "Dependent type without type source info"); Enum->setIntegerType(D->getIntegerType()); } } SemaRef.InstantiateAttrs(TemplateArgs, D, Enum); Enum->setInstantiationOfMemberEnum(D); Enum->setAccess(D->getAccess()); if (SubstQualifier(D, Enum)) return 0; Owner->addDecl(Enum); Enum->startDefinition(); if (D->getDeclContext()->isFunctionOrMethod()) SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Enum); llvm::SmallVector<Decl*, 4> Enumerators; EnumConstantDecl *LastEnumConst = 0; for (EnumDecl::enumerator_iterator EC = D->enumerator_begin(), ECEnd = D->enumerator_end(); EC != ECEnd; ++EC) { // The specified value for the enumerator. ExprResult Value = SemaRef.Owned((Expr *)0); if (Expr *UninstValue = EC->getInitExpr()) { // The enumerator's value expression is not potentially evaluated. EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated); Value = SemaRef.SubstExpr(UninstValue, TemplateArgs); } // Drop the initial value and continue. bool isInvalid = false; if (Value.isInvalid()) { Value = SemaRef.Owned((Expr *)0); isInvalid = true; } EnumConstantDecl *EnumConst = SemaRef.CheckEnumConstant(Enum, LastEnumConst, EC->getLocation(), EC->getIdentifier(), Value.get()); if (isInvalid) { if (EnumConst) EnumConst->setInvalidDecl(); Enum->setInvalidDecl(); } if (EnumConst) { SemaRef.InstantiateAttrs(TemplateArgs, *EC, EnumConst); EnumConst->setAccess(Enum->getAccess()); Enum->addDecl(EnumConst); Enumerators.push_back(EnumConst); LastEnumConst = EnumConst; if (D->getDeclContext()->isFunctionOrMethod()) { // If the enumeration is within a function or method, record the enum // constant as a local. SemaRef.CurrentInstantiationScope->InstantiatedLocal(*EC, EnumConst); } } } // FIXME: Fixup LBraceLoc and RBraceLoc // FIXME: Empty Scope and AttributeList (required to handle attribute packed). SemaRef.ActOnEnumBody(Enum->getLocation(), SourceLocation(), SourceLocation(), Enum, Enumerators.data(), Enumerators.size(), 0, 0); return Enum; } Decl *TemplateDeclInstantiator::VisitEnumConstantDecl(EnumConstantDecl *D) { assert(false && "EnumConstantDecls can only occur within EnumDecls."); return 0; } Decl *TemplateDeclInstantiator::VisitClassTemplateDecl(ClassTemplateDecl *D) { bool isFriend = (D->getFriendObjectKind() != Decl::FOK_None); // Create a local instantiation scope for this class template, which // will contain the instantiations of the template parameters. LocalInstantiationScope Scope(SemaRef); TemplateParameterList *TempParams = D->getTemplateParameters(); TemplateParameterList *InstParams = SubstTemplateParams(TempParams); if (!InstParams) return NULL; CXXRecordDecl *Pattern = D->getTemplatedDecl(); // Instantiate the qualifier. We have to do this first in case // we're a friend declaration, because if we are then we need to put // the new declaration in the appropriate context. NestedNameSpecifierLoc QualifierLoc = Pattern->getQualifierLoc(); if (QualifierLoc) { QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgs); if (!QualifierLoc) return 0; } CXXRecordDecl *PrevDecl = 0; ClassTemplateDecl *PrevClassTemplate = 0; if (!isFriend && Pattern->getPreviousDeclaration()) { DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName()); if (Found.first != Found.second) { PrevClassTemplate = dyn_cast<ClassTemplateDecl>(*Found.first); if (PrevClassTemplate) PrevDecl = PrevClassTemplate->getTemplatedDecl(); } } // If this isn't a friend, then it's a member template, in which // case we just want to build the instantiation in the // specialization. If it is a friend, we want to build it in // the appropriate context. DeclContext *DC = Owner; if (isFriend) { if (QualifierLoc) { CXXScopeSpec SS; SS.Adopt(QualifierLoc); DC = SemaRef.computeDeclContext(SS); if (!DC) return 0; } else { DC = SemaRef.FindInstantiatedContext(Pattern->getLocation(), Pattern->getDeclContext(), TemplateArgs); } // Look for a previous declaration of the template in the owning // context. LookupResult R(SemaRef, Pattern->getDeclName(), Pattern->getLocation(), Sema::LookupOrdinaryName, Sema::ForRedeclaration); SemaRef.LookupQualifiedName(R, DC); if (R.isSingleResult()) { PrevClassTemplate = R.getAsSingle<ClassTemplateDecl>(); if (PrevClassTemplate) PrevDecl = PrevClassTemplate->getTemplatedDecl(); } if (!PrevClassTemplate && QualifierLoc) { SemaRef.Diag(Pattern->getLocation(), diag::err_not_tag_in_scope) << D->getTemplatedDecl()->getTagKind() << Pattern->getDeclName() << DC << QualifierLoc.getSourceRange(); return 0; } bool AdoptedPreviousTemplateParams = false; if (PrevClassTemplate) { bool Complain = true; // HACK: libstdc++ 4.2.1 contains an ill-formed friend class // template for struct std::tr1::__detail::_Map_base, where the // template parameters of the friend declaration don't match the // template parameters of the original declaration. In this one // case, we don't complain about the ill-formed friend // declaration. if (isFriend && Pattern->getIdentifier() && Pattern->getIdentifier()->isStr("_Map_base") && DC->isNamespace() && cast<NamespaceDecl>(DC)->getIdentifier() && cast<NamespaceDecl>(DC)->getIdentifier()->isStr("__detail")) { DeclContext *DCParent = DC->getParent(); if (DCParent->isNamespace() && cast<NamespaceDecl>(DCParent)->getIdentifier() && cast<NamespaceDecl>(DCParent)->getIdentifier()->isStr("tr1")) { DeclContext *DCParent2 = DCParent->getParent(); if (DCParent2->isNamespace() && cast<NamespaceDecl>(DCParent2)->getIdentifier() && cast<NamespaceDecl>(DCParent2)->getIdentifier()->isStr("std") && DCParent2->getParent()->isTranslationUnit()) Complain = false; } } TemplateParameterList *PrevParams = PrevClassTemplate->getTemplateParameters(); // Make sure the parameter lists match. if (!SemaRef.TemplateParameterListsAreEqual(InstParams, PrevParams, Complain, Sema::TPL_TemplateMatch)) { if (Complain) return 0; AdoptedPreviousTemplateParams = true; InstParams = PrevParams; } // Do some additional validation, then merge default arguments // from the existing declarations. if (!AdoptedPreviousTemplateParams && SemaRef.CheckTemplateParameterList(InstParams, PrevParams, Sema::TPC_ClassTemplate)) return 0; } } CXXRecordDecl *RecordInst = CXXRecordDecl::Create(SemaRef.Context, Pattern->getTagKind(), DC, Pattern->getLocStart(), Pattern->getLocation(), Pattern->getIdentifier(), PrevDecl, /*DelayTypeCreation=*/true); if (QualifierLoc) RecordInst->setQualifierInfo(QualifierLoc); ClassTemplateDecl *Inst = ClassTemplateDecl::Create(SemaRef.Context, DC, D->getLocation(), D->getIdentifier(), InstParams, RecordInst, PrevClassTemplate); RecordInst->setDescribedClassTemplate(Inst); if (isFriend) { if (PrevClassTemplate) Inst->setAccess(PrevClassTemplate->getAccess()); else Inst->setAccess(D->getAccess()); Inst->setObjectOfFriendDecl(PrevClassTemplate != 0); // TODO: do we want to track the instantiation progeny of this // friend target decl? } else { Inst->setAccess(D->getAccess()); if (!PrevClassTemplate) Inst->setInstantiatedFromMemberTemplate(D); } // Trigger creation of the type for the instantiation. SemaRef.Context.getInjectedClassNameType(RecordInst, Inst->getInjectedClassNameSpecialization()); // Finish handling of friends. if (isFriend) { DC->makeDeclVisibleInContext(Inst, /*Recoverable*/ false); return Inst; } Owner->addDecl(Inst); if (!PrevClassTemplate) { // Queue up any out-of-line partial specializations of this member // class template; the client will force their instantiation once // the enclosing class has been instantiated. llvm::SmallVector<ClassTemplatePartialSpecializationDecl *, 4> PartialSpecs; D->getPartialSpecializations(PartialSpecs); for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) if (PartialSpecs[I]->isOutOfLine()) OutOfLinePartialSpecs.push_back(std::make_pair(Inst, PartialSpecs[I])); } return Inst; } Decl * TemplateDeclInstantiator::VisitClassTemplatePartialSpecializationDecl( ClassTemplatePartialSpecializationDecl *D) { ClassTemplateDecl *ClassTemplate = D->getSpecializedTemplate(); // Lookup the already-instantiated declaration in the instantiation // of the class template and return that. DeclContext::lookup_result Found = Owner->lookup(ClassTemplate->getDeclName()); if (Found.first == Found.second) return 0; ClassTemplateDecl *InstClassTemplate = dyn_cast<ClassTemplateDecl>(*Found.first); if (!InstClassTemplate) return 0; if (ClassTemplatePartialSpecializationDecl *Result = InstClassTemplate->findPartialSpecInstantiatedFromMember(D)) return Result; return InstantiateClassTemplatePartialSpecialization(InstClassTemplate, D); } Decl * TemplateDeclInstantiator::VisitFunctionTemplateDecl(FunctionTemplateDecl *D) { // Create a local instantiation scope for this function template, which // will contain the instantiations of the template parameters and then get // merged with the local instantiation scope for the function template // itself. LocalInstantiationScope Scope(SemaRef); TemplateParameterList *TempParams = D->getTemplateParameters(); TemplateParameterList *InstParams = SubstTemplateParams(TempParams); if (!InstParams) return NULL; FunctionDecl *Instantiated = 0; if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(D->getTemplatedDecl())) Instantiated = cast_or_null<FunctionDecl>(VisitCXXMethodDecl(DMethod, InstParams)); else Instantiated = cast_or_null<FunctionDecl>(VisitFunctionDecl( D->getTemplatedDecl(), InstParams)); if (!Instantiated) return 0; Instantiated->setAccess(D->getAccess()); // Link the instantiated function template declaration to the function // template from which it was instantiated. FunctionTemplateDecl *InstTemplate = Instantiated->getDescribedFunctionTemplate(); InstTemplate->setAccess(D->getAccess()); assert(InstTemplate && "VisitFunctionDecl/CXXMethodDecl didn't create a template!"); bool isFriend = (InstTemplate->getFriendObjectKind() != Decl::FOK_None); // Link the instantiation back to the pattern *unless* this is a // non-definition friend declaration. if (!InstTemplate->getInstantiatedFromMemberTemplate() && !