//===--- SemaExprObjC.cpp - Semantic Analysis for ObjC Expressions --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements semantic analysis for Objective-C expressions. // //===----------------------------------------------------------------------===// #include "clang/Sema/SemaInternal.h" #include "clang/Sema/Lookup.h" #include "clang/Sema/Scope.h" #include "clang/Sema/ScopeInfo.h" #include "clang/Sema/Initialization.h" #include "clang/AST/ASTContext.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/StmtVisitor.h" #include "clang/AST/TypeLoc.h" #include "llvm/ADT/SmallString.h" #include "clang/Lex/Preprocessor.h" using namespace clang; using namespace sema; ExprResult Sema::ParseObjCStringLiteral(SourceLocation *AtLocs, Expr **strings, unsigned NumStrings) { StringLiteral **Strings = reinterpret_cast<StringLiteral**>(strings); // Most ObjC strings are formed out of a single piece. However, we *can* // have strings formed out of multiple @ strings with multiple pptokens in // each one, e.g. @"foo" "bar" @"baz" "qux" which need to be turned into one // StringLiteral for ObjCStringLiteral to hold onto. StringLiteral *S = Strings[0]; // If we have a multi-part string, merge it all together. if (NumStrings != 1) { // Concatenate objc strings. llvm::SmallString<128> StrBuf; llvm::SmallVector<SourceLocation, 8> StrLocs; for (unsigned i = 0; i != NumStrings; ++i) { S = Strings[i]; // ObjC strings can't be wide. if (S->isWide()) { Diag(S->getLocStart(), diag::err_cfstring_literal_not_string_constant) << S->getSourceRange(); return true; } // Append the string. StrBuf += S->getString(); // Get the locations of the string tokens. StrLocs.append(S->tokloc_begin(), S->tokloc_end()); } // Create the aggregate string with the appropriate content and location // information. S = StringLiteral::Create(Context, StrBuf, /*Wide=*/false, /*Pascal=*/false, Context.getPointerType(Context.CharTy), &StrLocs[0], StrLocs.size()); } // Verify that this composite string is acceptable for ObjC strings. if (CheckObjCString(S)) return true; // Initialize the constant string interface lazily. This assumes // the NSString interface is seen in this translation unit. Note: We // don't use NSConstantString, since the runtime team considers this // interface private (even though it appears in the header files). QualType Ty = Context.getObjCConstantStringInterface(); if (!Ty.isNull()) { Ty = Context.getObjCObjectPointerType(Ty); } else if (getLangOptions().NoConstantCFStrings) { IdentifierInfo *NSIdent=0; std::string StringClass(getLangOptions().ObjCConstantStringClass); if (StringClass.empty()) NSIdent = &Context.Idents.get("NSConstantString"); else NSIdent = &Context.Idents.get(StringClass); NamedDecl *IF = LookupSingleName(TUScope, NSIdent, AtLocs[0], LookupOrdinaryName); if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null<ObjCInterfaceDecl>(IF)) { Context.setObjCConstantStringInterface(StrIF); Ty = Context.getObjCConstantStringInterface(); Ty = Context.getObjCObjectPointerType(Ty); } else { // If there is no NSConstantString interface defined then treat this // as error and recover from it. Diag(S->getLocStart(), diag::err_no_nsconstant_string_class) << NSIdent << S->getSourceRange(); Ty = Context.getObjCIdType(); } } else { IdentifierInfo *NSIdent = &Context.Idents.get("NSString"); NamedDecl *IF = LookupSingleName(TUScope, NSIdent, AtLocs[0], LookupOrdinaryName); if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null<ObjCInterfaceDecl>(IF)) { Context.setObjCConstantStringInterface(StrIF); Ty = Context.getObjCConstantStringInterface(); Ty = Context.getObjCObjectPointerType(Ty); } else { // If there is no NSString interface defined then treat constant // strings as untyped objects and let the runtime figure it out later. Ty = Context.getObjCIdType(); } } return new (Context) ObjCStringLiteral(S, Ty, AtLocs[0]); } ExprResult Sema::BuildObjCEncodeExpression(SourceLocation AtLoc, TypeSourceInfo *EncodedTypeInfo, SourceLocation RParenLoc) { QualType EncodedType = EncodedTypeInfo->getType(); QualType StrTy; if (EncodedType->isDependentType()) StrTy = Context.DependentTy; else { if (!EncodedType->getAsArrayTypeUnsafe() && //// Incomplete array is handled. !EncodedType->isVoidType()) // void is handled too. if (RequireCompleteType(AtLoc, EncodedType, PDiag(diag::err_incomplete_type_objc_at_encode) << EncodedTypeInfo->getTypeLoc().getSourceRange())) return ExprError(); std::string Str; Context.getObjCEncodingForType(EncodedType, Str); // The type of @encode is the same as the type of the corresponding string, // which is an array type. StrTy = Context.CharTy; // A C++ string literal has a const-qualified element type (C++ 2.13.4p1). if (getLangOptions().CPlusPlus || getLangOptions().ConstStrings) StrTy.addConst(); StrTy = Context.getConstantArrayType(StrTy, llvm::APInt(32, Str.size()+1), ArrayType::Normal, 0); } return new (Context) ObjCEncodeExpr(StrTy, EncodedTypeInfo, AtLoc, RParenLoc); } ExprResult Sema::ParseObjCEncodeExpression(SourceLocation AtLoc, SourceLocation EncodeLoc, SourceLocation LParenLoc, ParsedType ty, SourceLocation RParenLoc) { // FIXME: Preserve type source info ? TypeSourceInfo *TInfo; QualType EncodedType = GetTypeFromParser(ty, &TInfo); if (!TInfo) TInfo = Context.getTrivialTypeSourceInfo(EncodedType, PP.getLocForEndOfToken(LParenLoc)); return BuildObjCEncodeExpression(AtLoc, TInfo, RParenLoc); } ExprResult Sema::ParseObjCSelectorExpression(Selector Sel, SourceLocation AtLoc, SourceLocation SelLoc, SourceLocation LParenLoc, SourceLocation RParenLoc) { ObjCMethodDecl *Method = LookupInstanceMethodInGlobalPool(Sel, SourceRange(LParenLoc, RParenLoc), false, false); if (!Method) Method = LookupFactoryMethodInGlobalPool(Sel, SourceRange(LParenLoc, RParenLoc)); if (!Method) Diag(SelLoc, diag::warn_undeclared_selector) << Sel; if (!Method || Method->getImplementationControl() != ObjCMethodDecl::Optional) { llvm::DenseMap<Selector, SourceLocation>::iterator Pos = ReferencedSelectors.find(Sel); if (Pos == ReferencedSelectors.end()) ReferencedSelectors.insert(std::make_pair(Sel, SelLoc)); } // In ARC, forbid the user from using @selector for // retain/release/autorelease/dealloc/retainCount. if (getLangOptions().ObjCAutoRefCount) { switch (Sel.getMethodFamily()) { case OMF_retain: case OMF_release: case OMF_autorelease: case OMF_retainCount: case OMF_dealloc: Diag(AtLoc, diag::err_arc_illegal_selector) << Sel << SourceRange(LParenLoc, RParenLoc); break; case OMF_None: case OMF_alloc: case OMF_copy: case OMF_init: case OMF_mutableCopy: case OMF_new: case OMF_self: case OMF_performSelector: break; } } QualType Ty = Context.getObjCSelType(); return new (Context) ObjCSelectorExpr(Ty, Sel, AtLoc, RParenLoc); } ExprResult Sema::ParseObjCProtocolExpression(IdentifierInfo *ProtocolId, SourceLocation AtLoc, SourceLocation ProtoLoc, SourceLocation LParenLoc, SourceLocation RParenLoc) { ObjCProtocolDecl* PDecl = LookupProtocol(ProtocolId, ProtoLoc); if (!PDecl) { Diag(ProtoLoc, diag::err_undeclared_protocol) << ProtocolId; return true; } QualType Ty = Context.getObjCProtoType(); if (Ty.isNull()) return true; Ty = Context.getObjCObjectPointerType(Ty); return new (Context) ObjCProtocolExpr(Ty, PDecl, AtLoc, RParenLoc); } /// Try to capture an implicit reference to 'self'. ObjCMethodDecl *Sema::tryCaptureObjCSelf() { // Ignore block scopes: we can capture through them. DeclContext *DC = CurContext; while (true) { if (isa<BlockDecl>(DC)) DC = cast<BlockDecl>(DC)->getDeclContext(); else if (isa<EnumDecl>(DC)) DC = cast<EnumDecl>(DC)->getDeclContext(); else break; } // If we're not in an ObjC method, error out. Note that, unlike the // C++ case, we don't require an instance method --- class methods // still have a 'self', and we really do still need to capture it! ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(DC); if (!method) return 0; ImplicitParamDecl *self = method->getSelfDecl(); assert(self && "capturing 'self' in non-definition?"); // Mark that we're closing on 'this' in all the block scopes, if applicable. for (unsigned idx = FunctionScopes.size() - 1; isa<BlockScopeInfo>(FunctionScopes[idx]); --idx) { BlockScopeInfo *blockScope = cast<BlockScopeInfo>(FunctionScopes[idx]); unsigned &captureIndex = blockScope->CaptureMap[self]; if (captureIndex) break; bool nested = isa<BlockScopeInfo>(FunctionScopes[idx-1]); blockScope->Captures.push_back( BlockDecl::Capture(self, /*byref*/ false, nested, /*copy*/ 0)); captureIndex = blockScope->Captures.size(); // +1 } return method; } QualType Sema::getMessageSendResultType(QualType ReceiverType, ObjCMethodDecl *Method, bool isClassMessage, bool isSuperMessage) { assert(Method && "Must have a method"); if (!Method->hasRelatedResultType()) return Method->getSendResultType(); // If a method has a related return type: // - if the method found is an instance method, but the message send // was a class message send, T is the declared return type of the method // found if (Method->isInstanceMethod() && isClassMessage) return Method->getSendResultType(); // - if the receiver is super, T is a pointer to the class of the // enclosing method definition if (isSuperMessage) { if (ObjCMethodDecl *CurMethod = getCurMethodDecl()) if (ObjCInterfaceDecl *Class = CurMethod->getClassInterface()) return Context.getObjCObjectPointerType( Context.getObjCInterfaceType(Class)); } // - if the receiver is the name of a class U, T is a pointer to U if (ReceiverType->getAs<ObjCInterfaceType>() || ReceiverType->isObjCQualifiedInterfaceType()) return Context.getObjCObjectPointerType(ReceiverType); // - if the receiver is of type Class or qualified Class type, // T is the declared return type of the method. if (ReceiverType->isObjCClassType() || ReceiverType->isObjCQualifiedClassType()) return Method->getSendResultType(); // - if the receiver is id, qualified id, Class, or qualified Class, T // is the receiver type, otherwise // - T is the type of the receiver expression. return ReceiverType; } void Sema::EmitRelatedResultTypeNote(const Expr *E) { E = E->IgnoreParenImpCasts(); const ObjCMessageExpr *MsgSend = dyn_cast<ObjCMessageExpr>(E); if (!MsgSend) return; const ObjCMethodDecl *Method = MsgSend->getMethodDecl(); if (!Method) return; if (!Method->hasRelatedResultType()) return; if (Context.hasSameUnqualifiedType(Method->getResultType() .getNonReferenceType(), MsgSend->getType())) return; Diag(Method->getLocation(), diag::note_related_result_type_inferred) << Method->isInstanceMethod() << Method->getSelector() << MsgSend->getType(); } bool Sema::CheckMessageArgumentTypes(QualType ReceiverType, Expr **Args, unsigned NumArgs, Selector Sel, ObjCMethodDecl *Method, bool isClassMessage, bool isSuperMessage, SourceLocation lbrac, SourceLocation rbrac, QualType &ReturnType, ExprValueKind &VK) { if (!Method) { // Apply default argument promotion as for (C99 6.5.2.2p6). for (unsigned i = 0; i != NumArgs; i++) { if (Args[i]->isTypeDependent()) continue; ExprResult Result = DefaultArgumentPromotion(Args[i]); if (Result.isInvalid()) return true; Args[i] = Result.take(); } unsigned DiagID; if (getLangOptions().ObjCAutoRefCount) DiagID = diag::err_arc_method_not_found; else DiagID = isClassMessage ? diag::warn_class_method_not_found : diag::warn_inst_method_not_found; Diag(lbrac, DiagID) << Sel << isClassMessage << SourceRange(lbrac, rbrac); // In debuggers, we want to use __unknown_anytype for these // results so that clients can cast them. if (getLangOptions().DebuggerSupport) { ReturnType = Context.UnknownAnyTy; } else { ReturnType = Context.getObjCIdType(); } VK = VK_RValue; return false; } ReturnType = getMessageSendResultType(ReceiverType, Method, isClassMessage, isSuperMessage); VK = Expr::getValueKindForType(Method->getResultType()); unsigned NumNamedArgs = Sel.getNumArgs(); // Method might have more arguments than selector indicates. This is due // to addition of c-style arguments in method. if (Method->param_size() > Sel.getNumArgs()) NumNamedArgs = Method->param_size(); // FIXME. This need be cleaned up. if (NumArgs < NumNamedArgs) { Diag(lbrac, diag::err_typecheck_call_too_few_args) << 2 << NumNamedArgs << NumArgs; return false; } bool IsError = false; for (unsigned i = 0; i < NumNamedArgs; i++) { // We can't do any type-checking on a type-dependent argument. if (Args[i]->isTypeDependent()) continue; Expr *argExpr = Args[i]; ParmVarDecl *Param = Method->param_begin()[i]; assert(argExpr && "CheckMessageArgumentTypes(): missing expression"); if (RequireCompleteType(argExpr->getSourceRange().getBegin(), Param->getType(), PDiag(diag::err_call_incomplete_argument) << argExpr->getSourceRange())) return true; InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, Param); ExprResult ArgE = PerformCopyInitialization(Entity, lbrac, Owned(argExpr)); if (ArgE.isInvalid()) IsError = true; else Args[i] = ArgE.takeAs<Expr>(); } // Promote additional arguments to variadic methods. if (Method->isVariadic()) { for (unsigned i = NumNamedArgs; i < NumArgs; ++i) { if (Args[i]->isTypeDependent()) continue; ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 0); IsError |= Arg.isInvalid(); Args[i] = Arg.take(); } } else { // Check for extra arguments to non-variadic methods. if (NumArgs != NumNamedArgs) { Diag(Args[NumNamedArgs]->getLocStart(), diag::err_typecheck_call_too_many_args) << 2 /*method*/ << NumNamedArgs << NumArgs << Method->getSourceRange() << SourceRange(Args[NumNamedArgs]->getLocStart(), Args[NumArgs-1]->getLocEnd()); } } // diagnose nonnull arguments. for (specific_attr_iterator<NonNullAttr> i = Method->specific_attr_begin<NonNullAttr>(), e = Method->specific_attr_end<NonNullAttr>(); i != e; ++i) { CheckNonNullArguments(*i, Args, lbrac); } DiagnoseSentinelCalls(Method, lbrac, Args, NumArgs); return IsError; } bool Sema::isSelfExpr(Expr *receiver) { // 'self' is objc 'self' in an objc method only. DeclContext *DC = CurContext; while (isa<BlockDecl>(DC)) DC = DC->getParent(); if (DC && !isa<ObjCMethodDecl>(DC)) return false; receiver = receiver->IgnoreParenLValueCasts(); if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(receiver)) if (DRE->getDecl()->getIdentifier() == &Context.Idents.get("self")) return true; return false; } // Helper method for ActOnClassMethod/ActOnInstanceMethod. // Will search "local" class/category implementations for a method decl. // If failed, then we search in class's root for an instance method. // Returns 0 if no method is found. ObjCMethodDecl *Sema::LookupPrivateClassMethod(Selector Sel, ObjCInterfaceDecl *ClassDecl) { ObjCMethodDecl *Method = 0; // lookup in class and all superclasses while (ClassDecl && !Method) { if (ObjCImplementationDecl *ImpDecl = ClassDecl->getImplementation()) Method = ImpDecl->getClassMethod(Sel); // Look through local category implementations associated with the class. if (!Method) Method = ClassDecl->getCategoryClassMethod(Sel); // Before