//=- AnalysisBasedWarnings.cpp - Sema warnings based on libAnalysis -*- C++ -*-=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines analysis_warnings::[Policy,Executor]. // Together they are used by Sema to issue warnings based on inexpensive // static analysis algorithms in libAnalysis. // //===----------------------------------------------------------------------===// #include "clang/Sema/AnalysisBasedWarnings.h" #include "clang/Sema/SemaInternal.h" #include "clang/Sema/ScopeInfo.h" #include "clang/Basic/SourceManager.h" #include "clang/Lex/Preprocessor.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/StmtObjC.h" #include "clang/AST/StmtCXX.h" #include "clang/AST/EvaluatedExprVisitor.h" #include "clang/Analysis/AnalysisContext.h" #include "clang/Analysis/CFG.h" #include "clang/Analysis/Analyses/ReachableCode.h" #include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h" #include "clang/Analysis/CFGStmtMap.h" #include "clang/Analysis/Analyses/UninitializedValues.h" #include "llvm/ADT/BitVector.h" #include "llvm/Support/Casting.h" using namespace clang; //===----------------------------------------------------------------------===// // Unreachable code analysis. //===----------------------------------------------------------------------===// namespace { class UnreachableCodeHandler : public reachable_code::Callback { Sema &S; public: UnreachableCodeHandler(Sema &s) : S(s) {} void HandleUnreachable(SourceLocation L, SourceRange R1, SourceRange R2) { S.Diag(L, diag::warn_unreachable) << R1 << R2; } }; } /// CheckUnreachable - Check for unreachable code. static void CheckUnreachable(Sema &S, AnalysisContext &AC) { UnreachableCodeHandler UC(S); reachable_code::FindUnreachableCode(AC, UC); } //===----------------------------------------------------------------------===// // Check for missing return value. //===----------------------------------------------------------------------===// enum ControlFlowKind { UnknownFallThrough, NeverFallThrough, MaybeFallThrough, AlwaysFallThrough, NeverFallThroughOrReturn }; /// CheckFallThrough - Check that we don't fall off the end of a /// Statement that should return a value. /// /// \returns AlwaysFallThrough iff we always fall off the end of the statement, /// MaybeFallThrough iff we might or might not fall off the end, /// NeverFallThroughOrReturn iff we never fall off the end of the statement or /// return. We assume NeverFallThrough iff we never fall off the end of the /// statement but we may return. We assume that functions not marked noreturn /// will return. static ControlFlowKind CheckFallThrough(AnalysisContext &AC) { CFG *cfg = AC.getCFG(); if (cfg == 0) return UnknownFallThrough; // The CFG leaves in dead things, and we don't want the dead code paths to // confuse us, so we mark all live things first. llvm::BitVector live(cfg->getNumBlockIDs()); unsigned count = reachable_code::ScanReachableFromBlock(cfg->getEntry(), live); bool AddEHEdges = AC.getAddEHEdges(); if (!AddEHEdges && count != cfg->getNumBlockIDs()) // When there are things remaining dead, and we didn't add EH edges // from CallExprs to the catch clauses, we have to go back and // mark them as live. for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) { CFGBlock &b = **I; if (!live[b.getBlockID()]) { if (b.pred_begin() == b.pred_end()) { if (b.getTerminator() && isa<CXXTryStmt>(b.getTerminator())) // When not adding EH edges from calls, catch clauses // can otherwise seem dead. Avoid noting them as dead. count += reachable_code::ScanReachableFromBlock(b, live); continue; } } } // Now we know what is live, we check the live precessors of the exit block // and look for fall through paths, being careful to ignore normal returns, // and exceptional paths. bool HasLiveReturn = false; bool HasFakeEdge = false; bool HasPlainEdge = false; bool HasAbnormalEdge = false; // Ignore default cases that aren't likely to be reachable because all // enums in a switch(X) have explicit case statements. CFGBlock::FilterOptions FO; FO.IgnoreDefaultsWithCoveredEnums = 1; for (CFGBlock::filtered_pred_iterator I = cfg->getExit().filtered_pred_start_end(FO); I.hasMore(); ++I) { const CFGBlock& B = **I; if (!live[B.getBlockID()]) continue; // Destructors can appear after the 'return' in the CFG. This is // normal. We need to look pass the destructors for the return // statement (if it exists). CFGBlock::const_reverse_iterator ri = B.rbegin(), re = B.rend(); bool hasNoReturnDtor = false; for ( ; ri != re ; ++ri) { CFGElement CE = *ri; // FIXME: The right solution is to just sever the edges in the // CFG itself. if (const CFGImplicitDtor *iDtor = ri->getAs<CFGImplicitDtor>()) if (iDtor->isNoReturn(AC.getASTContext())) { hasNoReturnDtor = true; HasFakeEdge = true; break; } if (isa<CFGStmt>(CE)) break; } if (hasNoReturnDtor) continue; // No more CFGElements in the block? if (ri == re) { if (B.getTerminator() && isa<CXXTryStmt>(B.getTerminator())) { HasAbnormalEdge = true; continue; } // A labeled empty statement, or the entry block... HasPlainEdge = true; continue; } CFGStmt CS = cast<CFGStmt>(*ri); Stmt *S = CS.getStmt(); if (isa<ReturnStmt>(S)) { HasLiveReturn = true; continue; } if (isa<ObjCAtThrowStmt>(S)) { HasFakeEdge = true; continue; } if (isa<CXXThrowExpr>(S)) { HasFakeEdge = true; continue; } if (const AsmStmt *AS = dyn_cast<AsmStmt>(S)) { if (AS->isMSAsm()) { HasFakeEdge = true; HasLiveReturn = true; continue; } } if (isa<CXXTryStmt>(S)) { HasAbnormalEdge = true; continue; } bool NoReturnEdge = false; if (CallExpr *C = dyn_cast<CallExpr>(S)) { if (std::find(B.succ_begin(), B.succ_end(), &cfg->getExit()) == B.succ_end()) { HasAbnormalEdge = true; continue; } Expr *CEE = C->getCallee()->IgnoreParenCasts(); QualType calleeType = CEE->getType(); if (calleeType == AC.getASTContext().BoundMemberTy) { calleeType = Expr::findBoundMemberType(CEE); assert(!calleeType.isNull() && "analyzing unresolved call?"); } if (getFunctionExtInfo(calleeType).getNoReturn()) { NoReturnEdge = true; HasFakeEdge = true; } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) { ValueDecl *VD = DRE->getDecl(); if (VD->hasAttr<NoReturnAttr>()) { NoReturnEdge = true; HasFakeEdge = true; } } } // FIXME: Add noreturn message sends. if (NoReturnEdge == false) HasPlainEdge = true; } if (!HasPlainEdge) { if (HasLiveReturn) return NeverFallThrough; return NeverFallThroughOrReturn; } if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn) return MaybeFallThrough; // This says AlwaysFallThrough for calls to functions that are not marked // noreturn, that don't return. If people would like this warning to be more // accurate, such functions should be marked as noreturn. return AlwaysFallThrough; } namespace { struct CheckFallThroughDiagnostics { unsigned diag_MaybeFallThrough_HasNoReturn; unsigned diag_MaybeFallThrough_ReturnsNonVoid; unsigned diag_AlwaysFallThrough_HasNoReturn; unsigned diag_AlwaysFallThrough_ReturnsNonVoid; unsigned diag_NeverFallThroughOrReturn; bool funMode; SourceLocation