(isFriend && !D->getTemplatedDecl()->isThisDeclarationADefinition())) InstTemplate->setInstantiatedFromMemberTemplate(D); // Make declarations visible in the appropriate context. if (!isFriend) Owner->addDecl(InstTemplate); return InstTemplate; } Decl *TemplateDeclInstantiator::VisitCXXRecordDecl(CXXRecordDecl *D) { CXXRecordDecl *PrevDecl = 0; if (D->isInjectedClassName()) PrevDecl = cast<CXXRecordDecl>(Owner); else if (D->getPreviousDeclaration()) { NamedDecl *Prev = SemaRef.FindInstantiatedDecl(D->getLocation(), D->getPreviousDeclaration(), TemplateArgs); if (!Prev) return 0; PrevDecl = cast<CXXRecordDecl>(Prev); } CXXRecordDecl *Record = CXXRecordDecl::Create(SemaRef.Context, D->getTagKind(), Owner, D->getLocStart(), D->getLocation(), D->getIdentifier(), PrevDecl); // Substitute the nested name specifier, if any. if (SubstQualifier(D, Record)) return 0; Record->setImplicit(D->isImplicit()); // FIXME: Check against AS_none is an ugly hack to work around the issue that // the tag decls introduced by friend class declarations don't have an access // specifier. Remove once this area of the code gets sorted out. if (D->getAccess() != AS_none) Record->setAccess(D->getAccess()); if (!D->isInjectedClassName()) Record->setInstantiationOfMemberClass(D, TSK_ImplicitInstantiation); // If the original function was part of a friend declaration, // inherit its namespace state. if (Decl::FriendObjectKind FOK = D->getFriendObjectKind()) Record->setObjectOfFriendDecl(FOK == Decl::FOK_Declared); // Make sure that anonymous structs and unions are recorded. if (D->isAnonymousStructOrUnion()) { Record->setAnonymousStructOrUnion(true); if (Record->getDeclContext()->getRedeclContext()->isFunctionOrMethod()) SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Record); } Owner->addDecl(Record); return Record; } /// Normal class members are of more specific types and therefore /// don't make it here. This function serves two purposes: /// 1) instantiating function templates /// 2) substituting friend declarations /// FIXME: preserve function definitions in case #2 Decl *TemplateDeclInstantiator::VisitFunctionDecl(FunctionDecl *D, TemplateParameterList *TemplateParams) { // Check whether there is already a function template specialization for // this declaration. FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate(); void *InsertPos = 0; if (FunctionTemplate && !TemplateParams) { std::pair<const TemplateArgument *, unsigned> Innermost = TemplateArgs.getInnermost(); FunctionDecl *SpecFunc = FunctionTemplate->findSpecialization(Innermost.first, Innermost.second, InsertPos); // If we already have a function template specialization, return it. if (SpecFunc) return SpecFunc; } bool isFriend; if (FunctionTemplate) isFriend = (FunctionTemplate->getFriendObjectKind() != Decl::FOK_None); else isFriend = (D->getFriendObjectKind() != Decl::FOK_None); bool MergeWithParentScope = (TemplateParams != 0) || Owner->isFunctionOrMethod() || !(isa<Decl>(Owner) && cast<Decl>(Owner)->isDefinedOutsideFunctionOrMethod()); LocalInstantiationScope Scope(SemaRef, MergeWithParentScope); llvm::SmallVector<ParmVarDecl *, 4> Params; TypeSourceInfo *TInfo = D->getTypeSourceInfo(); TInfo = SubstFunctionType(D, Params); if (!TInfo) return 0; QualType T = TInfo->getType(); NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc(); if (QualifierLoc) { QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgs); if (!QualifierLoc) return 0; } // If we're instantiating a local function declaration, put the result // in the owner; otherwise we need to find the instantiated context. DeclContext *DC; if (D->getDeclContext()->isFunctionOrMethod()) DC = Owner; else if (isFriend && QualifierLoc) { CXXScopeSpec SS; SS.Adopt(QualifierLoc); DC = SemaRef.computeDeclContext(SS); if (!DC) return 0; } else { DC = SemaRef.FindInstantiatedContext(D->getLocation(), D->getDeclContext(), TemplateArgs); } FunctionDecl *Function = FunctionDecl::Create(SemaRef.Context, DC, D->getInnerLocStart(), D->getLocation(), D->getDeclName(), T, TInfo, D->getStorageClass(), D->getStorageClassAsWritten(), D->isInlineSpecified(), D->hasWrittenPrototype()); if (QualifierLoc) Function->setQualifierInfo(QualifierLoc); DeclContext *LexicalDC = Owner; if (!isFriend && D->isOutOfLine()) { assert(D->getDeclContext()->isFileContext()); LexicalDC = D->getDeclContext(); } Function->setLexicalDeclContext(LexicalDC); // Attach the parameters if (isa<FunctionProtoType>(Function->getType().IgnoreParens())) { // Adopt the already-instantiated parameters into our own context. for (unsigned P = 0; P < Params.size(); ++P) if (Params[P]) Params[P]->setOwningFunction(Function); } else { // Since we were instantiated via a typedef of a function type, create // new parameters. const FunctionProtoType *Proto = Function->getType()->getAs<FunctionProtoType>(); assert(Proto && "No function prototype in template instantiation?"); for (FunctionProtoType::arg_type_iterator AI = Proto->arg_type_begin(), AE = Proto->arg_type_end(); AI != AE; ++AI) { ParmVarDecl *Param = SemaRef.BuildParmVarDeclForTypedef(Function, Function->getLocation(), *AI); Param->setScopeInfo(0, Params.size()); Params.push_back(Param); } } Function->setParams(Params.data(), Params.size()); SourceLocation InstantiateAtPOI; if (TemplateParams) { // Our resulting instantiation is actually a function template, since we // are substituting only the outer template parameters. For example, given // // template<typename T> // struct X { // template<typename U> friend void f(T, U); // }; // // X<int> x; // // We are instantiating the friend function template "f" within X<int>, // which means substituting int for T, but leaving "f" as a friend function // template. // Build the function template itself. FunctionTemplate = FunctionTemplateDecl::Create(SemaRef.Context, DC, Function->getLocation(), Function->getDeclName(), TemplateParams, Function); Function->setDescribedFunctionTemplate(FunctionTemplate); FunctionTemplate->setLexicalDeclContext(LexicalDC); if (isFriend && D->isThisDeclarationADefinition()) { // TODO: should we remember this connection regardless of whether // the friend declaration provided a body? FunctionTemplate->setInstantiatedFromMemberTemplate( D->getDescribedFunctionTemplate()); } } else if (FunctionTemplate) { // Record this function template specialization. std::pair<const TemplateArgument *, unsigned> Innermost = TemplateArgs.getInnermost(); Function->setFunctionTemplateSpecialization(FunctionTemplate, TemplateArgumentList::CreateCopy(SemaRef.Context, Innermost.first, Innermost.second), InsertPos); } else if (isFriend && D->isThisDeclarationADefinition()) { // TODO: should we remember this connection regardless of whether // the friend declaration provided a body? Function->setInstantiationOfMemberFunction(D, TSK_ImplicitInstantiation); } if (InitFunctionInstantiation(Function, D)) Function->setInvalidDecl(); bool Redeclaration = false; bool isExplicitSpecialization = false; LookupResult Previous(SemaRef, Function->getDeclName(), SourceLocation(), Sema::LookupOrdinaryName, Sema::ForRedeclaration); if (DependentFunctionTemplateSpecializationInfo *Info = D->getDependentSpecializationInfo()) { assert(isFriend && "non-friend has dependent specialization info?"); // This needs to be set now for future sanity. Function->setObjectOfFriendDecl(/*HasPrevious*/ true); // Instantiate the explicit template arguments. TemplateArgumentListInfo ExplicitArgs(Info->getLAngleLoc(), Info->getRAngleLoc()); if (SemaRef.Subst(Info->getTemplateArgs(), Info->getNumTemplateArgs(), ExplicitArgs, TemplateArgs)) return 0; // Map the candidate templates to their instantiations. for (unsigned I = 0, E = Info->getNumTemplates(); I != E; ++I) { Decl *Temp = SemaRef.FindInstantiatedDecl(D->getLocation(), Info->getTemplate(I), TemplateArgs); if (!Temp) return 0; Previous.addDecl(cast<FunctionTemplateDecl>(Temp)); } if (SemaRef.CheckFunctionTemplateSpecialization(Function, &ExplicitArgs, Previous)) Function->setInvalidDecl(); isExplicitSpecialization = true; } else if (TemplateParams || !FunctionTemplate) { // Look only into the namespace where the friend would be declared to // find a previous declaration. This is the innermost enclosing namespace, // as described in ActOnFriendFunctionDecl. SemaRef.LookupQualifiedName(Previous, DC); // In C++, the previous declaration we find might be a tag type // (class or enum). In this case, the new declaration will hide the // tag type. Note that this does does not apply if we're declaring a // typedef (C++ [dcl.typedef]p4). if (Previous.isSingleTagDecl()) Previous.clear(); } SemaRef.CheckFunctionDeclaration(/*Scope*/ 0, Function, Previous, isExplicitSpecialization, Redeclaration); NamedDecl *PrincipalDecl = (TemplateParams ? cast<NamedDecl>(FunctionTemplate) : Function); // If the original function was part of a friend declaration, // inherit its namespace state and add it to the owner. if (isFriend) { NamedDecl *PrevDecl; if (TemplateParams) PrevDecl = FunctionTemplate->getPreviousDeclaration(); else PrevDecl = Function->getPreviousDeclaration(); PrincipalDecl->setObjectOfFriendDecl(PrevDecl != 0); DC->makeDeclVisibleInContext(PrincipalDecl, /*Recoverable=*/ false); bool queuedInstantiation = false; if (!SemaRef.getLangOptions().CPlusPlus0x && D->isThisDeclarationADefinition()) { // Check for a function body. const FunctionDecl *Definition = 0; if (Function->isDefined(Definition) && Definition->getTemplateSpecializationKind() == TSK_Undeclared) { SemaRef.Diag(Function->getLocation(), diag::err_redefinition) << Function->getDeclName(); SemaRef.Diag(Definition->getLocation(), diag::note_previous_definition); Function->setInvalidDecl(); } // Check for redefinitions due to other instantiations of this or // a similar friend function. else for (FunctionDecl::redecl_iterator R = Function->redecls_begin(), REnd = Function->redecls_end(); R != REnd; ++R) { if (*R == Function) continue; switch (R->getFriendObjectKind()) { case Decl::FOK_None: if (!queuedInstantiation && R->isUsed(false)) { if (MemberSpecializationInfo *MSInfo = Function->getMemberSpecializationInfo()) { if (MSInfo->getPointOfInstantiation().isInvalid()) { SourceLocation Loc = R->getLocation(); // FIXME MSInfo->setPointOfInstantiation(Loc); SemaRef.PendingLocalImplicitInstantiations.push_back( std::make_pair(Function, Loc)); queuedInstantiation = true; } } } break; default: if (const FunctionDecl *RPattern = R->getTemplateInstantiationPattern()) if (RPattern->isDefined(RPattern)) { SemaRef.Diag(Function->getLocation(), diag::err_redefinition) << Function->getDeclName(); SemaRef.Diag(R->getLocation(), diag::note_previous_definition); Function->setInvalidDecl(); break; } } } } } if (Function->isOverloadedOperator() && !DC->isRecord() && PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary)) PrincipalDecl->setNonMemberOperator(); assert(!D->isDefaulted() && "only methods should be defaulted"); return Function; } Decl * TemplateDeclInstantiator::VisitCXXMethodDecl(CXXMethodDecl *D, TemplateParameterList *TemplateParams) { FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate(); void *InsertPos = 0; if (FunctionTemplate && !TemplateParams) { // We are creating a function template specialization from a function // template. Check whether there is already a function template // specialization for this particular set of template arguments. std::pair<const TemplateArgument *, unsigned> Innermost = TemplateArgs.getInnermost(); FunctionDecl *SpecFunc = FunctionTemplate->findSpecialization(Innermost.first, Innermost.second, InsertPos); // If we already have a function template specialization, return it. if (SpecFunc) return SpecFunc; } bool isFriend; if (FunctionTemplate) isFriend = (FunctionTemplate->getFriendObjectKind() != Decl::FOK_None); else isFriend = (D->getFriendObjectKind() != Decl::FOK_None); bool MergeWithParentScope = (TemplateParams != 0) || !