we give up, check if the selector is an instance method. // But only in the root. This matches gcc's behaviour and what the // runtime expects. if (!Method && !ClassDecl->getSuperClass()) { Method = ClassDecl->lookupInstanceMethod(Sel); // Look through local category implementations associated // with the root class. if (!Method) Method = LookupPrivateInstanceMethod(Sel, ClassDecl); } ClassDecl = ClassDecl->getSuperClass(); } return Method; } ObjCMethodDecl *Sema::LookupPrivateInstanceMethod(Selector Sel, ObjCInterfaceDecl *ClassDecl) { ObjCMethodDecl *Method = 0; while (ClassDecl && !Method) { // If we have implementations in scope, check "private" methods. if (ObjCImplementationDecl *ImpDecl = ClassDecl->getImplementation()) Method = ImpDecl->getInstanceMethod(Sel); // Look through local category implementations associated with the class. if (!Method) Method = ClassDecl->getCategoryInstanceMethod(Sel); ClassDecl = ClassDecl->getSuperClass(); } return Method; } /// LookupMethodInQualifiedType - Lookups up a method in protocol qualifier /// list of a qualified objective pointer type. ObjCMethodDecl *Sema::LookupMethodInQualifiedType(Selector Sel, const ObjCObjectPointerType *OPT, bool Instance) { ObjCMethodDecl *MD = 0; for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(), E = OPT->qual_end(); I != E; ++I) { ObjCProtocolDecl *PROTO = (*I); if ((MD = PROTO->lookupMethod(Sel, Instance))) { return MD; } } return 0; } /// HandleExprPropertyRefExpr - Handle foo.bar where foo is a pointer to an /// objective C interface. This is a property reference expression. ExprResult Sema:: HandleExprPropertyRefExpr(const ObjCObjectPointerType *OPT, Expr *BaseExpr, SourceLocation OpLoc, DeclarationName MemberName, SourceLocation MemberLoc, SourceLocation SuperLoc, QualType SuperType, bool Super) { const ObjCInterfaceType *IFaceT = OPT->getInterfaceType(); ObjCInterfaceDecl *IFace = IFaceT->getDecl(); if (MemberName.getNameKind() != DeclarationName::Identifier) { Diag(MemberLoc, diag::err_invalid_property_name) << MemberName << QualType(OPT, 0); return ExprError(); } IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); if (IFace->isForwardDecl()) { Diag(MemberLoc, diag::err_property_not_found_forward_class) << MemberName << QualType(OPT, 0); Diag(IFace->getLocation(), diag::note_forward_class); return ExprError(); } // Search for a declared property first. if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(Member)) { // Check whether we can reference this property. if (DiagnoseUseOfDecl(PD, MemberLoc)) return ExprError(); QualType ResTy = PD->getType(); ResTy = ResTy.getNonLValueExprType(Context); Selector Sel = PP.getSelectorTable().getNullarySelector(Member); ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel); if (Getter && (Getter->hasRelatedResultType() || DiagnosePropertyAccessorMismatch(PD, Getter, MemberLoc))) ResTy = getMessageSendResultType(QualType(OPT, 0), Getter, false, Super); if (Super) return Owned(new (Context) ObjCPropertyRefExpr(PD, ResTy, VK_LValue, OK_ObjCProperty, MemberLoc, SuperLoc, SuperType)); else return Owned(new (Context) ObjCPropertyRefExpr(PD, ResTy, VK_LValue, OK_ObjCProperty, MemberLoc, BaseExpr)); } // Check protocols on qualified interfaces. for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(), E = OPT->qual_end(); I != E; ++I) if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) { // Check whether we can reference this property. if (DiagnoseUseOfDecl(PD, MemberLoc)) return ExprError(); QualType T = PD->getType(); if (ObjCMethodDecl *Getter = PD->getGetterMethodDecl()) T = getMessageSendResultType(QualType(OPT, 0), Getter, false, Super); if (Super) return Owned(new (Context) ObjCPropertyRefExpr(PD, T, VK_LValue, OK_ObjCProperty, MemberLoc, SuperLoc, SuperType)); else return Owned(new (Context) ObjCPropertyRefExpr(PD, T, VK_LValue, OK_ObjCProperty, MemberLoc, BaseExpr)); } // If that failed, look for an "implicit" property by seeing if the nullary // selector is implemented. // FIXME: The logic for looking up nullary and unary selectors should be // shared with the code in ActOnInstanceMessage. Selector Sel = PP.getSelectorTable().getNullarySelector(Member); ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel); // May be founf in property's qualified list. if (!Getter) Getter = LookupMethodInQualifiedType(Sel, OPT, true); // If this reference is in an @implementation, check for 'private' methods. if (!Getter) Getter = IFace->lookupPrivateMethod(Sel); // Look through local category implementations associated with the class. if (!Getter) Getter = IFace->getCategoryInstanceMethod(Sel); if (Getter) { // Check if we can reference this property. if (DiagnoseUseOfDecl(Getter, MemberLoc)) return ExprError(); } // If we found a getter then this may be a valid dot-reference, we // will look for the matching setter, in case it is needed. Selector SetterSel = SelectorTable::constructSetterName(PP.getIdentifierTable(), PP.getSelectorTable(), Member); ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel); // May be founf in property's qualified list. if (!Setter) Setter = LookupMethodInQualifiedType(SetterSel, OPT, true); if (!Setter) { // If this reference is in an @implementation, also check for 'private' // methods. Setter = IFace->lookupPrivateMethod(SetterSel); } // Look through local category implementations associated with the class. if (!Setter) Setter = IFace->getCategoryInstanceMethod(SetterSel); if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc)) return ExprError(); if (Getter || Setter) { QualType PType; if (Getter) PType = getMessageSendResultType(QualType(OPT, 0), Getter, false, Super); else { ParmVarDecl *ArgDecl = *Setter->param_begin(); PType = ArgDecl->getType(); } ExprValueKind VK = VK_LValue; ExprObjectKind OK = OK_ObjCProperty; if (!getLangOptions().CPlusPlus && !PType.hasQualifiers() && PType->isVoidType()) VK = VK_RValue, OK = OK_Ordinary; if (Super) return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter, PType, VK, OK, MemberLoc, SuperLoc, SuperType)); else return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter, PType, VK, OK, MemberLoc, BaseExpr)); } // Attempt to correct for typos in property names. TypoCorrection Corrected = CorrectTypo( DeclarationNameInfo(MemberName, MemberLoc), LookupOrdinaryName, NULL, NULL, IFace, false, CTC_NoKeywords, OPT); if (ObjCPropertyDecl *Property = Corrected.getCorrectionDeclAs<ObjCPropertyDecl>()) { DeclarationName TypoResult = Corrected.getCorrection(); Diag(MemberLoc, diag::err_property_not_found_suggest) << MemberName << QualType(OPT, 0) << TypoResult << FixItHint::CreateReplacement(MemberLoc, TypoResult.getAsString()); Diag(Property->getLocation(), diag::note_previous_decl) << Property->getDeclName(); return HandleExprPropertyRefExpr(OPT, BaseExpr, OpLoc, TypoResult, MemberLoc, SuperLoc, SuperType, Super); } ObjCInterfaceDecl *ClassDeclared; if (ObjCIvarDecl *Ivar = IFace->lookupInstanceVariable(Member, ClassDeclared)) { QualType T = Ivar->getType(); if (const ObjCObjectPointerType * OBJPT = T->getAsObjCInterfacePointerType()) { const ObjCInterfaceType *IFaceT = OBJPT->getInterfaceType(); if (ObjCInterfaceDecl *IFace = IFaceT->getDecl()) if (IFace->isForwardDecl()) { Diag(MemberLoc, diag::err_property_not_as_forward_class) << MemberName << IFace; Diag(IFace->getLocation(), diag::note_forward_class); return