FuncLoc; static CheckFallThroughDiagnostics MakeForFunction(const Decl *Func) { CheckFallThroughDiagnostics D; D.FuncLoc = Func->getLocation(); D.diag_MaybeFallThrough_HasNoReturn = diag::warn_falloff_noreturn_function; D.diag_MaybeFallThrough_ReturnsNonVoid = diag::warn_maybe_falloff_nonvoid_function; D.diag_AlwaysFallThrough_HasNoReturn = diag::warn_falloff_noreturn_function; D.diag_AlwaysFallThrough_ReturnsNonVoid = diag::warn_falloff_nonvoid_function; // Don't suggest that virtual functions be marked "noreturn", since they // might be overridden by non-noreturn functions. bool isVirtualMethod = false; if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Func)) isVirtualMethod = Method->isVirtual(); if (!isVirtualMethod) D.diag_NeverFallThroughOrReturn = diag::warn_suggest_noreturn_function; else D.diag_NeverFallThroughOrReturn = 0; D.funMode = true; return D; } static CheckFallThroughDiagnostics MakeForBlock() { CheckFallThroughDiagnostics D; D.diag_MaybeFallThrough_HasNoReturn = diag::err_noreturn_block_has_return_expr; D.diag_MaybeFallThrough_ReturnsNonVoid = diag::err_maybe_falloff_nonvoid_block; D.diag_AlwaysFallThrough_HasNoReturn = diag::err_noreturn_block_has_return_expr; D.diag_AlwaysFallThrough_ReturnsNonVoid = diag::err_falloff_nonvoid_block; D.diag_NeverFallThroughOrReturn = diag::warn_suggest_noreturn_block; D.funMode = false; return D; } bool checkDiagnostics(Diagnostic &D, bool ReturnsVoid, bool HasNoReturn) const { if (funMode) { return (ReturnsVoid || D.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function, FuncLoc) == Diagnostic::Ignored) && (!HasNoReturn || D.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr, FuncLoc) == Diagnostic::Ignored) && (!ReturnsVoid || D.getDiagnosticLevel(diag::warn_suggest_noreturn_block, FuncLoc) == Diagnostic::Ignored); } // For blocks. return ReturnsVoid && !HasNoReturn && (!ReturnsVoid || D.getDiagnosticLevel(diag::warn_suggest_noreturn_block, FuncLoc) == Diagnostic::Ignored); } }; } /// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a /// function that should return a value. Check that we don't fall off the end /// of a noreturn function. We assume that functions and blocks not marked /// noreturn will return. static void CheckFallThroughForBody(Sema &S, const Decl *D, const Stmt *Body, const BlockExpr *blkExpr, const CheckFallThroughDiagnostics& CD, AnalysisContext &AC) { bool ReturnsVoid = false; bool HasNoReturn = false; if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { ReturnsVoid = FD->getResultType()->isVoidType(); HasNoReturn = FD->hasAttr<NoReturnAttr>() || FD->getType()->getAs<FunctionType>()->getNoReturnAttr(); } else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) { ReturnsVoid = MD->getResultType()->isVoidType(); HasNoReturn = MD->hasAttr<NoReturnAttr>(); } else if (isa<BlockDecl>(D)) { QualType BlockTy = blkExpr->getType(); if (const FunctionType *FT = BlockTy->getPointeeType()->getAs<FunctionType>()) { if (FT->getResultType()->isVoidType()) ReturnsVoid = true; if (FT->getNoReturnAttr()) HasNoReturn = true; } } Diagnostic &Diags = S.getDiagnostics(); // Short circuit for compilation speed. if (CD.checkDiagnostics(Diags, ReturnsVoid, HasNoReturn)) return; // FIXME: Function try block if (const CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) { switch (CheckFallThrough(AC)) { case UnknownFallThrough: break; case MaybeFallThrough: if (HasNoReturn) S.Diag(Compound->getRBracLoc(), CD.diag_MaybeFallThrough_HasNoReturn); else if (!ReturnsVoid) S.Diag(Compound->getRBracLoc(), CD.diag_MaybeFallThrough_ReturnsNonVoid); break; case AlwaysFallThrough: if (HasNoReturn) S.Diag(Compound->getRBracLoc(), CD.diag_AlwaysFallThrough_HasNoReturn); else if (!ReturnsVoid) S.Diag(Compound->getRBracLoc(), CD.diag_AlwaysFallThrough_ReturnsNonVoid); break; case NeverFallThroughOrReturn: if (ReturnsVoid && !HasNoReturn && CD.diag_NeverFallThroughOrReturn) S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn); break; case NeverFallThrough: break; } } } //===----------------------------------------------------------------------===// // -Wuninitialized //===----------------------------------------------------------------------===// namespace { /// ContainsReference - A visitor class to search for references to /// a particular declaration (the needle) within any evaluated component of an /// expression (recursively). class ContainsReference : public EvaluatedExprVisitor<ContainsReference> { bool FoundReference; const DeclRefExpr *Needle; public: ContainsReference(ASTContext &Context, const DeclRefExpr *Needle) : EvaluatedExprVisitor<ContainsReference>(Context), FoundReference(false), Needle(Needle) {} void VisitExpr(Expr *E) { // Stop evaluating if we already have a reference. if (FoundReference) return; EvaluatedExprVisitor<ContainsReference>::VisitExpr(E); } void VisitDeclRefExpr(DeclRefExpr *E) { if (E == Needle) FoundReference = true; else EvaluatedExprVisitor<ContainsReference>::VisitDeclRefExpr(E); } bool doesContainReference() const { return FoundReference; } }; } /// DiagnoseUninitializedUse -- Helper function for diagnosing uses of an /// uninitialized variable. This manages the different forms of diagnostic /// emitted for particular types of uses. Returns true if the use was diagnosed /// as a warning. If a pariticular use is one we omit warnings for, returns /// false. static bool DiagnoseUninitializedUse(Sema &S, const VarDecl *VD, const Expr *E, bool isAlwaysUninit) { bool isSelfInit = false; if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { if (isAlwaysUninit) { // Inspect the initializer of the variable declaration which is // being referenced prior to its initialization. We emit // specialized diagnostics for self-initialization, and we // specifically avoid warning about self references which take the // form of: // // int x = x; // // This is used to indicate to GCC that 'x' is intentionally left // uninitialized. Proven code paths which access 'x' in // an uninitialized state after this will still warn. // // TODO: Should we suppress maybe-uninitialized warnings for // variables initialized in this way? if (const Expr *Initializer = VD->getInit()) { if (DRE == Initializer->IgnoreParenImpCasts()) return false; ContainsReference CR(S.Context, DRE); CR.Visit(const_cast<Expr*>(Initializer)); isSelfInit = CR.doesContainReference(); } if (isSelfInit) { S.Diag(DRE->getLocStart(), diag::warn_uninit_self_reference_in_init) << VD->getDeclName() << VD->getLocation() << DRE->getSourceRange(); } else { S.Diag(DRE->getLocStart(), diag::warn_uninit_var) << VD->getDeclName() << DRE->getSourceRange(); } } else { S.Diag(DRE->getLocStart(), diag::warn_maybe_uninit_var) << VD->getDeclName() << DRE->getSourceRange(); } } else { const BlockExpr *BE = cast<BlockExpr>(E); S.Diag(BE->getLocStart(), isAlwaysUninit ? diag::warn_uninit_var_captured_by_block : diag::warn_maybe_uninit_var_captured_by_block) << VD->getDeclName(); } // Report where the variable was declared when the use wasn't