(isa<Decl>(Owner) && cast<Decl>(Owner)->isDefinedOutsideFunctionOrMethod()); LocalInstantiationScope Scope(SemaRef, MergeWithParentScope); // Instantiate enclosing template arguments for friends. llvm::SmallVector<TemplateParameterList *, 4> TempParamLists; unsigned NumTempParamLists = 0; if (isFriend && (NumTempParamLists = D->getNumTemplateParameterLists())) { TempParamLists.set_size(NumTempParamLists); for (unsigned I = 0; I != NumTempParamLists; ++I) { TemplateParameterList *TempParams = D->getTemplateParameterList(I); TemplateParameterList *InstParams = SubstTemplateParams(TempParams); if (!InstParams) return NULL; TempParamLists[I] = InstParams; } } llvm::SmallVector<ParmVarDecl *, 4> Params; TypeSourceInfo *TInfo = D->getTypeSourceInfo(); TInfo = SubstFunctionType(D, Params); if (!TInfo) return 0; QualType T = TInfo->getType(); // \brief If the type of this function, after ignoring parentheses, // is not *directly* a function type, then we're instantiating a function // that was declared via a typedef, e.g., // // typedef int functype(int, int); // functype func; // // In this case, we'll just go instantiate the ParmVarDecls that we // synthesized in the method declaration. if (!isa<FunctionProtoType>(T.IgnoreParens())) { assert(!Params.size() && "Instantiating type could not yield parameters"); llvm::SmallVector<QualType, 4> ParamTypes; if (SemaRef.SubstParmTypes(D->getLocation(), D->param_begin(), D->getNumParams(), TemplateArgs, ParamTypes, &Params)) return 0; } NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc(); if (QualifierLoc) { QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgs); if (!QualifierLoc) return 0; } DeclContext *DC = Owner; if (isFriend) { if (QualifierLoc) { CXXScopeSpec SS; SS.Adopt(QualifierLoc); DC = SemaRef.computeDeclContext(SS); if (DC && SemaRef.RequireCompleteDeclContext(SS, DC)) return 0; } else { DC = SemaRef.FindInstantiatedContext(D->getLocation(), D->getDeclContext(), TemplateArgs); } if (!DC) return 0; } // Build the instantiated method declaration. CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); CXXMethodDecl *Method = 0; SourceLocation StartLoc = D->getInnerLocStart(); DeclarationNameInfo NameInfo = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs); if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) { Method = CXXConstructorDecl::Create(SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo, Constructor->isExplicit(), Constructor->isInlineSpecified(), false); } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) { Method = CXXDestructorDecl::Create(SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo, Destructor->isInlineSpecified(), false); } else if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) { Method = CXXConversionDecl::Create(SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo, Conversion->isInlineSpecified(), Conversion->isExplicit(), Conversion->getLocEnd()); } else { Method = CXXMethodDecl::Create(SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo, D->isStatic(), D->getStorageClassAsWritten(), D->isInlineSpecified(), D->getLocEnd()); } if (QualifierLoc) Method->setQualifierInfo(QualifierLoc); if (TemplateParams) { // Our resulting instantiation is actually a function template, since we // are substituting only the outer template parameters. For example, given // // template<typename T> // struct X { // template<typename U> void f(T, U); // }; // // X<int> x; // // We are instantiating the member template "f" within X<int>, which means // substituting int for T, but leaving "f" as a member function template. // Build the function template itself. FunctionTemplate = FunctionTemplateDecl::Create(SemaRef.Context, Record, Method->getLocation(), Method->getDeclName(), TemplateParams, Method); if (isFriend) { FunctionTemplate->setLexicalDeclContext(Owner); FunctionTemplate->setObjectOfFriendDecl(true); } else if (D->isOutOfLine()) FunctionTemplate->setLexicalDeclContext(D->getLexicalDeclContext()); Method->setDescribedFunctionTemplate(FunctionTemplate); } else if (FunctionTemplate) { // Record this function template specialization. std::pair<const TemplateArgument *, unsigned> Innermost = TemplateArgs.getInnermost(); Method->setFunctionTemplateSpecialization(FunctionTemplate, TemplateArgumentList::CreateCopy(SemaRef.Context, Innermost.first, Innermost.second), InsertPos); } else if (!isFriend) { // Record that this is an instantiation of a member function. Method->setInstantiationOfMemberFunction(D, TSK_ImplicitInstantiation); } // If we are instantiating a member function defined // out-of-line, the instantiation will have the same lexical // context (which will be a namespace scope) as the template. if (isFriend) { if (NumTempParamLists) Method->setTemplateParameterListsInfo(SemaRef.Context, NumTempParamLists, TempParamLists.data()); Method->setLexicalDeclContext(Owner); Method->setObjectOfFriendDecl(true); } else if (D->isOutOfLine()) Method->setLexicalDeclContext(D->getLexicalDeclContext()); // Attach the parameters for (unsigned P = 0; P < Params.size(); ++P) Params[P]->setOwningFunction(Method); Method->setParams(Params.data(), Params.size()); if (InitMethodInstantiation(Method, D)) Method->setInvalidDecl(); LookupResult Previous(SemaRef, NameInfo, Sema::LookupOrdinaryName, Sema::ForRedeclaration); if (!FunctionTemplate || TemplateParams || isFriend) { SemaRef.LookupQualifiedName(Previous, Record); // In C++, the previous declaration we find might be a tag type // (class or enum). In this case, the new declaration will hide the // tag type. Note that this does does not apply if we're declaring a // typedef (C++ [dcl.typedef]p4). if (Previous.isSingleTagDecl()) Previous.clear(); } bool Redeclaration = false; SemaRef.CheckFunctionDeclaration(0, Method, Previous, false, Redeclaration); if (D->isPure()) SemaRef.CheckPureMethod(Method, SourceRange()); Method->setAccess(D->getAccess()); SemaRef.CheckOverrideControl(Method); if (FunctionTemplate) { // If there's a function template, let our caller handle it. } else if (Method->isInvalidDecl() && !Previous.empty()) { // Don't hide a (potentially) valid declaration with an invalid one. } else { NamedDecl *DeclToAdd = (TemplateParams ? cast<NamedDecl>(FunctionTemplate) : Method); if (isFriend) Record->makeDeclVisibleInContext(DeclToAdd); else Owner->addDecl(DeclToAdd); } if (D->isExplicitlyDefaulted()) { SemaRef.SetDeclDefaulted(Method, Method->getLocation()); } else { assert(!D->isDefaulted() && "should not implicitly default uninstantiated function"); } return Method; } Decl *TemplateDeclInstantiator::VisitCXXConstructorDecl(CXXConstructorDecl *D) { return VisitCXXMethodDecl(D); } Decl *TemplateDeclInstantiator::VisitCXXDestructorDecl(CXXDestructorDecl *D) { return VisitCXXMethodDecl(D); } Decl *TemplateDeclInstantiator::VisitCXXConversionDecl(CXXConversionDecl *D) { return VisitCXXMethodDecl(D); } ParmVarDecl *TemplateDeclInstantiator::VisitParmVarDecl(ParmVarDecl *D) { return SemaRef.SubstParmVarDecl(D, TemplateArgs, /*indexAdjustment*/ 0, llvm::Optional<unsigned>()); } Decl *TemplateDeclInstantiator::VisitTemplateTypeParmDecl( TemplateTypeParmDecl *D) { // TODO: don't always clone when decls are refcounted. assert(D->getTypeForDecl()->isTemplateTypeParmType()); TemplateTypeParmDecl *Inst = TemplateTypeParmDecl::Create(SemaRef.Context, Owner, D->getLocStart(), D->getLocation(), D->getDepth() - TemplateArgs.getNumLevels(), D->getIndex(), D->getIdentifier(), D->wasDeclaredWithTypename(), D->isParameterPack()); Inst->setAccess(AS_public); if (D->hasDefaultArgument()) Inst->setDefaultArgument(D->getDefaultArgumentInfo(), false); // Introduce this template parameter's instantiation into the instantiation // scope. SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Inst); return Inst; } Decl *TemplateDeclInstantiator::VisitNonTypeTemplateParmDecl( NonTypeTemplateParmDecl *D) { // Substitute into the type of the non-type template parameter. TypeLoc TL = D->getTypeSourceInfo()->getTypeLoc(); llvm::SmallVector<TypeSourceInfo *, 4> ExpandedParameterPackTypesAsWritten; llvm::SmallVector<QualType, 4> ExpandedParameterPackTypes; bool IsExpandedParameterPack = false; TypeSourceInfo *DI; QualType T; bool Invalid = false; if (D->isExpandedParameterPack()) { // The non-type template parameter pack is an already-expanded pack // expansion of types. Substitute into each of the expanded types. ExpandedParameterPackTypes.reserve(D->getNumExpansionTypes()); ExpandedParameterPackTypesAsWritten.reserve(D->getNumExpansionTypes()); for (unsigned I = 0, N = D->getNumExpansionTypes(); I != N; ++I) { TypeSourceInfo *NewDI =SemaRef.SubstType(D->getExpansionTypeSourceInfo(I), TemplateArgs, D->getLocation(), D->getDeclName()); if (!NewDI) return 0; ExpandedParameterPackTypesAsWritten.push_back(NewDI); QualType NewT =SemaRef.CheckNonTypeTemplateParameterType(NewDI->getType(), D->getLocation()); if (NewT.isNull()) return 0; ExpandedParameterPackTypes.push_back(NewT); } IsExpandedParameterPack = true; DI = D->getTypeSourceInfo(); T = DI->getType(); } else if (isa<PackExpansionTypeLoc>(TL)) { // The non-type template parameter pack's type is a pack expansion of types. // Determine whether we need to expand this parameter pack into separate // types. PackExpansionTypeLoc Expansion = cast<PackExpansionTypeLoc>(TL); TypeLoc Pattern = Expansion.getPatternLoc(); llvm::SmallVector<UnexpandedParameterPack, 2> Unexpanded; SemaRef.collectUnexpandedParameterPacks(Pattern, Unexpanded); // Determine whether the set of unexpanded parameter packs can and should // be expanded. bool Expand = true; bool RetainExpansion = false; llvm::Optional<unsigned> OrigNumExpansions = Expansion.getTypePtr()->getNumExpansions(); llvm::Optional<unsigned> NumExpansions = OrigNumExpansions; if (SemaRef.CheckParameterPacksForExpansion(Expansion.getEllipsisLoc(), Pattern.getSourceRange(), Unexpanded.data(), Unexpanded.size(), TemplateArgs, Expand, RetainExpansion, NumExpansions)) return 0; if (Expand) { for (unsigned I = 0; I != *NumExpansions; ++I) { Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I); TypeSourceInfo *NewDI = SemaRef.SubstType(Pattern, TemplateArgs, D->getLocation(), D->getDeclName()); if (!NewDI) return 0; ExpandedParameterPackTypesAsWritten.push_back(NewDI); QualType NewT = SemaRef.CheckNonTypeTemplateParameterType( NewDI->getType(), D->getLocation()); if (NewT.isNull()) return 0; ExpandedParameterPackTypes.push_back(NewT); } // Note that we have an expanded parameter pack. The "type" of this // expanded parameter pack is the original expansion type, but callers // will end up using the expanded parameter pack types for type-checking. IsExpandedParameterPack = true; DI = D->getTypeSourceInfo(); T = DI->getType(); } else { // We cannot fully expand the pack expansion now, so substitute into the // pattern and create a new pack expansion type. Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1); TypeSourceInfo *NewPattern = SemaRef.SubstType(Pattern, TemplateArgs, D->getLocation(), D->getDeclName()); if (!NewPattern) return 0; DI = SemaRef.CheckPackExpansion(NewPattern, Expansion.getEllipsisLoc(), NumExpansions); if (!DI) return 0; T = DI->getType(); } } else { // Simple case: substitution into a parameter that is not a parameter pack. DI = SemaRef.SubstType(D->getTypeSourceInfo(), TemplateArgs, D->getLocation(), D->getDeclName()); if (!DI) return 0; // Check that this type is acceptable for a non-type template parameter. T = SemaRef.CheckNonTypeTemplateParameterType(DI->getType(), D->getLocation()); if (T.isNull()) { T = SemaRef.Context.IntTy; Invalid = true; } } NonTypeTemplateParmDecl *Param; if (IsExpandedParameterPack) Param = NonTypeTemplateParmDecl::Create(SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(), D->getDepth() - TemplateArgs.getNumLevels(), D->getPosition(), D->getIdentifier(), T, DI, ExpandedParameterPackTypes.data(), ExpandedParameterPackTypes.size(), ExpandedParameterPackTypesAsWritten.data()); else Param = NonTypeTemplateParmDecl::Create(SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(), D->getDepth() - TemplateArgs.getNumLevels(), D->getPosition(), D->getIdentifier(), T, D->isParameterPack(), DI); Param->setAccess(AS_public); if (Invalid) Param->setInvalidDecl(); Param->setDefaultArgument(D->getDefaultArgument(), false); // Introduce this template parameter's instantiation into the instantiation // scope. SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param); return Param; } Decl * TemplateDeclInstantiator::VisitTemplateTemplateParmDecl( TemplateTemplateParmDecl *D) { // Instantiate the template parameter list of the template template parameter. TemplateParameterList *TempParams = D->getTemplateParameters(); TemplateParameterList *InstParams; { // Perform the actual substitution of template parameters within a new, // local instantiation scope. LocalInstantiationScope Scope(SemaRef); InstParams = SubstTemplateParams(TempParams); if (!InstParams) return NULL; } // Build the template template parameter. TemplateTemplateParmDecl *Param = TemplateTemplateParmDecl::Create(SemaRef.Context, Owner, D->getLocation(), D->getDepth() - TemplateArgs.getNumLevels(), D->getPosition(), D->isParameterPack(), D->getIdentifier(), InstParams); Param->setDefaultArgument(D->getDefaultArgument(), false); Param->setAccess(AS_public); // Introduce this template parameter's instantiation into the instantiation // scope. SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param); return Param; } Decl *TemplateDeclInstantiator::VisitUsingDirectiveDecl(UsingDirectiveDecl *D) { // Using directives are never dependent (and never contain any types or // expressions), so they require no explicit instantiation work. UsingDirectiveDecl *Inst = UsingDirectiveDecl::Create(SemaRef.Context, Owner, D->getLocation(), D->getNamespaceKeyLocation(), D->getQualifierLoc(), D->getIdentLocation(), D->getNominatedNamespace(), D->getCommonAncestor()); Owner->addDecl(Inst); return Inst; } Decl *TemplateDeclInstantiator::VisitUsingDecl(UsingDecl *D) { // The nested name specifier may be dependent, for example // template <typename T> struct t { // struct s1 { T f1(); }; // struct s2 : s1 { using s1::f1; }; // }; // template struct t<int>; // Here, in using s1::f1, s1 refers to t<T>::s1; // we need to substitute for t<int>::s1. NestedNameSpecifierLoc QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(), TemplateArgs); if (!QualifierLoc) return 0; // The name info is non-dependent, so no transformation // is required. DeclarationNameInfo NameInfo = D->getNameInfo(); // We only need to do redeclaration lookups if we're in a class // scope (in fact, it's not really even possible in non-class // scopes). bool CheckRedeclaration = Owner->isRecord(); LookupResult Prev(SemaRef, NameInfo, Sema::LookupUsingDeclName, Sema::ForRedeclaration); UsingDecl *NewUD = UsingDecl::Create(SemaRef.Context, Owner, D->getUsingLocation(), QualifierLoc, NameInfo, D->isTypeName()); CXXScopeSpec SS; SS.Adopt(QualifierLoc); if (CheckRedeclaration) { Prev.setHideTags(false); SemaRef.LookupQualifiedName(Prev, Owner); // Check for invalid redeclarations. if (SemaRef.CheckUsingDeclRedeclaration(D->getUsingLocation(), D->isTypeName(), SS, D->getLocation(), Prev)) NewUD->setInvalidDecl(); } if (!NewUD->isInvalidDecl() && SemaRef.CheckUsingDeclQualifier(D->getUsingLocation(), SS, D->getLocation())) NewUD->setInvalidDecl(); SemaRef.Context.setInstantiatedFromUsingDecl(NewUD, D); NewUD->setAccess(D->getAccess()); Owner->addDecl(NewUD); // Don't process the shadow decls for an invalid decl. if (NewUD->isInvalidDecl()) return NewUD; bool isFunctionScope = Owner->isFunctionOrMethod(); // Process the shadow decls. for (UsingDecl::shadow_iterator I = D->shadow_begin(), E = D->shadow_end(); I != E; ++I) { UsingShadowDecl *Shadow = *I; NamedDecl *InstTarget = cast_or_null<NamedDecl>(SemaRef.FindInstantiatedDecl( Shadow->getLocation(), Shadow->getTargetDecl(), TemplateArgs)); if (!InstTarget) return 0; if (CheckRedeclaration && SemaRef.CheckUsingShadowDecl(NewUD, InstTarget, Prev)) continue; UsingShadowDecl *InstShadow = SemaRef.BuildUsingShadowDecl(/*Scope*/ 0, NewUD, InstTarget); SemaRef.Context.setInstantiatedFromUsingShadowDecl(InstShadow, Shadow); if (isFunctionScope) SemaRef.CurrentInstantiationScope->InstantiatedLocal(Shadow, InstShadow); } return NewUD; } Decl *TemplateDeclInstantiator::VisitUsingShadowDecl(UsingShadowDecl *D) { // Ignore these; we handle them in bulk when processing the UsingDecl. return 0; } Decl * TemplateDeclInstantiator ::VisitUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *D) { NestedNameSpecifierLoc QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(), TemplateArgs); if (!QualifierLoc) return 0; CXXScopeSpec SS; SS.Adopt(QualifierLoc); // Since NameInfo refers to a typename, it cannot be a C++ special name. // Hence, no tranformation is required for it. DeclarationNameInfo NameInfo(D->getDeclName(), D->getLocation()); NamedDecl *UD = SemaRef.BuildUsingDeclaration(/*Scope*/ 0, D->getAccess(), D->getUsingLoc(), SS, NameInfo, 0, /*instantiation*/ true, /*typename*/ true, D->getTypenameLoc()); if (UD) SemaRef.Context.setInstantiatedFromUsingDecl(cast<UsingDecl>(UD), D); return UD; } Decl * TemplateDeclInstantiator ::VisitUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *D) { NestedNameSpecifierLoc QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(), TemplateArgs); if (!QualifierLoc) return 0; CXXScopeSpec SS; SS.Adopt(QualifierLoc); DeclarationNameInfo NameInfo = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs); NamedDecl *UD = SemaRef.BuildUsingDeclaration(/*Scope*/ 0, D->getAccess(), D->getUsingLoc(), SS, NameInfo, 0, /*instantiation*/ true, /*typename*/ false, SourceLocation()); if (UD) SemaRef.Context.setInstantiatedFromUsingDecl(cast<UsingDecl>(UD), D); return UD; } Decl *Sema::SubstDecl(Decl *D, DeclContext *Owner, const MultiLevelTemplateArgumentList &TemplateArgs) { TemplateDeclInstantiator Instantiator(*this, Owner, TemplateArgs); if (D->isInvalidDecl()) return 0; return Instantiator.Visit(D); } /// \brief Instantiates a nested template parameter list in the current /// instantiation context. /// /// \param L The parameter list to instantiate /// /// \returns NULL if there was an error TemplateParameterList * TemplateDeclInstantiator::SubstTemplateParams(TemplateParameterList *L) { // Get errors for all the parameters before bailing out. bool Invalid = false; unsigned N = L->size(); typedef llvm::SmallVector<NamedDecl *, 8> ParamVector; ParamVector Params; Params.reserve(N); for (TemplateParameterList::iterator PI = L->begin(), PE = L->end(); PI != PE; ++PI) { NamedDecl *D = cast_or_null<NamedDecl>(Visit(*PI)); Params.push_back(D); Invalid = Invalid || !D || D->isInvalidDecl(); } // Clean up if we had an error. if (Invalid) return NULL; TemplateParameterList *InstL = TemplateParameterList::Create(SemaRef.Context, L->getTemplateLoc(), L->getLAngleLoc(), &Params.front(), N, L->getRAngleLoc()); return InstL; } /// \brief Instantiate the declaration of a class template partial /// specialization. /// /// \param ClassTemplate the (instantiated) class template that is partially // specialized by the instantiation of \p PartialSpec. /// /// \param PartialSpec the (uninstantiated) class template partial /// specialization that we are instantiating. /// /// \returns The instantiated partial specialization, if successful; otherwise, /// NULL to indicate an error. ClassTemplatePartialSpecializationDecl * TemplateDeclInstantiator::InstantiateClassTemplatePartialSpecialization( ClassTemplateDecl *ClassTemplate, ClassTemplatePartialSpecializationDecl *PartialSpec) { // Create a local instantiation scope for this class template partial // specialization, which will contain the instantiations of the template // parameters. LocalInstantiationScope Scope(SemaRef); // Substitute into the template parameters of the class template partial // specialization. TemplateParameterList *TempParams = PartialSpec->getTemplateParameters(); TemplateParameterList *InstParams = SubstTemplateParams(TempParams); if (!InstParams) return 0; // Substitute into the template arguments of the class template partial // specialization. TemplateArgumentListInfo InstTemplateArgs; // no angle locations