ExprError(); } } Diag(MemberLoc, diag::err_ivar_access_using_property_syntax_suggest) << MemberName << QualType(OPT, 0) << Ivar->getDeclName() << FixItHint::CreateReplacement(OpLoc, "->"); return ExprError(); } Diag(MemberLoc, diag::err_property_not_found) << MemberName << QualType(OPT, 0); if (Setter) Diag(Setter->getLocation(), diag::note_getter_unavailable) << MemberName << BaseExpr->getSourceRange(); return ExprError(); } ExprResult Sema:: ActOnClassPropertyRefExpr(IdentifierInfo &receiverName, IdentifierInfo &propertyName, SourceLocation receiverNameLoc, SourceLocation propertyNameLoc) { IdentifierInfo *receiverNamePtr = &receiverName; ObjCInterfaceDecl *IFace = getObjCInterfaceDecl(receiverNamePtr, receiverNameLoc); bool IsSuper = false; if (IFace == 0) { // If the "receiver" is 'super' in a method, handle it as an expression-like // property reference. if (receiverNamePtr->isStr("super")) { IsSuper = true; if (ObjCMethodDecl *CurMethod = tryCaptureObjCSelf()) { if (CurMethod->isInstanceMethod()) { QualType T = Context.getObjCInterfaceType(CurMethod->getClassInterface()); T = Context.getObjCObjectPointerType(T); return HandleExprPropertyRefExpr(T->getAsObjCInterfacePointerType(), /*BaseExpr*/0, SourceLocation()/*OpLoc*/, &propertyName, propertyNameLoc, receiverNameLoc, T, true); } // Otherwise, if this is a class method, try dispatching to our // superclass. IFace = CurMethod->getClassInterface()->getSuperClass(); } } if (IFace == 0) { Diag(receiverNameLoc, diag::err_expected_ident_or_lparen); return ExprError(); } } // Search for a declared property first. Selector Sel = PP.getSelectorTable().getNullarySelector(&propertyName); ObjCMethodDecl *Getter = IFace->lookupClassMethod(Sel); // If this reference is in an @implementation, check for 'private' methods. if (!Getter) if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface()) if (ObjCImplementationDecl *ImpDecl = ClassDecl->getImplementation()) Getter = ImpDecl->getClassMethod(Sel); if (Getter) { // FIXME: refactor/share with ActOnMemberReference(). // Check if we can reference this property. if (DiagnoseUseOfDecl(Getter, propertyNameLoc)) return ExprError(); } // Look for the matching setter, in case it is needed. Selector SetterSel = SelectorTable::constructSetterName(PP.getIdentifierTable(), PP.getSelectorTable(), &propertyName); ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel); if (!Setter) { // If this reference is in an @implementation, also check for 'private' // methods. if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface()) if (ObjCImplementationDecl *ImpDecl = ClassDecl->getImplementation()) Setter = ImpDecl->getClassMethod(SetterSel); } // Look through local category implementations associated with the class. if (!Setter) Setter = IFace->getCategoryClassMethod(SetterSel); if (Setter && DiagnoseUseOfDecl(Setter, propertyNameLoc)) return ExprError(); if (Getter || Setter) { QualType PType; ExprValueKind VK = VK_LValue; if (Getter) { PType = getMessageSendResultType(Context.getObjCInterfaceType(IFace), Getter, true, receiverNamePtr->isStr("super")); if (!getLangOptions().CPlusPlus && !PType.hasQualifiers() && PType->isVoidType()) VK = VK_RValue; } else { for (ObjCMethodDecl::param_iterator PI = Setter->param_begin(), E = Setter->param_end(); PI != E; ++PI) PType = (*PI)->getType(); VK = VK_LValue; } ExprObjectKind OK = (VK == VK_RValue ? OK_Ordinary : OK_ObjCProperty); if (IsSuper) return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter, PType, VK, OK, propertyNameLoc, receiverNameLoc, Context.getObjCInterfaceType(IFace))); return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter, PType, VK, OK, propertyNameLoc, receiverNameLoc, IFace)); } return ExprError(Diag(propertyNameLoc, diag::err_property_not_found) << &propertyName << Context.getObjCInterfaceType(IFace)); } Sema::ObjCMessageKind Sema::getObjCMessageKind(Scope *S, IdentifierInfo *Name, SourceLocation NameLoc, bool IsSuper, bool HasTrailingDot, ParsedType &ReceiverType) { ReceiverType = ParsedType(); // If the identifier is "super" and there is no trailing dot, we're // messaging super. If the identifier is "super" and there is a // trailing dot, it's an instance message. if (IsSuper && S->isInObjcMethodScope()) return HasTrailingDot? ObjCInstanceMessage : ObjCSuperMessage; LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName); LookupName(Result, S); switch (Result.getResultKind()) { case LookupResult::NotFound: // Normal name lookup didn't find anything. If we're in an // Objective-C method, look for ivars. If we find one, we're done! // FIXME: This is a hack. Ivar lookup should be part of normal // lookup. if (ObjCMethodDecl *Method = getCurMethodDecl()) { ObjCInterfaceDecl *ClassDeclared; if (Method->getClassInterface()->lookupInstanceVariable(Name, ClassDeclared)) return ObjCInstanceMessage; } // Break out; we'll perform typo correction below. break; case LookupResult::NotFoundInCurrentInstantiation: case LookupResult::FoundOverloaded: case LookupResult::FoundUnresolvedValue: case LookupResult::Ambiguous: Result.suppressDiagnostics(); return ObjCInstanceMessage; case LookupResult::Found: { // If the identifier is a class or not, and there is a trailing dot, // it's an instance message. if (HasTrailingDot) return ObjCInstanceMessage; // We found something. If it's a type, then we have a class // message. Otherwise, it's an instance message. NamedDecl *ND = Result.getFoundDecl(); QualType T; if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(ND)) T = Context.getObjCInterfaceType(Class); else if (TypeDecl *Type = dyn_cast<TypeDecl>(ND)) T = Context.getTypeDeclType(Type); else return ObjCInstanceMessage; // We have a class message, and T is the type we're // messaging. Build source-location information for it. TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc); ReceiverType = CreateParsedType(T, TSInfo); return ObjCClassMessage; } } // Determine our typo-correction context. CorrectTypoContext CTC = CTC_Expression; if (ObjCMethodDecl *Method = getCurMethodDecl()) if (Method->getClassInterface() && Method->getClassInterface()->getSuperClass()) CTC = CTC_ObjCMessageReceiver; if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(), Result.getLookupKind(), S, NULL, NULL, false, CTC)) { if (NamedDecl *ND = Corrected.getCorrectionDecl()) { // If we found a declaration, correct when it refers to an Objective-C // class. if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(ND)) { Diag(NameLoc, diag::err_unknown_receiver_suggest) << Name << Corrected.getCorrection() << FixItHint::CreateReplacement(SourceRange(NameLoc), ND->getNameAsString()); Diag(ND->getLocation(), diag::note_previous_decl) << Corrected.getCorrection(); QualType T = Context.getObjCInterfaceType(Class); TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc); ReceiverType = CreateParsedType(T, TSInfo); return ObjCClassMessage; } } else if (Corrected.isKeyword() && Corrected.getCorrectionAsIdentifierInfo()->isStr("super")) { // If we've found the keyword "super", this is a send to super. Diag(NameLoc, diag::err_unknown_receiver_suggest) << Name << Corrected.getCorrection() << FixItHint::CreateReplacement(SourceRange(NameLoc), "super"); return ObjCSuperMessage; } } // Fall back: let the parser try to parse it as an instance message. return ObjCInstanceMessage; } ExprResult Sema::ActOnSuperMessage(Scope *S, SourceLocation SuperLoc, Selector Sel, SourceLocation LBracLoc, SourceLocation