within // the initializer of that declaration. if (!isSelfInit) S.Diag(VD->getLocStart(), diag::note_uninit_var_def) << VD->getDeclName(); return true; } static void SuggestInitializationFixit(Sema &S, const VarDecl *VD) { // Don't issue a fixit if there is already an initializer. if (VD->getInit()) return; // Suggest possible initialization (if any). const char *initialization = 0; QualType VariableTy = VD->getType().getCanonicalType(); if (VariableTy->isObjCObjectPointerType() || VariableTy->isBlockPointerType()) { // Check if 'nil' is defined. if (S.PP.getMacroInfo(&S.getASTContext().Idents.get("nil"))) initialization = " = nil"; else initialization = " = 0"; } else if (VariableTy->isRealFloatingType()) initialization = " = 0.0"; else if (VariableTy->isBooleanType() && S.Context.getLangOptions().CPlusPlus) initialization = " = false"; else if (VariableTy->isEnumeralType()) return; else if (VariableTy->isPointerType() || VariableTy->isMemberPointerType()) { // Check if 'NULL' is defined. if (S.PP.getMacroInfo(&S.getASTContext().Idents.get("NULL"))) initialization = " = NULL"; else initialization = " = 0"; } else if (VariableTy->isScalarType()) initialization = " = 0"; if (initialization) { SourceLocation loc = S.PP.getLocForEndOfToken(VD->getLocEnd()); S.Diag(loc, diag::note_var_fixit_add_initialization) << FixItHint::CreateInsertion(loc, initialization); } } typedef std::pair<const Expr*, bool> UninitUse; namespace { struct SLocSort { bool operator()(const UninitUse &a, const UninitUse &b) { SourceLocation aLoc = a.first->getLocStart(); SourceLocation bLoc = b.first->getLocStart(); return aLoc.getRawEncoding() < bLoc.getRawEncoding(); } }; class UninitValsDiagReporter : public UninitVariablesHandler { Sema &S; typedef llvm::SmallVector<UninitUse, 2> UsesVec; typedef llvm::DenseMap<const VarDecl *, UsesVec*> UsesMap; UsesMap *uses; public: UninitValsDiagReporter(Sema &S) : S(S), uses(0) {} ~UninitValsDiagReporter() { flushDiagnostics(); } void handleUseOfUninitVariable(const Expr *ex, const VarDecl *vd, bool isAlwaysUninit) { if (!uses) uses = new UsesMap(); UsesVec *&vec = (*uses)[vd]; if (!vec) vec = new UsesVec(); vec->push_back(std::make_pair(ex, isAlwaysUninit)); } void flushDiagnostics() { if (!uses) return; for (UsesMap::iterator i = uses->begin(), e = uses->end(); i != e; ++i) { const VarDecl *vd = i->first; UsesVec *vec = i->second; bool fixitIssued = false; // Sort the uses by their SourceLocations. While not strictly // guaranteed to produce them in line/column order, this will provide // a stable ordering. std::sort(vec->begin(), vec->end(), SLocSort()); for (UsesVec::iterator vi = vec->begin(), ve = vec->end(); vi != ve; ++vi) { if (!DiagnoseUninitializedUse(S, vd, vi->first, /*isAlwaysUninit=*/vi->second)) continue; // Suggest a fixit hint the first time we diagnose a use of a variable. if (!fixitIssued) { SuggestInitializationFixit(S, vd); fixitIssued = true; } } delete vec; } delete uses; } }; } //===----------------------------------------------------------------------===// // AnalysisBasedWarnings - Worker object used by Sema to execute analysis-based // warnings on a function, method, or block. //===----------------------------------------------------------------------===// clang::sema::AnalysisBasedWarnings::Policy::Policy() { enableCheckFallThrough = 1; enableCheckUnreachable = 0; } clang::sema::AnalysisBasedWarnings::AnalysisBasedWarnings(Sema &s) : S(s), NumFunctionsAnalyzed(0), NumFunctionsWithBadCFGs(0), NumCFGBlocks(0), MaxCFGBlocksPerFunction(0), NumUninitAnalysisFunctions(0), NumUninitAnalysisVariables(0), MaxUninitAnalysisVariablesPerFunction(0), NumUninitAnalysisBlockVisits(0), MaxUninitAnalysisBlockVisitsPerFunction(0) { Diagnostic &D = S.getDiagnostics(); DefaultPolicy.enableCheckUnreachable = (unsigned) (D.getDiagnosticLevel(diag::warn_unreachable, SourceLocation()) != Diagnostic::Ignored); } static void flushDiagnostics(Sema &S, sema::FunctionScopeInfo *fscope) { for (llvm::SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator i = fscope->PossiblyUnreachableDiags.begin(), e = fscope->PossiblyUnreachableDiags.end(); i != e; ++i) { const sema::PossiblyUnreachableDiag &D = *i; S.Diag(D.Loc, D.PD); } } void clang::sema:: AnalysisBasedWarnings::IssueWarnings(sema::AnalysisBasedWarnings::Policy P, sema::FunctionScopeInfo *fscope, const Decl *D, const BlockExpr *blkExpr) { // We avoid doing analysis-based warnings when there are errors for // two reasons: // (1) The CFGs often can't be constructed (if the body is invalid), so // don't bother trying. // (2) The code already has problems; running the analysis just takes more // time. Diagnostic &Diags = S.getDiagnostics(); // Do not do any analysis for declarations in system headers if we are // going to just ignore them. if (Diags.getSuppressSystemWarnings() && S.SourceMgr.isInSystemHeader(D->getLocation())) return; // For code in dependent contexts, we'll do this at instantiation time. if (cast<DeclContext>(D)->isDependentContext()) return; if (Diags.hasErrorOccurred() || Diags.hasFatalErrorOccurred()) { // Flush out any possibly unreachable diagnostics. flushDiagnostics(S, fscope); return; } const Stmt *Body = D->getBody(); assert(Body); // Don't generate EH edges for CallExprs as we'd like to avoid the n^2 // explosion for destrutors that can result and the compile time hit. AnalysisContext AC(D, 0, /*useUnoptimizedCFG=*/false, /*addehedges=*/false, /*addImplicitDtors=*/true, /*addInitializers=*/true); // Force that certain expressions appear as CFGElements in the CFG. This // is used to speed up various analyses. // FIXME: This isn't the right factoring. This is here for initial // prototyping, but we need a way for analyses to say what expressions they // expect to always be CFGElements and then fill in the BuildOptions // appropriately. This is essentially a layering violation. CFG::BuildOptions &buildOptions = AC.getCFGBuildOptions(); buildOptions.setAlwaysAdd(Stmt::BinaryOperatorClass); buildOptions.setAlwaysAdd(Stmt::BlockExprClass); buildOptions.setAlwaysAdd(Stmt::CStyleCastExprClass); buildOptions.setAlwaysAdd(Stmt::DeclRefExprClass); buildOptions.setAlwaysAdd(Stmt::ImplicitCastExprClass); buildOptions.setAlwaysAdd(Stmt::UnaryOperatorClass); // Emit delayed diagnostics. if (!fscope->PossiblyUnreachableDiags.empty()) { bool analyzed = false; // Register the expressions with the CFGBuilder. for (llvm::SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator i = fscope->PossiblyUnreachableDiags.begin(), e = fscope->PossiblyUnreachableDiags.end(); i != e; ++i) { if (const Stmt *stmt = i->stmt) AC.registerForcedBlockExpression(stmt); } if (AC.getCFG()) { analyzed = true; for (llvm::SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator i = fscope->PossiblyUnreachableDiags.begin(), e = fscope->PossiblyUnreachableDiags.end(); i != e; ++i) { const sema::PossiblyUnreachableDiag &D = *i; bool processed = false; if (const Stmt *stmt = i->stmt) { const CFGBlock *block = AC.getBlockForRegisteredExpression(stmt); assert(block); if (CFGReverseBlockReachabilityAnalysis *cra = AC.getCFGReachablityAnalysis()) { // Can this block be reached from the entrance? if (cra->isReachable(&AC.getCFG()->getEntry(), block)) S.Diag(D.Loc, D.PD); processed = true; } } if (!processed) { // Emit the warning anyway if we cannot map to a basic block. S.Diag(D.Loc, D.PD); } } } if (!analyzed) flushDiagnostics(S, fscope); } // Warning: check missing 'return' if (P.enableCheckFallThrough) { const CheckFallThroughDiagnostics &CD = (isa<BlockDecl>(D) ? CheckFallThroughDiagnostics::MakeForBlock() : CheckFallThroughDiagnostics::MakeForFunction(D)); CheckFallThroughForBody(S, D, Body, blkExpr, CD, AC); } // Warning: check for unreachable code if (P.enableCheckUnreachable) CheckUnreachable(S, AC); if (Diags.getDiagnosticLevel(diag::warn_uninit_var, D->getLocStart()) != Diagnostic::Ignored || Diags.getDiagnosticLevel(diag::warn_maybe_uninit_var, D->getLocStart()) != Diagnostic::Ignored) { if (CFG *cfg = AC.getCFG()) { UninitValsDiagReporter reporter(S); UninitVariablesAnalysisStats stats; std::memset(&stats, 0, sizeof(UninitVariablesAnalysisStats)); runUninitializedVariablesAnalysis(*cast<DeclContext>(D), *cfg, AC, reporter, stats); if (S.CollectStats && stats.NumVariablesAnalyzed > 0) { ++NumUninitAnalysisFunctions; NumUninitAnalysisVariables += stats.NumVariablesAnalyzed; NumUninitAnalysisBlockVisits += stats.NumBlockVisits; MaxUninitAnalysisVariablesPerFunction = std::max(MaxUninitAnalysisVariablesPerFunction, stats.NumVariablesAnalyzed); MaxUninitAnalysisBlockVisitsPerFunction = std::max(MaxUninitAnalysisBlockVisitsPerFunction, stats.NumBlockVisits); } } } // Collect statistics about the CFG if it was built. if (S.CollectStats && AC.isCFGBuilt()) { ++NumFunctionsAnalyzed; if (CFG *cfg = AC.getCFG()) { // If we successfully built a CFG for this context, record some more // detail information about it. NumCFGBlocks += cfg->getNumBlockIDs(); MaxCFGBlocksPerFunction = std::max(MaxCFGBlocksPerFunction, cfg->getNumBlockIDs()); } else { ++NumFunctionsWithBadCFGs; } } } void clang::sema::AnalysisBasedWarnings::PrintStats() const { llvm::errs() << "\n*** Analysis Based Warnings Stats:\n"; unsigned NumCFGsBuilt = NumFunctionsAnalyzed - NumFunctionsWithBadCFGs; unsigned AvgCFGBlocksPerFunction = !NumCFGsBuilt ? 0 : NumCFGBlocks/NumCFGsBuilt; llvm::errs() << NumFunctionsAnalyzed << " functions analyzed (" << NumFunctionsWithBadCFGs << " w/o CFGs).\n" << " " << NumCFGBlocks << " CFG blocks built.\n" << " " << AvgCFGBlocksPerFunction << " average CFG blocks per function.\n" << " " << MaxCFGBlocksPerFunction << " max CFG blocks per function.\n"; unsigned AvgUninitVariablesPerFunction = !NumUninitAnalysisFunctions ? 0 : NumUninitAnalysisVariables/NumUninitAnalysisFunctions; unsigned AvgUninitBlockVisitsPerFunction = !NumUninitAnalysisFunctions ? 0 : NumUninitAnalysisBlockVisits/NumUninitAnalysisFunctions; llvm::errs() << NumUninitAnalysisFunctions << " functions analyzed for uninitialiazed variables\n" << " " << NumUninitAnalysisVariables << " variables analyzed.\n" << " " << AvgUninitVariablesPerFunction << " average variables per function.\n" << " " << MaxUninitAnalysisVariablesPerFunction << " max variables per function.\n" << " " << NumUninitAnalysisBlockVisits << " block visits.\n" << " " << AvgUninitBlockVisitsPerFunction << " average block visits per function.\n" << " " << MaxUninitAnalysisBlockVisitsPerFunction << " max block visits per function.\n"; }