if (SemaRef.Subst(PartialSpec->getTemplateArgsAsWritten(), PartialSpec->getNumTemplateArgsAsWritten(), InstTemplateArgs, TemplateArgs)) return 0; // Check that the template argument list is well-formed for this // class template. llvm::SmallVector<TemplateArgument, 4> Converted; if (SemaRef.CheckTemplateArgumentList(ClassTemplate, PartialSpec->getLocation(), InstTemplateArgs, false, Converted)) return 0; // Figure out where to insert this class template partial specialization // in the member template's set of class template partial specializations. void *InsertPos = 0; ClassTemplateSpecializationDecl *PrevDecl = ClassTemplate->findPartialSpecialization(Converted.data(), Converted.size(), InsertPos); // Build the canonical type that describes the converted template // arguments of the class template partial specialization. QualType CanonType = SemaRef.Context.getTemplateSpecializationType(TemplateName(ClassTemplate), Converted.data(), Converted.size()); // Build the fully-sugared type for this class template // specialization as the user wrote in the specialization // itself. This means that we'll pretty-print the type retrieved // from the specialization's declaration the way that the user // actually wrote the specialization, rather than formatting the // name based on the "canonical" representation used to store the // template arguments in the specialization. TypeSourceInfo *WrittenTy = SemaRef.Context.getTemplateSpecializationTypeInfo( TemplateName(ClassTemplate), PartialSpec->getLocation(), InstTemplateArgs, CanonType); if (PrevDecl) { // We've already seen a partial specialization with the same template // parameters and template arguments. This can happen, for example, when // substituting the outer template arguments ends up causing two // class template partial specializations of a member class template // to have identical forms, e.g., // // template<typename T, typename U> // struct Outer { // template<typename X, typename Y> struct Inner; // template<typename Y> struct Inner<T, Y>; // template<typename Y> struct Inner<U, Y>; // }; // // Outer<int, int> outer; // error: the partial specializations of Inner // // have the same signature. SemaRef.Diag(PartialSpec->getLocation(), diag::err_partial_spec_redeclared) << WrittenTy->getType(); SemaRef.Diag(PrevDecl->getLocation(), diag::note_prev_partial_spec_here) << SemaRef.Context.getTypeDeclType(PrevDecl); return 0; } // Create the class template partial specialization declaration. ClassTemplatePartialSpecializationDecl *InstPartialSpec = ClassTemplatePartialSpecializationDecl::Create(SemaRef.Context, PartialSpec->getTagKind(), Owner, PartialSpec->getLocStart(), PartialSpec->getLocation(), InstParams, ClassTemplate, Converted.data(), Converted.size(), InstTemplateArgs, CanonType, 0, ClassTemplate->getNextPartialSpecSequenceNumber()); // Substitute the nested name specifier, if any. if (SubstQualifier(PartialSpec, InstPartialSpec)) return 0; InstPartialSpec->setInstantiatedFromMember(PartialSpec); InstPartialSpec->setTypeAsWritten(WrittenTy); // Add this partial specialization to the set of class template partial // specializations. ClassTemplate->AddPartialSpecialization(InstPartialSpec, InsertPos); return InstPartialSpec; } TypeSourceInfo* TemplateDeclInstantiator::SubstFunctionType(FunctionDecl *D, llvm::SmallVectorImpl<ParmVarDecl *> &Params) { TypeSourceInfo *OldTInfo = D->getTypeSourceInfo(); assert(OldTInfo && "substituting function without type source info"); assert(Params.empty() && "parameter vector is non-empty at start"); TypeSourceInfo *NewTInfo = SemaRef.SubstFunctionDeclType(OldTInfo, TemplateArgs, D->getTypeSpecStartLoc(), D->getDeclName()); if (!NewTInfo) return 0; if (NewTInfo != OldTInfo) { // Get parameters from the new type info. TypeLoc OldTL = OldTInfo->getTypeLoc().IgnoreParens(); if (FunctionProtoTypeLoc *OldProtoLoc = dyn_cast<FunctionProtoTypeLoc>(&OldTL)) { TypeLoc NewTL = NewTInfo->getTypeLoc().IgnoreParens(); FunctionProtoTypeLoc *NewProtoLoc = cast<FunctionProtoTypeLoc>(&NewTL); assert(NewProtoLoc && "Missing prototype?"); unsigned NewIdx = 0, NumNewParams = NewProtoLoc->getNumArgs(); for (unsigned OldIdx = 0, NumOldParams = OldProtoLoc->getNumArgs(); OldIdx != NumOldParams; ++OldIdx) { ParmVarDecl *OldParam = OldProtoLoc->getArg(OldIdx); if (!OldParam->isParameterPack() || (NewIdx < NumNewParams && NewProtoLoc->getArg(NewIdx)->isParameterPack())) { // Simple case: normal parameter, or a parameter pack that's // instantiated to a (still-dependent) parameter pack. ParmVarDecl *NewParam = NewProtoLoc->getArg(NewIdx++); Params.push_back(NewParam); SemaRef.CurrentInstantiationScope->InstantiatedLocal(OldParam, NewParam); continue; } // Parameter pack: make the instantiation an argument pack. SemaRef.CurrentInstantiationScope->MakeInstantiatedLocalArgPack( OldParam); unsigned NumArgumentsInExpansion = SemaRef.getNumArgumentsInExpansion(OldParam->getType(), TemplateArgs); while (NumArgumentsInExpansion--) { ParmVarDecl *NewParam = NewProtoLoc->getArg(NewIdx++); Params.push_back(NewParam); SemaRef.CurrentInstantiationScope->InstantiatedLocalPackArg(OldParam, NewParam); } } } } else { // The function type itself was not dependent and therefore no // substitution occurred. However, we still need to instantiate // the function parameters themselves. TypeLoc OldTL = OldTInfo->getTypeLoc().IgnoreParens(); if (FunctionProtoTypeLoc *OldProtoLoc = dyn_cast<FunctionProtoTypeLoc>(&OldTL)) { for (unsigned i = 0, i_end = OldProtoLoc->getNumArgs(); i != i_end; ++i) { ParmVarDecl *Parm = VisitParmVarDecl(OldProtoLoc->getArg(i)); if (!Parm) return 0; Params.push_back(Parm); } } } return NewTInfo; } /// \brief Initializes the common fields of an instantiation function /// declaration (New) from the corresponding fields of its template (Tmpl). /// /// \returns true if there was an error bool TemplateDeclInstantiator::InitFunctionInstantiation(FunctionDecl *New, FunctionDecl *Tmpl) { if (Tmpl->isDeletedAsWritten()) New->setDeletedAsWritten(); // If we are performing substituting explicitly-specified template arguments // or deduced template arguments into a function template and we reach this // point, we are now past the point where SFINAE applies and have committed // to keeping the new function template specialization. We therefore // convert the active template instantiation for the function template // into a template instantiation for this specific function template // specialization, which is not a SFINAE context, so that we diagnose any // further errors in the declaration itself. typedef Sema::ActiveTemplateInstantiation ActiveInstType; ActiveInstType &ActiveInst = SemaRef.ActiveTemplateInstantiations.back(); if (ActiveInst.Kind == ActiveInstType::ExplicitTemplateArgumentSubstitution || ActiveInst.Kind == ActiveInstType::DeducedTemplateArgumentSubstitution) { if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>((Decl *)ActiveInst.Entity)) { assert(FunTmpl->getTemplatedDecl() == Tmpl && "Deduction from the wrong function template?"); (void) FunTmpl; ActiveInst.Kind = ActiveInstType::TemplateInstantiation; ActiveInst.Entity = reinterpret_cast<uintptr_t>(New); --SemaRef.NonInstantiationEntries; } } const FunctionProtoType *Proto = Tmpl->getType()->getAs<FunctionProtoType>(); assert(Proto && "Function template without prototype?"); if (Proto->hasExceptionSpec() || Proto->getNoReturnAttr()) { // The function has an exception specification or a "noreturn" // attribute. Substitute into each of the exception types. llvm::SmallVector<QualType, 4> Exceptions; for (unsigned I = 0, N = Proto->getNumExceptions(); I != N; ++I) { // FIXME: Poor location information! if (const PackExpansionType *PackExpansion = Proto->getExceptionType(I)->getAs<PackExpansionType>()) { // We have a pack expansion. Instantiate it. llvm::SmallVector<UnexpandedParameterPack, 2> Unexpanded; SemaRef.collectUnexpandedParameterPacks(PackExpansion->getPattern(), Unexpanded); assert(!Unexpanded.empty() && "Pack expansion without parameter packs?"); bool Expand = false; bool RetainExpansion = false; llvm::Optional<unsigned> NumExpansions = PackExpansion->getNumExpansions(); if (SemaRef.CheckParameterPacksForExpansion(New->getLocation(), SourceRange(), Unexpanded.data(), Unexpanded.size(), TemplateArgs, Expand, RetainExpansion, NumExpansions)) break; if (!Expand) { // We can't expand this pack expansion into separate arguments yet; // just substitute into the pattern and create a new pack expansion // type. Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1); QualType T = SemaRef.SubstType(PackExpansion->getPattern(), TemplateArgs, New->getLocation(), New->getDeclName()); if (T.isNull()) break; T = SemaRef.Context.getPackExpansionType(T, NumExpansions); Exceptions.push_back(T); continue; } // Substitute into the pack expansion pattern for each template bool Invalid = false; for (unsigned ArgIdx = 0; ArgIdx != *NumExpansions; ++ArgIdx) { Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, ArgIdx); QualType T = SemaRef.SubstType(PackExpansion->getPattern(), TemplateArgs, New->getLocation(), New->getDeclName()); if (T.isNull()) { Invalid = true; break; } Exceptions.push_back(T); } if (Invalid) break; continue; } QualType T = SemaRef.SubstType(Proto->getExceptionType(I), TemplateArgs, New->getLocation(), New->getDeclName()); if (T.isNull() || SemaRef.CheckSpecifiedExceptionType(T, New->getLocation())) continue; Exceptions.push_back(T); } Expr *NoexceptExpr = 0; if (Expr *OldNoexceptExpr = Proto->getNoexceptExpr()) { EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated); ExprResult E = SemaRef.SubstExpr(OldNoexceptExpr, TemplateArgs); if (E.isUsable()) NoexceptExpr = E.take(); } // Rebuild the function type FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); EPI.ExceptionSpecType = Proto->getExceptionSpecType(); EPI.NumExceptions = Exceptions.size(); EPI.Exceptions = Exceptions.data(); EPI.NoexceptExpr = NoexceptExpr; EPI.ExtInfo = Proto->getExtInfo(); const FunctionProtoType *NewProto = New->getType()->getAs<FunctionProtoType>(); assert(NewProto && "Template instantiation without function prototype?"); New->setType(SemaRef.Context.getFunctionType(NewProto->getResultType(), NewProto->arg_type_begin(), NewProto->getNumArgs(), EPI)); } const FunctionDecl* Definition = Tmpl; // Get the definition. Leaves the variable unchanged if undefined. Tmpl->isDefined(Definition); SemaRef.InstantiateAttrs(TemplateArgs, Definition, New); return false; } /// \brief Initializes common fields of an