SelectorLoc, SourceLocation RBracLoc, MultiExprArg Args) { // Determine whether we are inside a method or not. ObjCMethodDecl *Method = tryCaptureObjCSelf(); if (!Method) { Diag(SuperLoc, diag::err_invalid_receiver_to_message_super); return ExprError(); } ObjCInterfaceDecl *Class = Method->getClassInterface(); if (!Class) { Diag(SuperLoc, diag::error_no_super_class_message) << Method->getDeclName(); return ExprError(); } ObjCInterfaceDecl *Super = Class->getSuperClass(); if (!Super) { // The current class does not have a superclass. Diag(SuperLoc, diag::error_root_class_cannot_use_super) << Class->getIdentifier(); return ExprError(); } // We are in a method whose class has a superclass, so 'super' // is acting as a keyword. if (Method->isInstanceMethod()) { // Since we are in an instance method, this is an instance // message to the superclass instance. QualType SuperTy = Context.getObjCInterfaceType(Super); SuperTy = Context.getObjCObjectPointerType(SuperTy); return BuildInstanceMessage(0, SuperTy, SuperLoc, Sel, /*Method=*/0, LBracLoc, SelectorLoc, RBracLoc, move(Args)); } // Since we are in a class method, this is a class message to // the superclass. return BuildClassMessage(/*ReceiverTypeInfo=*/0, Context.getObjCInterfaceType(Super), SuperLoc, Sel, /*Method=*/0, LBracLoc, SelectorLoc, RBracLoc, move(Args)); } /// \brief Build an Objective-C class message expression. /// /// This routine takes care of both normal class messages and /// class messages to the superclass. /// /// \param ReceiverTypeInfo Type source information that describes the /// receiver of this message. This may be NULL, in which case we are /// sending to the superclass and \p SuperLoc must be a valid source /// location. /// \param ReceiverType The type of the object receiving the /// message. When \p ReceiverTypeInfo is non-NULL, this is the same /// type as that refers to. For a superclass send, this is the type of /// the superclass. /// /// \param SuperLoc The location of the "super" keyword in a /// superclass message. /// /// \param Sel The selector to which the message is being sent. /// /// \param Method The method that this class message is invoking, if /// already known. /// /// \param LBracLoc The location of the opening square bracket ']'. /// /// \param RBrac The location of the closing square bracket ']'. /// /// \param Args The message arguments. ExprResult Sema::BuildClassMessage(TypeSourceInfo *ReceiverTypeInfo, QualType ReceiverType, SourceLocation SuperLoc, Selector Sel, ObjCMethodDecl *Method, SourceLocation LBracLoc, SourceLocation SelectorLoc, SourceLocation RBracLoc, MultiExprArg ArgsIn) { SourceLocation Loc = SuperLoc.isValid()? SuperLoc : ReceiverTypeInfo->getTypeLoc().getSourceRange().getBegin(); if (LBracLoc.isInvalid()) { Diag(Loc, diag::err_missing_open_square_message_send) << FixItHint::CreateInsertion(Loc, "["); LBracLoc = Loc; } if (ReceiverType->isDependentType()) { // If the receiver type is dependent, we can't type-check anything // at this point. Build a dependent expression. unsigned NumArgs = ArgsIn.size(); Expr **Args = reinterpret_cast<Expr **>(ArgsIn.release()); assert(SuperLoc.isInvalid() && "Message to super with dependent type"); return Owned(ObjCMessageExpr::Create(Context, ReceiverType, VK_RValue, LBracLoc, ReceiverTypeInfo, Sel, SelectorLoc, /*Method=*/0, Args, NumArgs, RBracLoc)); } // Find the class to which we are sending this message. ObjCInterfaceDecl *Class = 0; const ObjCObjectType *ClassType = ReceiverType->getAs<ObjCObjectType>(); if (!ClassType || !(Class = ClassType->getInterface())) { Diag(Loc, diag::err_invalid_receiver_class_message) << ReceiverType; return ExprError(); } assert(Class && "We don't know which class we're messaging?"); (void)DiagnoseUseOfDecl(Class, Loc); // Find the method we are messaging. if (!Method) { if (Class->isForwardDecl()) { if (getLangOptions().ObjCAutoRefCount) { Diag(Loc, diag::err_arc_receiver_forward_class) << ReceiverType; } else { Diag(Loc, diag::warn_receiver_forward_class) << Class->getDeclName(); } // A forward class used in messaging is treated as a 'Class' Method = LookupFactoryMethodInGlobalPool(Sel, SourceRange(LBracLoc, RBracLoc)); if (Method && !getLangOptions().ObjCAutoRefCount) Diag(Method->getLocation(), diag::note_method_sent_forward_class) << Method->getDeclName(); } if (!Method) Method = Class->lookupClassMethod(Sel); // If we have an implementation in scope, check "private" methods. if (!Method) Method = LookupPrivateClassMethod(Sel, Class); if (Method && DiagnoseUseOfDecl(Method, Loc)) return ExprError(); } // Check the argument types and determine the result type. QualType ReturnType; ExprValueKind VK = VK_RValue; unsigned NumArgs = ArgsIn.size(); Expr **Args = reinterpret_cast<Expr **>(ArgsIn.release()); if (CheckMessageArgumentTypes(ReceiverType, Args, NumArgs, Sel, Method, true, SuperLoc.isValid(), LBracLoc, RBracLoc, ReturnType, VK)) return ExprError(); if (Method && !Method->getResultType()->isVoidType() && RequireCompleteType(LBracLoc, Method->getResultType(), diag::err_illegal_message_expr_incomplete_type)) return ExprError(); // Construct the appropriate ObjCMessageExpr. Expr *Result; if (SuperLoc.isValid()) Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, SuperLoc, /*IsInstanceSuper=*/false, ReceiverType, Sel, SelectorLoc, Method, Args, NumArgs, RBracLoc); else Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, ReceiverTypeInfo, Sel, SelectorLoc, Method, Args, NumArgs, RBracLoc); return MaybeBindToTemporary(Result); } // ActOnClassMessage - used for both unary and keyword messages. // ArgExprs is optional - if it is present, the number of expressions // is obtained from Sel.getNumArgs(). ExprResult Sema::ActOnClassMessage(Scope *S, ParsedType Receiver, Selector Sel, SourceLocation LBracLoc, SourceLocation SelectorLoc, SourceLocation RBracLoc, MultiExprArg Args) { TypeSourceInfo *ReceiverTypeInfo; QualType ReceiverType = GetTypeFromParser(Receiver, &ReceiverTypeInfo); if (ReceiverType.isNull()) return ExprError(); if (!ReceiverTypeInfo) ReceiverTypeInfo = Context.getTrivialTypeSourceInfo(ReceiverType, LBracLoc); return BuildClassMessage(ReceiverTypeInfo, ReceiverType, /*SuperLoc=*/SourceLocation(), Sel, /*Method=*/0, LBracLoc, SelectorLoc, RBracLoc, move(Args)); } /// \brief Build an Objective-C instance message expression. /// /// This routine takes care of both normal instance messages and /// instance messages to the superclass instance. /// /// \param Receiver The expression that computes the object that will /// receive this message. This may be empty, in which case we are /// sending to the superclass instance and \p SuperLoc must be a valid /// source location. /// /// \param ReceiverType The (static) type of the object receiving the /// message. When a \p Receiver expression is provided, this is the /// same type as that expression. For a superclass instance send, this /// is a pointer to the type of the superclass. /// /// \param SuperLoc The location of the "super" keyword in a /// superclass instance message. /// /// \param Sel The selector to which the message is being sent. /// /// \param Method The method that this instance message is invoking, if /// already known. /// /// \param LBracLoc The location of the opening square bracket ']'. /// /// \param RBrac The location of the closing square bracket ']'. /// /// \param Args The message arguments. ExprResult Sema::BuildInstanceMessage(Expr *Receiver, QualType ReceiverType, SourceLocation SuperLoc, Selector Sel, ObjCMethodDecl *Method, SourceLocation LBracLoc, SourceLocation SelectorLoc, SourceLocation RBracLoc, MultiExprArg ArgsIn) { // The location of the receiver. SourceLocation Loc = SuperLoc.isValid()? SuperLoc : Receiver->getLocStart(); if (LBracLoc.isInvalid()) { Diag(Loc, diag::err_missing_open_square_message_send) << FixItHint::CreateInsertion(Loc, "["); LBracLoc = Loc; } // If we have a receiver expression, perform appropriate promotions // and determine receiver type. if (Receiver) { if (Receiver->isTypeDependent()) { // If the receiver is type-dependent, we can't type-check anything // at this point. Build a dependent expression. unsigned NumArgs = ArgsIn.size(); Expr **Args = reinterpret_cast<Expr **>(ArgsIn.release()); assert(SuperLoc.isInvalid() && "Message to super with dependent type"); return Owned(ObjCMessageExpr::Create(Context, Context.DependentTy, VK_RValue, LBracLoc, Receiver, Sel, SelectorLoc, /*Method=*/0, Args, NumArgs, RBracLoc)); } // If necessary, apply function/array conversion to the receiver. // C99 6.7.5.3p[7,8]. ExprResult Result = DefaultFunctionArrayLvalueConversion(Receiver); if (Result.isInvalid()) return ExprError(); Receiver = Result.take(); ReceiverType = Receiver->getType(); } if (!Method) { // Handle messages to id. bool receiverIsId = ReceiverType->isObjCIdType(); if (receiverIsId || ReceiverType->isBlockPointerType() || (Receiver && Context.isObjCNSObjectType(Receiver->getType()))) { Method = LookupInstanceMethodInGlobalPool(Sel, SourceRange(LBracLoc, RBracLoc), receiverIsId); if (!Method) Method = LookupFactoryMethodInGlobalPool(Sel, SourceRange(LBracLoc, RBracLoc), receiverIsId); } else if (ReceiverType->isObjCClassType() || ReceiverType->isObjCQualifiedClassType()) { // Handle messages to Class. // We allow sending a message to a qualified Class ("Class<foo>"), which // is ok as long as one of the protocols implements the selector (if not, warn). if (const ObjCObjectPointerType *QClassTy = ReceiverType->getAsObjCQualifiedClassType()) { // Search protocols for class methods. Method = LookupMethodInQualifiedType(Sel, QClassTy, false); if (!Method) { Method = LookupMethodInQualifiedType(Sel, QClassTy, true); // warn if instance method found for a Class message. if (Method) { Diag(Loc, diag::warn_instance_method_on_class_found) << Method->getSelector() << Sel; Diag(Method->getLocation(), diag::note_method_declared_at); } } } else { if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) { if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface()) { // First check the public methods in the class interface. Method = ClassDecl->lookupClassMethod(Sel); if (!Method) Method = LookupPrivateClassMethod(Sel, ClassDecl); } if (Method && DiagnoseUseOfDecl(Method, Loc)) return ExprError(); } if (!Method) { // If not messaging 'self', look for any factory method named 'Sel'. if (!Receiver || !isSelfExpr(Receiver)) { Method = LookupFactoryMethodInGlobalPool(Sel, SourceRange(LBracLoc, RBracLoc), true); if (!Method) { // If no class (factory) method was found, check if an _instance_ // method of the same name exists in the root class only. Method = LookupInstanceMethodInGlobalPool(Sel, SourceRange(LBracLoc, RBracLoc), true); if (Method) if (const ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(Method->getDeclContext())) { if (ID->getSuperClass()) Diag(Loc, diag::warn_root_inst_method_not_found) << Sel << SourceRange(LBracLoc, RBracLoc); } } } } } } else { ObjCInterfaceDecl* ClassDecl = 0; // We allow sending a message to a qualified ID ("id<foo>"), which is ok as // long as one of the protocols implements the selector (if not, warn). if (const ObjCObjectPointerType *QIdTy = ReceiverType->getAsObjCQualifiedIdType()) { // Search protocols for instance methods. Method = LookupMethodInQualifiedType(Sel, QIdTy, true); if (!Method) Method = LookupMethodInQualifiedType(Sel, QIdTy, false); } else if (const ObjCObjectPointerType *OCIType = ReceiverType->getAsObjCInterfacePointerType()) { // We allow sending a message to a pointer to an interface (an object). ClassDecl = OCIType->getInterfaceDecl(); if (ClassDecl->isForwardDecl() && getLangOptions().ObjCAutoRefCount) { Diag(Loc, diag::err_arc_receiver_forward_instance) << OCIType->getPointeeType() << (Receiver ? Receiver->getSourceRange() : SourceRange(SuperLoc)); return ExprError(); } // FIXME: consider using LookupInstanceMethodInGlobalPool, since it will be // faster than the following method (which can do *many* linear searches). // The idea is to add class info to MethodPool. Method = ClassDecl->lookupInstanceMethod(Sel); if (!Method) // Search protocol qualifiers. Method = LookupMethodInQualifiedType(Sel, OCIType, true); const ObjCInterfaceDecl *forwardClass = 0; if (!Method) { // If we have implementations in scope, check "private" methods. Method = LookupPrivateInstanceMethod(Sel, ClassDecl); if (!Method && getLangOptions().ObjCAutoRefCount) { Diag(Loc, diag::err_arc_may_not_respond) << OCIType->getPointeeType() << Sel; return ExprError(); } if (!Method && (!Receiver || !isSelfExpr(Receiver))) { // If we still haven't found a method, look in the global pool. This // behavior isn't very desirable, however we need it for GCC // compatibility. FIXME: should we deviate?? if (OCIType->qual_empty()) { Method = LookupInstanceMethodInGlobalPool(Sel, SourceRange(LBracLoc, RBracLoc)); if (OCIType->getInterfaceDecl()->isForwardDecl()) forwardClass = OCIType->getInterfaceDecl(); if (Method && !forwardClass) Diag(Loc, diag::warn_maynot_respond) << OCIType->getInterfaceDecl()->getIdentifier() << Sel; } } } if (Method && DiagnoseUseOfDecl(Method, Loc, forwardClass)) return ExprError(); } else if (!getLangOptions().ObjCAutoRefCount && !Context.getObjCIdType().isNull() && (ReceiverType->isPointerType() || ReceiverType->isIntegerType())) { // Implicitly convert integers and pointers to 'id' but emit a warning. // But not in ARC. Diag(Loc, diag::warn_bad_receiver_type) << ReceiverType << Receiver->getSourceRange(); if (ReceiverType->isPointerType()) Receiver = ImpCastExprToType(Receiver, Context.getObjCIdType(), CK_BitCast).take(); else { // TODO: specialized warning on null receivers? bool IsNull = Receiver->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull); Receiver = ImpCastExprToType(Receiver, Context.getObjCIdType(), IsNull ? CK_NullToPointer : CK_IntegralToPointer).take(); } ReceiverType = Receiver->getType(); } else { ExprResult ReceiverRes; if (getLangOptions().CPlusPlus) ReceiverRes = PerformContextuallyConvertToObjCId(Receiver); if (ReceiverRes.isUsable()) { Receiver = ReceiverRes.take(); if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Receiver)) { Receiver = ICE->getSubExpr(); ReceiverType = Receiver->getType(); } return BuildInstanceMessage(Receiver, ReceiverType, SuperLoc, Sel, Method, LBracLoc, SelectorLoc, RBracLoc, move(ArgsIn)); } else { // Reject other random receiver types (e.g. structs). Diag(Loc, diag::err_bad_receiver_type) << ReceiverType << Receiver->getSourceRange(); return ExprError(); } } } } // Check the message arguments. unsigned NumArgs = ArgsIn.size(); Expr **Args = reinterpret_cast<Expr **>(ArgsIn.release()); QualType ReturnType; ExprValueKind VK = VK_RValue; bool ClassMessage = (ReceiverType->isObjCClassType() || ReceiverType->isObjCQualifiedClassType()); if (CheckMessageArgumentTypes(ReceiverType, Args, NumArgs, Sel, Method, ClassMessage, SuperLoc.isValid(), LBracLoc, RBracLoc, ReturnType, VK)) return ExprError(); if (Method && !Method->getResultType()->isVoidType() && RequireCompleteType(LBracLoc, Method->getResultType(), diag::err_illegal_message_expr_incomplete_type)) return ExprError(); // In ARC, forbid the user from sending messages to // retain/release/autorelease/dealloc/retainCount explicitly. if (getLangOptions().ObjCAutoRefCount) { ObjCMethodFamily family = (Method ? Method->getMethodFamily() : Sel.getMethodFamily()); switch (family) { case OMF_init: if (Method) checkInitMethod(Method, ReceiverType); case OMF_None: case OMF_alloc: case OMF_copy: case OMF_mutableCopy: case OMF_new: case OMF_self: break; case OMF_dealloc: case OMF_retain: case OMF_release: case OMF_autorelease: case OMF_retainCount: Diag(Loc, diag::err_arc_illegal_explicit_message) << Sel << SelectorLoc; break; case OMF_performSelector: if (Method && NumArgs >= 1) { if (ObjCSelectorExpr *SelExp = dyn_cast<ObjCSelectorExpr>(Args[0])) { Selector ArgSel = SelExp->getSelector(); ObjCMethodDecl *SelMethod = LookupInstanceMethodInGlobalPool(ArgSel, SelExp->getSourceRange()); if (!SelMethod) SelMethod = LookupFactoryMethodInGlobalPool(ArgSel, SelExp->getSourceRange()); if (SelMethod) { ObjCMethodFamily SelFamily = SelMethod->getMethodFamily(); switch (SelFamily) { case OMF_alloc: case OMF_copy: case OMF_mutableCopy: case OMF_new: case OMF_self: case OMF_init: // Issue error, unless ns_returns_not_retained. if (!SelMethod->hasAttr<NSReturnsNotRetainedAttr>()) { // selector names a +1 method Diag(SelectorLoc, diag::err_arc_perform_selector_retains); Diag(SelMethod->getLocation(), diag::note_method_declared_at); } break; default: // +0 call. OK. unless ns_returns_retained. if (SelMethod->hasAttr<NSReturnsRetainedAttr>()) { // selector names a +1 method Diag(SelectorLoc, diag::err_arc_perform_selector_retains); Diag(SelMethod->getLocation(), diag::note_method_declared_at); } break; } } } else { // error (may leak). Diag(SelectorLoc, diag::warn_arc_perform_selector_leaks); Diag(Args[0]->getExprLoc(), diag::note_used_here); } } break; } } // Construct the appropriate ObjCMessageExpr instance. ObjCMessageExpr *Result; if (SuperLoc.isValid()) Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, SuperLoc, /*IsInstanceSuper=*/true, ReceiverType, Sel, SelectorLoc, Method, Args, NumArgs, RBracLoc); else Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, Receiver, Sel, SelectorLoc, Method, Args, NumArgs, RBracLoc); if (getLangOptions().ObjCAutoRefCount) { // In ARC, annotate delegate init calls. if (Result->getMethodFamily() == OMF_init && (SuperLoc.isValid() || isSelfExpr(Receiver))) { // Only consider init calls *directly* in init implementations, // not within blocks. ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(CurContext); if (method && method->getMethodFamily() == OMF_init) { // The implicit assignment to self means we also don't want to // consume the result. Result->setDelegateInitCall(true); return Owned(Result); } } // In ARC, check for message sends which are likely to introduce // retain cycles. checkRetainCycles(Result); } return MaybeBindToTemporary(Result); } // ActOnInstanceMessage - used for both unary and keyword messages. // ArgExprs is optional - if it is present, the number of expressions // is obtained from Sel.getNumArgs(). ExprResult Sema::ActOnInstanceMessage(Scope *S, Expr *Receiver, Selector Sel, SourceLocation LBracLoc, SourceLocation SelectorLoc, SourceLocation RBracLoc, MultiExprArg Args) { if (!Receiver) return ExprError(); return BuildInstanceMessage(Receiver, Receiver->getType(), /*SuperLoc=*/SourceLocation(), Sel, /*Method=*/0, LBracLoc, SelectorLoc, RBracLoc, move(Args)); } enum ARCConversionTypeClass { ACTC_none, ACTC_retainable, ACTC_indirectRetainable }; static ARCConversionTypeClass classifyTypeForARCConversion(QualType type) { ARCConversionTypeClass ACTC = ACTC_retainable; // Ignore an outermost reference type. if (const ReferenceType *ref = type->getAs<ReferenceType>()) type = ref->getPointeeType(); // Drill through pointers and arrays recursively. while (true) { if (const PointerType *ptr = type->getAs<PointerType>()) { type = ptr->getPointeeType(); } else if (const ArrayType *array = type->getAsArrayTypeUnsafe()) { type = QualType(array->getElementType()->getBaseElementTypeUnsafe(), 0); } else { break; } ACTC = ACTC_indirectRetainable; } if (!type->isObjCRetainableType()) return ACTC_none; return ACTC; } namespace { /// Return true if the given expression can be reasonably converted /// between a retainable pointer type and a C pointer type. struct ARCCastChecker : StmtVisitor<ARCCastChecker, bool> { ASTContext &Context; ARCCastChecker(ASTContext &Context) : Context(Context) {} bool VisitStmt(Stmt *s) { return false; } bool VisitExpr(Expr *e) { return e->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull); } bool VisitParenExpr(ParenExpr *e) { return Visit(e->getSubExpr()); } bool VisitCastExpr(CastExpr *e) { switch (e->getCastKind()) { case CK_NullToPointer: return true; case CK_NoOp: case CK_LValueToRValue: case CK_BitCast: case CK_AnyPointerToObjCPointerCast: case CK_AnyPointerToBlockPointerCast: return Visit(e->getSubExpr()); default: return false; } } bool VisitUnaryExtension(UnaryOperator *e) { return Visit(e->getSubExpr()); } bool VisitBinComma(BinaryOperator *e) { return Visit(e->getRHS()); } bool VisitConditionalOperator(ConditionalOperator *e) { // Conditional operators are okay if both sides are okay. return Visit(e->getTrueExpr()) && Visit(e->getFalseExpr()); } bool VisitObjCStringLiteral(ObjCStringLiteral *e) { // Always white-list Objective-C string literals. return true; } bool VisitStmtExpr(StmtExpr *e) { return Visit(e->getSubStmt()->body_back()); } bool VisitDeclRefExpr(DeclRefExpr *e) { // White-list references to global extern strings from system // headers. if (VarDecl *var = dyn_cast<VarDecl>(e->getDecl())) if (var->getStorageClass() == SC_Extern && var->getType().isConstQualified() && Context.getSourceManager().isInSystemHeader(var->getLocation())) return true; return false; } }; } bool Sema::ValidObjCARCNoBridgeCastExpr(Expr *&Exp, QualType castType) { Expr *NewExp = Exp->IgnoreParenCasts(); if (!isa<ObjCMessageExpr>(NewExp) && !isa<ObjCPropertyRefExpr>(NewExp) && !isa<CallExpr>(NewExp)) return false; ObjCMethodDecl *method = 0; bool MethodReturnsPlusOne = false; if (ObjCPropertyRefExpr *PRE = dyn_cast<ObjCPropertyRefExpr>(NewExp)) { method = PRE->getExplicitProperty()->getGetterMethodDecl(); } else if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(NewExp)) method = ME->getMethodDecl(); else { CallExpr *CE = cast<CallExpr>(NewExp); Decl *CallDecl = CE->getCalleeDecl(); if (!CallDecl) return false; if (CallDecl->hasAttr<CFReturnsNotRetainedAttr>()) return true; MethodReturnsPlusOne = CallDecl->hasAttr<CFReturnsRetainedAttr>(); if (!MethodReturnsPlusOne) { if (NamedDecl *ND = dyn_cast<NamedDecl>(CallDecl)) if (const IdentifierInfo *Id = ND->getIdentifier()) if (Id->isStr("__builtin___CFStringMakeConstantString")) return true; } } if (!MethodReturnsPlusOne) { if (!method) return false; if (method->hasAttr<CFReturnsNotRetainedAttr>()) return true; MethodReturnsPlusOne = method->hasAttr<CFReturnsRetainedAttr>(); if (!MethodReturnsPlusOne) { ObjCMethodFamily family = method->getSelector().getMethodFamily(); switch (family) { case OMF_alloc: case