instantiated method /// declaration (New) from the corresponding fields of its template /// (Tmpl). /// /// \returns true if there was an error bool TemplateDeclInstantiator::InitMethodInstantiation(CXXMethodDecl *New, CXXMethodDecl *Tmpl) { if (InitFunctionInstantiation(New, Tmpl)) return true; New->setAccess(Tmpl->getAccess()); if (Tmpl->isVirtualAsWritten()) New->setVirtualAsWritten(true); // FIXME: attributes // FIXME: New needs a pointer to Tmpl return false; } /// \brief Instantiate the definition of the given function from its /// template. /// /// \param PointOfInstantiation the point at which the instantiation was /// required. Note that this is not precisely a "point of instantiation" /// for the function, but it's close. /// /// \param Function the already-instantiated declaration of a /// function template specialization or member function of a class template /// specialization. /// /// \param Recursive if true, recursively instantiates any functions that /// are required by this instantiation. /// /// \param DefinitionRequired if true, then we are performing an explicit /// instantiation where the body of the function is required. Complain if /// there is no such body. void Sema::InstantiateFunctionDefinition(SourceLocation PointOfInstantiation, FunctionDecl *Function, bool Recursive, bool DefinitionRequired) { if (Function->isInvalidDecl() || Function->isDefined()) return; // Never instantiate an explicit specialization. if (Function->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) return; // Find the function body that we'll be substituting. const FunctionDecl *PatternDecl = Function->getTemplateInstantiationPattern(); assert(PatternDecl && "instantiating a non-template"); Stmt *Pattern = PatternDecl->getBody(PatternDecl); assert(PatternDecl && "template definition is not a template"); if (!Pattern) { // Try to find a defaulted definition PatternDecl->isDefined(PatternDecl); } assert(PatternDecl && "template definition is not a template"); // Postpone late parsed template instantiations. if (PatternDecl->isLateTemplateParsed() && !LateTemplateParser) { PendingInstantiations.push_back( std::make_pair(Function, PointOfInstantiation)); return; } // Call the LateTemplateParser callback if there a need to late parse // a templated function definition. if (!Pattern && PatternDecl->isLateTemplateParsed() && LateTemplateParser) { LateTemplateParser(OpaqueParser, PatternDecl); Pattern = PatternDecl->getBody(PatternDecl); } if (!Pattern && !PatternDecl->isDefaulted()) { if (DefinitionRequired) { if (Function->getPrimaryTemplate()) Diag(PointOfInstantiation, diag::err_explicit_instantiation_undefined_func_template) << Function->getPrimaryTemplate(); else Diag(PointOfInstantiation, diag::err_explicit_instantiation_undefined_member) << 1 << Function->getDeclName() << Function->getDeclContext(); if (PatternDecl) Diag(PatternDecl->getLocation(), diag::note_explicit_instantiation_here); Function->setInvalidDecl(); } else if (Function->getTemplateSpecializationKind() == TSK_ExplicitInstantiationDefinition) { PendingInstantiations.push_back( std::make_pair(Function, PointOfInstantiation)); } return; } // C++0x [temp.explicit]p9: // Except for inline functions, other explicit instantiation declarations // have the effect of suppressing the implicit instantiation of the entity // to which they refer. if (Function->getTemplateSpecializationKind() == TSK_ExplicitInstantiationDeclaration && !PatternDecl->isInlined()) return; InstantiatingTemplate Inst(*this, PointOfInstantiation, Function); if (Inst) return; // If we're performing recursive template instantiation, create our own // queue of pending implicit instantiations that we will instantiate later, // while we're still within our own instantiation context. llvm::SmallVector<VTableUse, 16> SavedVTableUses; std::deque<PendingImplicitInstantiation> SavedPendingInstantiations; if (Recursive) { VTableUses.swap(SavedVTableUses); PendingInstantiations.swap(SavedPendingInstantiations); } EnterExpressionEvaluationContext EvalContext(*this, Sema::PotentiallyEvaluated); ActOnStartOfFunctionDef(0, Function); // Introduce a new scope where local variable instantiations will be // recorded, unless we're actually a member function within a local // class, in which case we need to merge our results with the parent // scope (of the enclosing function). bool MergeWithParentScope = false; if (CXXRecordDecl *Rec = dyn_cast<CXXRecordDecl>(Function->getDeclContext())) MergeWithParentScope = Rec->isLocalClass(); LocalInstantiationScope Scope(*this, MergeWithParentScope); // Introduce the instantiated function parameters into the local // instantiation scope, and set the parameter names to those used // in the template. unsigned FParamIdx = 0; for (unsigned I = 0, N = PatternDecl->getNumParams(); I != N; ++I) { const ParmVarDecl *PatternParam = PatternDecl->getParamDecl(I); if (!PatternParam->isParameterPack()) { // Simple case: not a parameter pack. assert(FParamIdx < Function->getNumParams()); ParmVarDecl *FunctionParam = Function->getParamDecl(I); FunctionParam->setDeclName(PatternParam->getDeclName()); Scope.InstantiatedLocal(PatternParam, FunctionParam); ++FParamIdx; continue; } // Expand the parameter pack. Scope.MakeInstantiatedLocalArgPack(PatternParam); for (unsigned NumFParams = Function->getNumParams(); FParamIdx < NumFParams; ++FParamIdx) { ParmVarDecl *FunctionParam = Function->getParamDecl(FParamIdx); FunctionParam->setDeclName(PatternParam->getDeclName()); Scope.InstantiatedLocalPackArg(PatternParam, FunctionParam); } } // Enter the scope of this instantiation. We don't use // PushDeclContext because we don't have a scope. Sema::ContextRAII savedContext(*this, Function); MultiLevelTemplateArgumentList TemplateArgs = getTemplateInstantiationArgs(Function, 0, false, PatternDecl); if (PatternDecl->isDefaulted()) { ActOnFinishFunctionBody(Function, 0, /*IsInstantiation=*/true); SetDeclDefaulted(Function, PatternDecl->getLocation()); } else { // If this is a constructor, instantiate the member initializers. if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(PatternDecl)) { InstantiateMemInitializers(cast<CXXConstructorDecl>(Function), Ctor, TemplateArgs); } // Instantiate the function body. StmtResult Body = SubstStmt(Pattern, TemplateArgs); if (Body.isInvalid()) Function->setInvalidDecl(); ActOnFinishFunctionBody(Function, Body.get(), /*IsInstantiation=*/true); } PerformDependentDiagnostics(PatternDecl, TemplateArgs); savedContext.pop(); DeclGroupRef DG(Function); Consumer.HandleTopLevelDecl(DG); // This class may have local implicit instantiations that need to be // instantiation within this scope. PerformPendingInstantiations(/*LocalOnly=*/true); Scope.Exit(); if (Recursive) { // Define any pending vtables. DefineUsedVTables(); // Instantiate any pending implicit instantiations found during the // instantiation of this template. PerformPendingInstantiations(); // Restore the set of pending vtables. assert(VTableUses.empty() && "VTableUses should be empty before it is discarded."); VTableUses.swap(SavedVTableUses); // Restore the set of pending implicit instantiations. assert(PendingInstantiations.empty() && "PendingInstantiations should be empty before it is discarded."); PendingInstantiations.swap(SavedPendingInstantiations); } } /// \brief Instantiate the definition of the given variable from its /// template. /// /// \param PointOfInstantiation the point at which the instantiation was /// required. Note that this is not precisely a "point of instantiation" /// for the function, but it's close. /// /// \param Var the already-instantiated declaration of a static member /// variable of a class template specialization. /// /// \param Recursive if true, recursively instantiates any functions that /// are required by this instantiation. /// /// \param DefinitionRequired if true, then we are performing an explicit /// instantiation where an out-of-line definition of the member variable /// is required. Complain if there is no such definition. void Sema::InstantiateStaticDataMemberDefinition( SourceLocation PointOfInstantiation, VarDecl *Var, bool Recursive, bool DefinitionRequired) { if (Var->isInvalidDecl()) return; // Find the out-of-line definition of this static data member. VarDecl *Def = Var->getInstantiatedFromStaticDataMember(); assert(Def && "This data member was not instantiated from a template?"); assert(Def->isStaticDataMember() && "Not a static data member?"); Def = Def->getOutOfLineDefinition(); if (!Def) { // We did not find an out-of-line definition of this static data member, // so we won't perform any instantiation. Rather, we rely on the user to // instantiate this definition (or provide a specialization for it) in // another translation unit. if (DefinitionRequired) { Def = Var->getInstantiatedFromStaticDataMember(); Diag(PointOfInstantiation, diag::err_explicit_instantiation_undefined_member) << 2 << Var->getDeclName() << Var->getDeclContext(); Diag(Def->getLocation(), diag::note_explicit_instantiation_here); } else if (Var->getTemplateSpecializationKind() == TSK_ExplicitInstantiationDefinition) { PendingInstantiations.push_back( std::make_pair(Var, PointOfInstantiation)); } return; } // Never instantiate an explicit specialization. if (Var->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) return; // C++0x [temp.explicit]p9: // Except for inline functions, other explicit instantiation declarations // have the effect of suppressing the implicit instantiation of the entity // to which they refer. if (Var->getTemplateSpecializationKind() == TSK_ExplicitInstantiationDeclaration) return; // If we already have a definition, we're done. if (Var->getDefinition()) return; InstantiatingTemplate Inst(*this, PointOfInstantiation, Var); if (Inst) return; // If we're performing recursive template instantiation, create our own // queue of pending implicit instantiations that we will instantiate later, // while we're still within our own instantiation context. llvm::SmallVector<VTableUse, 16> SavedVTableUses; std::deque<PendingImplicitInstantiation> SavedPendingInstantiations; if (Recursive) { VTableUses.swap(SavedVTableUses); PendingInstantiations.swap(SavedPendingInstantiations); } // Enter the scope of this instantiation. We don't use // PushDeclContext because we don't have a scope. ContextRAII previousContext(*this, Var->getDeclContext()); VarDecl *OldVar = Var; Var = cast_or_null<VarDecl>(SubstDecl(Def, Var->getDeclContext(), getTemplateInstantiationArgs(Var))); previousContext.pop(); if (Var) { MemberSpecializationInfo *MSInfo = OldVar->getMemberSpecializationInfo(); assert(MSInfo && "Missing member specialization information?"); Var->setTemplateSpecializationKind(MSInfo->getTemplateSpecializationKind(), MSInfo->getPointOfInstantiation()); DeclGroupRef DG(Var); Consumer.HandleTopLevelDecl(DG); } if (Recursive) { // Define any newly required vtables. DefineUsedVTables(); // Instantiate any pending implicit instantiations found during the // instantiation of this template. PerformPendingInstantiations(); // Restore the set of pending vtables. assert(VTableUses.empty() && "VTableUses should be empty before it is discarded, " "while instantiating static data member."); VTableUses.swap(SavedVTableUses); // Restore the set of pending implicit instantiations. assert(PendingInstantiations.empty() && "PendingInstantiations should be empty before it is discarded, " "while instantiating static data member."); PendingInstantiations.swap(SavedPendingInstantiations); } } void Sema::InstantiateMemInitializers(CXXConstructorDecl *New, const CXXConstructorDecl *Tmpl, const MultiLevelTemplateArgumentList &TemplateArgs) { llvm::SmallVector<MemInitTy*, 4> NewInits; bool AnyErrors = false; // Instantiate all the initializers. for (CXXConstructorDecl::init_const_iterator Inits = Tmpl->init_begin(), InitsEnd = Tmpl->init_end(); Inits != InitsEnd; ++Inits) { CXXCtorInitializer *Init = *Inits; // Only instantiate written initializers, let Sema re-construct implicit // ones. if (!Init->isWritten()) continue; SourceLocation LParenLoc, RParenLoc; ASTOwningVector<Expr*> NewArgs(*this); SourceLocation EllipsisLoc; if (Init->isPackExpansion()) { // This is a pack expansion. We should expand it now. TypeLoc BaseTL = Init->getBaseClassInfo()->getTypeLoc(); llvm::SmallVector<UnexpandedParameterPack, 2> Unexpanded; collectUnexpandedParameterPacks(BaseTL, Unexpanded); bool ShouldExpand = false; bool RetainExpansion = false; llvm::Optional<unsigned> NumExpansions; if (CheckParameterPacksForExpansion(Init->getEllipsisLoc(), BaseTL.getSourceRange(), Unexpanded.data(), Unexpanded.size(), TemplateArgs, ShouldExpand, RetainExpansion, NumExpansions)) { AnyErrors = true; New->setInvalidDecl(); continue; } assert(ShouldExpand && "Partial instantiation of base initializer?"); // Loop over all of the arguments in the argument pack(s), for (unsigned I = 0; I != *NumExpansions; ++I) { Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, I); // Instantiate the initializer. if (InstantiateInitializer(Init->getInit(), TemplateArgs, LParenLoc, NewArgs, RParenLoc)) { AnyErrors = true; break; } // Instantiate the base type. TypeSourceInfo *BaseTInfo = SubstType(Init->getBaseClassInfo(), TemplateArgs, Init->getSourceLocation(), New->getDeclName()); if (!BaseTInfo) { AnyErrors = true; break; } // Build the initializer. MemInitResult NewInit = BuildBaseInitializer(BaseTInfo->getType(), BaseTInfo, (Expr **)NewArgs.data(), NewArgs.size(), Init->getLParenLoc(), Init->getRParenLoc(), New->getParent(), SourceLocation()); if (NewInit.isInvalid()) { AnyErrors = true; break; } NewInits.push_back(NewInit.get()); NewArgs.clear(); } continue; } // Instantiate the initializer. if (InstantiateInitializer(Init->getInit(), TemplateArgs, LParenLoc, NewArgs, RParenLoc)) { AnyErrors = true; continue; } MemInitResult NewInit; if (Init->isBaseInitializer()) { TypeSourceInfo *BaseTInfo = SubstType(Init->getBaseClassInfo(), TemplateArgs, Init->getSourceLocation(), New->getDeclName()); if (!BaseTInfo) { AnyErrors = true; New->setInvalidDecl(); continue; } NewInit = BuildBaseInitializer(BaseTInfo->getType(), BaseTInfo, (Expr **)NewArgs.data(), NewArgs.size(), Init->getLParenLoc(), Init->getRParenLoc(), New->getParent(), EllipsisLoc); } else if (Init->isMemberInitializer()) { FieldDecl *Member = cast_or_null<FieldDecl>(FindInstantiatedDecl( Init->getMemberLocation(), Init->getMember(), TemplateArgs)); if (!Member) { AnyErrors = true; New->setInvalidDecl(); continue; } NewInit = BuildMemberInitializer(Member, (Expr **)NewArgs.data(), NewArgs.size(), Init->getSourceLocation(), Init->getLParenLoc(), Init->getRParenLoc()); } else if (Init->isIndirectMemberInitializer()) { IndirectFieldDecl *IndirectMember = cast_or_null<IndirectFieldDecl>(FindInstantiatedDecl( Init->getMemberLocation(), Init->getIndirectMember(), TemplateArgs)); if (!IndirectMember) { AnyErrors = true; New->setInvalidDecl(); continue; } NewInit = BuildMemberInitializer(IndirectMember, (Expr **)NewArgs.data(), NewArgs.size(), Init->getSourceLocation(), Init->getLParenLoc(), Init->getRParenLoc()); } if (NewInit.isInvalid()) { AnyErrors = true; New->setInvalidDecl(); } else { // FIXME: It would be nice if ASTOwningVector had a release function. NewArgs.take(); NewInits.push_back((MemInitTy *)NewInit.get()); } } // Assign all the initializers to the new constructor. ActOnMemInitializers(New, /*FIXME: ColonLoc */ SourceLocation(), NewInits.data(), NewInits.size(), AnyErrors); } // TODO: this could be templated if the various decl types used the // same method name. static bool isInstantiationOf(ClassTemplateDecl *Pattern, ClassTemplateDecl *Instance) { Pattern = Pattern->getCanonicalDecl(); do { Instance = Instance->getCanonicalDecl(); if (Pattern == Instance) return true; Instance = Instance->getInstantiatedFromMemberTemplate(); } while (Instance); return false; } static bool isInstantiationOf(FunctionTemplateDecl *Pattern, FunctionTemplateDecl *Instance) { Pattern = Pattern->getCanonicalDecl(); do { Instance = Instance->getCanonicalDecl(); if (Pattern == Instance) return true; Instance = Instance->getInstantiatedFromMemberTemplate(); } while (Instance); return false; } static bool isInstantiationOf(ClassTemplatePartialSpecializationDecl *Pattern, ClassTemplatePartialSpecializationDecl *Instance) { Pattern = cast<ClassTemplatePartialSpecializationDecl>(Pattern->getCanonicalDecl()); do { Instance = cast<ClassTemplatePartialSpecializationDecl>( Instance->getCanonicalDecl()); if (Pattern == Instance) return true; Instance = Instance->getInstantiatedFromMember(); } while (Instance); return false; } static bool isInstantiationOf(CXXRecordDecl *Pattern, CXXRecordDecl *Instance) { Pattern = Pattern->getCanonicalDecl(); do { Instance = Instance->getCanonicalDecl(); if (Pattern == Instance) return true; Instance = Instance->getInstantiatedFromMemberClass(); } while (Instance); return false; } static bool isInstantiationOf(FunctionDecl *Pattern, FunctionDecl *Instance) { Pattern = Pattern->getCanonicalDecl(); do { Instance = Instance->getCanonicalDecl(); if (Pattern == Instance) return true; Instance = Instance->getInstantiatedFromMemberFunction(); } while (Instance); return false; } static bool isInstantiationOf(EnumDecl *Pattern, EnumDecl *Instance) { Pattern = Pattern->getCanonicalDecl(); do { Instance = Instance->getCanonicalDecl(); if (Pattern == Instance) return true; Instance = Instance->getInstantiatedFromMemberEnum(); } while (Instance); return false; } static bool isInstantiationOf(UsingShadowDecl *Pattern, UsingShadowDecl *Instance, ASTContext &C) { return C.getInstantiatedFromUsingShadowDecl(Instance) == Pattern; } static bool isInstantiationOf(UsingDecl *Pattern, UsingDecl *Instance, ASTContext &C) { return C.getInstantiatedFromUsingDecl(Instance) == Pattern; } static bool isInstantiationOf(UnresolvedUsingValueDecl *Pattern, UsingDecl *Instance, ASTContext &C) { return C.getInstantiatedFromUsingDecl(Instance) == Pattern; } static bool isInstantiationOf(UnresolvedUsingTypenameDecl *Pattern, UsingDecl *Instance, ASTContext &C) { return C.getInstantiatedFromUsingDecl(Instance) == Pattern; } static bool isInstantiationOfStaticDataMember(VarDecl *Pattern, VarDecl *Instance) { assert(Instance->isStaticDataMember()); Pattern = Pattern->getCanonicalDecl(); do { Instance = Instance->getCanonicalDecl(); if (Pattern == Instance) return true; Instance = Instance->getInstantiatedFromStaticDataMember(); } while (Instance); return false; } // Other is the prospective instantiation // D is the prospective pattern static bool isInstantiationOf(ASTContext &Ctx, NamedDecl *D, Decl *Other) { if (D->getKind() != Other->getKind()) { if (UnresolvedUsingTypenameDecl *UUD = dyn_cast<UnresolvedUsingTypenameDecl>(D)) { if (UsingDecl *UD = dyn_cast<UsingDecl>(Other)) { return isInstantiationOf(UUD, UD, Ctx); } } if (UnresolvedUsingValueDecl *UUD = dyn_cast<UnresolvedUsingValueDecl>(D)) { if (UsingDecl *UD = dyn_cast<UsingDecl>(Other)) { return isInstantiationOf(UUD, UD, Ctx); } } return false; } if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Other)) return isInstantiationOf(cast<CXXRecordDecl>(D), Record); if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Other)) return isInstantiationOf(cast<FunctionDecl>(D), Function); if (EnumDecl *Enum = dyn_cast<EnumDecl>(Other)) return isInstantiationOf(cast<EnumDecl>(D), Enum); if (VarDecl *Var = dyn_cast<VarDecl>(Other)) if (Var->isStaticDataMember()) return isInstantiationOfStaticDataMember(cast<VarDecl>(D), Var); if (ClassTemplateDecl *Temp = dyn_cast<ClassTemplateDecl>(Other)) return isInstantiationOf(cast<ClassTemplateDecl>(D), Temp); if (FunctionTemplateDecl *Temp = dyn_cast<FunctionTemplateDecl>(Other)) return isInstantiationOf(cast<FunctionTemplateDecl>(D), Temp); if (ClassTemplatePartialSpecializationDecl *PartialSpec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Other)) return isInstantiationOf(cast<ClassTemplatePartialSpecializationDecl>(D), PartialSpec); if (FieldDecl *Field = dyn_cast<FieldDecl>(Other)) { if (!Field->getDeclName()) { // This is an unnamed field. return Ctx.getInstantiatedFromUnnamedFieldDecl(Field) == cast<FieldDecl>(D); } } if (UsingDecl *Using = dyn_cast<UsingDecl>(Other)) return isInstantiationOf(cast<UsingDecl>(D), Using, Ctx); if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(Other)) return isInstantiationOf(cast<UsingShadowDecl>(D), Shadow, Ctx); return D->getDeclName() && isa<NamedDecl>(Other) && D->getDeclName() == cast<NamedDecl>(Other)->getDeclName(); } template<typename ForwardIterator> static NamedDecl *findInstantiationOf(ASTContext &Ctx, NamedDecl *D, ForwardIterator first, ForwardIterator last) { for (; first != last; ++first) if (isInstantiationOf(Ctx, D, *first)) return cast<NamedDecl>(*first); return 0; } /// \brief Finds the instantiation of the given declaration context /// within the current instantiation. /// /// \returns NULL if there was an error DeclContext *Sema::FindInstantiatedContext(SourceLocation Loc, DeclContext* DC, const