OMF_copy: case OMF_mutableCopy: case OMF_new: MethodReturnsPlusOne = true; break; default: break; } } } if (MethodReturnsPlusOne) { TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(castType, SourceLocation()); ExprResult ExpRes = BuildObjCBridgedCast(SourceLocation(), OBC_BridgeTransfer, SourceLocation(), TSInfo, Exp); Exp = ExpRes.take(); } return true; } void Sema::CheckObjCARCConversion(SourceRange castRange, QualType castType, Expr *&castExpr, CheckedConversionKind CCK) { QualType castExprType = castExpr->getType(); ARCConversionTypeClass exprACTC = classifyTypeForARCConversion(castExprType); ARCConversionTypeClass castACTC = classifyTypeForARCConversion(castType); if (exprACTC == castACTC) return; if (exprACTC && castType->isIntegralType(Context)) return; // Allow casts between pointers to lifetime types (e.g., __strong id*) // and pointers to void (e.g., cv void *). Casting from void* to lifetime* // must be explicit. if (const PointerType *CastPtr = castType->getAs<PointerType>()) { if (const PointerType *CastExprPtr = castExprType->getAs<PointerType>()) { QualType CastPointee = CastPtr->getPointeeType(); QualType CastExprPointee = CastExprPtr->getPointeeType(); if ((CCK != CCK_ImplicitConversion && CastPointee->isObjCIndirectLifetimeType() && CastExprPointee->isVoidType()) || (CastPointee->isVoidType() && CastExprPointee->isObjCIndirectLifetimeType())) return; } } if (ARCCastChecker(Context).Visit(castExpr)) return; SourceLocation loc = (castRange.isValid() ? castRange.getBegin() : castExpr->getExprLoc()); if (makeUnavailableInSystemHeader(loc, "converts between Objective-C and C pointers in -fobjc-arc")) return; unsigned srcKind = 0; switch (exprACTC) { case ACTC_none: srcKind = (castExprType->isPointerType() ? 1 : 0); break; case ACTC_retainable: srcKind = (castExprType->isBlockPointerType() ? 2 : 3); break; case ACTC_indirectRetainable: srcKind = 4; break; } if (CCK == CCK_CStyleCast) { // Check whether this could be fixed with a bridge cast. SourceLocation AfterLParen = PP.getLocForEndOfToken(castRange.getBegin()); SourceLocation NoteLoc = AfterLParen.isValid()? AfterLParen : loc; if (castType->isObjCARCBridgableType() && castExprType->isCARCBridgableType()) { // explicit unbridged casts are allowed if the source of the cast is a // message sent to an objc method (or property access) if (ValidObjCARCNoBridgeCastExpr(castExpr, castType)) return; Diag(loc, diag::err_arc_cast_requires_bridge) << 2 << castExprType << (castType->isBlockPointerType()? 1 : 0) << castType << castRange << castExpr->getSourceRange(); Diag(NoteLoc, diag::note_arc_bridge) << FixItHint::CreateInsertion(AfterLParen, "__bridge "); Diag(NoteLoc, diag::note_arc_bridge_transfer) << castExprType << FixItHint::CreateInsertion(AfterLParen, "__bridge_transfer "); return; } if (castType->isCARCBridgableType() && castExprType->isObjCARCBridgableType()){ Diag(loc, diag::err_arc_cast_requires_bridge) << (castExprType->isBlockPointerType()? 1 : 0) << castExprType << 2 << castType << castRange << castExpr->getSourceRange(); Diag(NoteLoc, diag::note_arc_bridge) << FixItHint::CreateInsertion(AfterLParen, "__bridge "); Diag(NoteLoc, diag::note_arc_bridge_retained) << castType << FixItHint::CreateInsertion(AfterLParen, "__bridge_retained "); return; } } Diag(loc, diag::err_arc_mismatched_cast) << (CCK != CCK_ImplicitConversion) << srcKind << castExprType << castType << castRange << castExpr->getSourceRange(); } bool Sema::CheckObjCARCUnavailableWeakConversion(QualType castType, QualType exprType) { QualType canCastType = Context.getCanonicalType(castType).getUnqualifiedType(); QualType canExprType = Context.getCanonicalType(exprType).getUnqualifiedType(); if (isa<ObjCObjectPointerType>(canCastType) && castType.getObjCLifetime() == Qualifiers::OCL_Weak && canExprType->isObjCObjectPointerType()) { if (const ObjCObjectPointerType *ObjT = canExprType->getAs<ObjCObjectPointerType>()) if (ObjT->getInterfaceDecl()->isArcWeakrefUnavailable()) return false; } return true; } /// Look for an ObjCReclaimReturnedObject cast and destroy it. static Expr *maybeUndoReclaimObject(Expr *e) { // For now, we just undo operands that are *immediately* reclaim // expressions, which prevents the vast majority of potential // problems here. To catch them all, we'd need to rebuild arbitrary // value-propagating subexpressions --- we can't reliably rebuild // in-place because of expression sharing. if (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e)) if (ice->getCastKind() == CK_ObjCReclaimReturnedObject) return ice->getSubExpr(); return e; } ExprResult Sema::BuildObjCBridgedCast(SourceLocation LParenLoc, ObjCBridgeCastKind Kind, SourceLocation BridgeKeywordLoc, TypeSourceInfo *TSInfo, Expr *SubExpr) { QualType T = TSInfo->getType(); QualType FromType = SubExpr->getType(); bool MustConsume = false; if (T->isDependentType() || SubExpr->isTypeDependent()) { // Okay: we'll build a dependent expression type. } else if (T->isObjCARCBridgableType() && FromType->isCARCBridgableType()) { // Casting CF -> id switch (Kind) { case OBC_Bridge: break; case OBC_BridgeRetained: Diag(BridgeKeywordLoc, diag::err_arc_bridge_cast_wrong_kind) << 2 << FromType << (T->isBlockPointerType()? 1 : 0) << T << SubExpr->getSourceRange() << Kind; Diag(BridgeKeywordLoc, diag::note_arc_bridge) << FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge"); Diag(BridgeKeywordLoc, diag::note_arc_bridge_transfer) << FromType << FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge_transfer "); Kind = OBC_Bridge; break; case OBC_BridgeTransfer: // We must consume the Objective-C object produced by the cast. MustConsume = true; break; } } else if (T->isCARCBridgableType() && FromType->isObjCARCBridgableType()) { // Okay: id -> CF switch (Kind) { case OBC_Bridge: // Reclaiming a value that's going to be __bridge-casted to CF // is very dangerous, so we don't do it. SubExpr = maybeUndoReclaimObject(SubExpr); break; case OBC_BridgeRetained: // Produce the object before casting it. SubExpr = ImplicitCastExpr::Create(Context, FromType, CK_ObjCProduceObject, SubExpr, 0, VK_RValue); break; case OBC_BridgeTransfer: Diag(BridgeKeywordLoc, diag::err_arc_bridge_cast_wrong_kind) << (FromType->isBlockPointerType()? 1 : 0) << FromType << 2 << T << SubExpr->getSourceRange() << Kind; Diag(BridgeKeywordLoc, diag::note_arc_bridge) << FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge "); Diag(BridgeKeywordLoc, diag::note_arc_bridge_retained) << T << FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge_retained "); Kind = OBC_Bridge; break; } } else { Diag(LParenLoc, diag::err_arc_bridge_cast_incompatible) << FromType << T << Kind << SubExpr->getSourceRange() << TSInfo->getTypeLoc().getSourceRange(); return ExprError(); } Expr *Result = new (Context) ObjCBridgedCastExpr(LParenLoc, Kind, BridgeKeywordLoc, TSInfo, SubExpr); if (MustConsume) { ExprNeedsCleanups = true; Result = ImplicitCastExpr::Create(Context, T, CK_ObjCConsumeObject, Result, 0, VK_RValue); } return Result; } ExprResult Sema::ActOnObjCBridgedCast(Scope *S, SourceLocation LParenLoc, ObjCBridgeCastKind Kind, SourceLocation BridgeKeywordLoc, ParsedType Type, SourceLocation RParenLoc, Expr *SubExpr) { TypeSourceInfo *TSInfo = 0; QualType T = GetTypeFromParser(Type, &TSInfo); if (!TSInfo) TSInfo = Context.getTrivialTypeSourceInfo(T, LParenLoc); return BuildObjCBridgedCast(LParenLoc, Kind, BridgeKeywordLoc, TSInfo, SubExpr); }