MultiLevelTemplateArgumentList &TemplateArgs) { if (NamedDecl *D = dyn_cast<NamedDecl>(DC)) { Decl* ID = FindInstantiatedDecl(Loc, D, TemplateArgs); return cast_or_null<DeclContext>(ID); } else return DC; } /// \brief Find the instantiation of the given declaration within the /// current instantiation. /// /// This routine is intended to be used when \p D is a declaration /// referenced from within a template, that needs to mapped into the /// corresponding declaration within an instantiation. For example, /// given: /// /// \code /// template<typename T> /// struct X { /// enum Kind { /// KnownValue = sizeof(T) /// }; /// /// bool getKind() const { return KnownValue; } /// }; /// /// template struct X<int>; /// \endcode /// /// In the instantiation of X<int>::getKind(), we need to map the /// EnumConstantDecl for KnownValue (which refers to /// X<T>::<Kind>::KnownValue) to its instantiation /// (X<int>::<Kind>::KnownValue). InstantiateCurrentDeclRef() performs /// this mapping from within the instantiation of X<int>. NamedDecl *Sema::FindInstantiatedDecl(SourceLocation Loc, NamedDecl *D, const MultiLevelTemplateArgumentList &TemplateArgs) { DeclContext *ParentDC = D->getDeclContext(); if (isa<ParmVarDecl>(D) || isa<NonTypeTemplateParmDecl>(D) || isa<TemplateTypeParmDecl>(D) || isa<TemplateTemplateParmDecl>(D) || (ParentDC->isFunctionOrMethod() && ParentDC->isDependentContext())) { // D is a local of some kind. Look into the map of local // declarations to their instantiations. typedef LocalInstantiationScope::DeclArgumentPack DeclArgumentPack; llvm::PointerUnion<Decl *, DeclArgumentPack *> *Found = CurrentInstantiationScope->findInstantiationOf(D); if (Found) { if (Decl *FD = Found->dyn_cast<Decl *>()) return cast<NamedDecl>(FD); unsigned PackIdx = ArgumentPackSubstitutionIndex; return cast<NamedDecl>((*Found->get<DeclArgumentPack *>())[PackIdx]); } // If we didn't find the decl, then we must have a label decl that hasn't // been found yet. Lazily instantiate it and return it now. assert(isa<LabelDecl>(D)); Decl *Inst = SubstDecl(D, CurContext, TemplateArgs); assert(Inst && "Failed to instantiate label??"); CurrentInstantiationScope->InstantiatedLocal(D, Inst); return cast<LabelDecl>(Inst); } if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { if (!Record->isDependentContext()) return D; // If the RecordDecl is actually the injected-class-name or a // "templated" declaration for a class template, class template // partial specialization, or a member class of a class template, // substitute into the injected-class-name of the class template // or partial specialization to find the new DeclContext. QualType T; ClassTemplateDecl *ClassTemplate = Record->getDescribedClassTemplate(); if (ClassTemplate) { T = ClassTemplate->getInjectedClassNameSpecialization(); } else if (ClassTemplatePartialSpecializationDecl *PartialSpec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) { ClassTemplate = PartialSpec->getSpecializedTemplate(); // If we call SubstType with an InjectedClassNameType here we // can end up in an infinite loop. T = Context.getTypeDeclType(Record); assert(isa<InjectedClassNameType>(T) && "type of partial specialization is not an InjectedClassNameType"); T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType(); } if (!T.isNull()) { // Substitute into the injected-class-name to get the type // corresponding to the instantiation we want, which may also be // the current instantiation (if we're in a template // definition). This substitution should never fail, since we // know we can instantiate the injected-class-name or we // wouldn't have gotten to the injected-class-name! // FIXME: Can we use the CurrentInstantiationScope to avoid this // extra instantiation in the common case? T = SubstType(T, TemplateArgs, Loc, DeclarationName()); assert(!T.isNull() && "Instantiation of injected-class-name cannot fail."); if (!T->isDependentType()) { assert(T->isRecordType() && "Instantiation must produce a record type"); return T->getAs<RecordType>()->getDecl(); } // We are performing "partial" template instantiation to create // the member declarations for the members of a class template // specialization. Therefore, D is actually referring to something // in the current instantiation. Look through the current // context, which contains actual instantiations, to find the // instantiation of the "current instantiation" that D refers // to. bool SawNonDependentContext = false; for (DeclContext *DC = CurContext; !DC->isFileContext(); DC = DC->getParent()) { if (ClassTemplateSpecializationDecl *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) if (isInstantiationOf(ClassTemplate, Spec->getSpecializedTemplate())) return Spec; if (!DC->isDependentContext()) SawNonDependentContext = true; } // We're performing "instantiation" of a member of the current // instantiation while we are type-checking the // definition. Compute the declaration context and return that. assert(!SawNonDependentContext && "No dependent context while instantiating record"); DeclContext *DC = computeDeclContext(T); assert(DC && "Unable to find declaration for the current instantiation"); return cast<CXXRecordDecl>(DC); } // Fall through to deal with other dependent record types (e.g., // anonymous unions in class templates). } if (!ParentDC->isDependentContext()) return D; ParentDC = FindInstantiatedContext(Loc, ParentDC, TemplateArgs); if (!ParentDC) return 0; if (ParentDC != D->getDeclContext()) { // We performed some kind of instantiation in the parent context, // so now we need to look into the instantiated parent context to // find the instantiation of the declaration D. // If our context used to be dependent, we may need to instantiate // it before performing lookup into that context. bool IsBeingInstantiated = false; if (CXXRecordDecl *Spec = dyn_cast<CXXRecordDecl>(ParentDC)) { if (!Spec->isDependentContext()) { QualType T = Context.getTypeDeclType(Spec); const RecordType *Tag = T->getAs<RecordType>(); assert(Tag && "type of non-dependent record is not a RecordType"); if (Tag->isBeingDefined()) IsBeingInstantiated = true; if (!Tag->isBeingDefined() && RequireCompleteType(Loc, T, diag::err_incomplete_type)) return 0; ParentDC = Tag->getDecl(); } } NamedDecl *Result = 0; if (D->getDeclName()) { DeclContext::lookup_result Found = ParentDC->lookup(D->getDeclName()); Result = findInstantiationOf(Context, D, Found.first, Found.second); } else { // Since we don't have a name for the entity we're looking for, // our only option is to walk through all of the declarations to // find that name. This will occur in a few cases: // // - anonymous struct/union within a template // - unnamed class/struct/union/enum within a template // // FIXME: Find a better way to find these instantiations! Result = findInstantiationOf(Context, D, ParentDC->decls_begin(), ParentDC->decls_end()); } if (!Result) { if (isa<UsingShadowDecl>(D)) { // UsingShadowDecls can instantiate to nothing because of using hiding. } else if (Diags.hasErrorOccurred()) { // We've already complained about something, so most likely this // declaration failed to instantiate. There's no point in complaining // further, since this is normal in invalid code. } else if (IsBeingInstantiated) { // The class in which this member exists is currently being // instantiated, and we haven't gotten around to instantiating this // member yet. This can happen when the code uses forward declarations // of member classes, and introduces ordering dependencies via // template instantiation. Diag(Loc, diag::err_member_not_yet_instantiated) << D->getDeclName() << Context.getTypeDeclType(cast<CXXRecordDecl>(ParentDC)); Diag(D->getLocation(), diag::note_non_instantiated_member_here); } else { // We should have found something, but didn't. llvm_unreachable("Unable to find instantiation of declaration!"); } } D = Result; } return D; } /// \brief Performs template instantiation for all implicit template /// instantiations we have seen until this point. void Sema::PerformPendingInstantiations(bool LocalOnly) { while (!PendingLocalImplicitInstantiations.empty() || (!LocalOnly && !PendingInstantiations.empty())) { PendingImplicitInstantiation Inst; if (PendingLocalImplicitInstantiations.empty()) { Inst = PendingInstantiations.front(); PendingInstantiations.pop_front(); } else { Inst = PendingLocalImplicitInstantiations.front(); PendingLocalImplicitInstantiations.pop_front(); } // Instantiate function definitions if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Inst.first)) { PrettyDeclStackTraceEntry CrashInfo(*this, Function, SourceLocation(), "instantiating function definition"); bool DefinitionRequired = Function->getTemplateSpecializationKind() == TSK_ExplicitInstantiationDefinition; InstantiateFunctionDefinition(/*FIXME:*/Inst.second, Function, true, DefinitionRequired); continue; } // Instantiate static data member definitions. VarDecl *Var = cast<VarDecl>(Inst.first); assert(Var->isStaticDataMember() && "Not a static data member?"); // Don't try to instantiate declarations if the most recent redeclaration // is invalid. if (Var->getMostRecentDeclaration()->isInvalidDecl()) continue; // Check if the most recent declaration has changed the specialization kind // and removed the need for implicit instantiation. switch (Var->getMostRecentDeclaration()->getTemplateSpecializationKind()) { case TSK_Undeclared: assert(false && "Cannot instantitiate an undeclared specialization."); case TSK_ExplicitInstantiationDeclaration: case TSK_ExplicitSpecialization: continue; // No longer need to instantiate this type. case TSK_ExplicitInstantiationDefinition: // We only need an instantiation if the pending instantiation *is* the // explicit instantiation. if (Var != Var->getMostRecentDeclaration()) continue; case TSK_ImplicitInstantiation: break; } PrettyDeclStackTraceEntry CrashInfo(*this, Var, Var->getLocation(), "instantiating static data member " "definition"); bool DefinitionRequired = Var->getTemplateSpecializationKind() == TSK_ExplicitInstantiationDefinition; InstantiateStaticDataMemberDefinition(/*FIXME:*/Inst.second, Var, true, DefinitionRequired); } } void Sema::PerformDependentDiagnostics(const DeclContext *Pattern, const MultiLevelTemplateArgumentList &TemplateArgs) { for (DeclContext::ddiag_iterator I = Pattern->ddiag_begin(), E = Pattern->ddiag_end(); I != E; ++I) { DependentDiagnostic *DD = *I; switch (DD->getKind()) { case DependentDiagnostic::Access: HandleDependentAccessCheck(*DD, TemplateArgs); break; } } }