//===--- Parser.cpp - C Language Family Parser ----------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Parser interfaces. // //===----------------------------------------------------------------------===// #include "clang/Parse/Parser.h" #include "clang/Parse/ParseDiagnostic.h" #include "clang/Sema/DeclSpec.h" #include "clang/Sema/Scope.h" #include "clang/Sema/ParsedTemplate.h" #include "llvm/Support/raw_ostream.h" #include "RAIIObjectsForParser.h" #include "ParsePragma.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/ASTConsumer.h" using namespace clang; Parser::Parser(Preprocessor &pp, Sema &actions) : PP(pp), Actions(actions), Diags(PP.getDiagnostics()), GreaterThanIsOperator(true), ColonIsSacred(false), InMessageExpression(false), TemplateParameterDepth(0) { Tok.setKind(tok::eof); Actions.CurScope = 0; NumCachedScopes = 0; ParenCount = BracketCount = BraceCount = 0; ObjCImpDecl = 0; // Add #pragma handlers. These are removed and destroyed in the // destructor. AlignHandler.reset(new PragmaAlignHandler(actions)); PP.AddPragmaHandler(AlignHandler.get()); GCCVisibilityHandler.reset(new PragmaGCCVisibilityHandler(actions)); PP.AddPragmaHandler("GCC", GCCVisibilityHandler.get()); OptionsHandler.reset(new PragmaOptionsHandler(actions)); PP.AddPragmaHandler(OptionsHandler.get()); PackHandler.reset(new PragmaPackHandler(actions)); PP.AddPragmaHandler(PackHandler.get()); MSStructHandler.reset(new PragmaMSStructHandler(actions)); PP.AddPragmaHandler(MSStructHandler.get()); UnusedHandler.reset(new PragmaUnusedHandler(actions, *this)); PP.AddPragmaHandler(UnusedHandler.get()); WeakHandler.reset(new PragmaWeakHandler(actions)); PP.AddPragmaHandler(WeakHandler.get()); FPContractHandler.reset(new PragmaFPContractHandler(actions, *this)); PP.AddPragmaHandler("STDC", FPContractHandler.get()); if (getLang().OpenCL) { OpenCLExtensionHandler.reset( new PragmaOpenCLExtensionHandler(actions, *this)); PP.AddPragmaHandler("OPENCL", OpenCLExtensionHandler.get()); PP.AddPragmaHandler("OPENCL", FPContractHandler.get()); } PP.setCodeCompletionHandler(*this); } /// If a crash happens while the parser is active, print out a line indicating /// what the current token is. void PrettyStackTraceParserEntry::print(llvm::raw_ostream &OS) const { const Token &Tok = P.getCurToken(); if (Tok.is(tok::eof)) { OS << "<eof> parser at end of file\n"; return; } if (Tok.getLocation().isInvalid()) { OS << "<unknown> parser at unknown location\n"; return; } const Preprocessor &PP = P.getPreprocessor(); Tok.getLocation().print(OS, PP.getSourceManager()); if (Tok.isAnnotation()) OS << ": at annotation token \n"; else OS << ": current parser token '" << PP.getSpelling(Tok) << "'\n"; } DiagnosticBuilder Parser::Diag(SourceLocation Loc, unsigned DiagID) { return Diags.Report(Loc, DiagID); } DiagnosticBuilder Parser::Diag(const Token &Tok, unsigned DiagID) { return Diag(Tok.getLocation(), DiagID); } /// \brief Emits a diagnostic suggesting parentheses surrounding a /// given range. /// /// \param Loc The location where we'll emit the diagnostic. /// \param Loc The kind of diagnostic to emit. /// \param ParenRange Source range enclosing code that should be parenthesized. void Parser::SuggestParentheses(SourceLocation Loc, unsigned DK, SourceRange ParenRange) { SourceLocation EndLoc = PP.getLocForEndOfToken(ParenRange.getEnd()); if (!ParenRange.getEnd().isFileID() || EndLoc.isInvalid()) { // We can't display the parentheses, so just dig the // warning/error and return. Diag(Loc, DK); return; } Diag(Loc, DK) << FixItHint::CreateInsertion(ParenRange.getBegin(), "(") << FixItHint::CreateInsertion(EndLoc, ")"); } /// MatchRHSPunctuation - For punctuation with a LHS and RHS (e.g. '['/']'), /// this helper function matches and consumes the specified RHS token if /// present. If not present, it emits a corresponding diagnostic indicating /// that the parser failed to match the RHS of the token at LHSLoc. SourceLocation Parser::MatchRHSPunctuation(tok::TokenKind RHSTok, SourceLocation LHSLoc) { if (Tok.is(RHSTok)) return ConsumeAnyToken(); SourceLocation R = Tok.getLocation(); const char *LHSName = "unknown"; diag::kind DID = diag::err_parse_error; switch (RHSTok) { default: break; case tok::r_paren : LHSName = "("; DID = diag::err_expected_rparen; break; case tok::r_brace : LHSName = "{"; DID = diag::err_expected_rbrace; break; case tok::r_square: LHSName = "["; DID = diag::err_expected_rsquare; break; case tok::greater: LHSName = "<"; DID = diag::err_expected_greater; break; case tok::greatergreatergreater: LHSName = "<<<"; DID = diag::err_expected_ggg; break; } Diag(Tok, DID); Diag(LHSLoc, diag::note_matching) << LHSName; SkipUntil(RHSTok); return R; } static bool IsCommonTypo(tok::TokenKind ExpectedTok, const Token &Tok) { switch (ExpectedTok) { case tok::semi: return Tok.is(tok::colon); // : for ; default: return false; } } /// ExpectAndConsume - The parser expects that 'ExpectedTok' is next in the /// input. If so, it is consumed and false is returned. /// /// If the input is malformed, this emits the specified diagnostic. Next, if /// SkipToTok is specified, it calls SkipUntil(SkipToTok). Finally, true is /// returned. bool Parser::ExpectAndConsume(tok::TokenKind ExpectedTok, unsigned DiagID, const char *Msg, tok::TokenKind SkipToTok) { if (Tok.is(ExpectedTok) || Tok.is(tok::code_completion)) { ConsumeAnyToken(); return false; } // Detect common single-character typos and resume. if (IsCommonTypo(ExpectedTok, Tok)) { SourceLocation Loc = Tok.getLocation(); Diag(Loc, DiagID) << Msg << FixItHint::CreateReplacement(SourceRange(Loc), getTokenSimpleSpelling(ExpectedTok)); ConsumeAnyToken(); // Pretend there wasn't a problem. return false; } const char *Spelling = 0; SourceLocation EndLoc = PP.getLocForEndOfToken(PrevTokLocation); if (EndLoc.isValid() && (Spelling = tok::getTokenSimpleSpelling(ExpectedTok))) { // Show what code to insert to fix this problem. Diag(EndLoc, DiagID) << Msg << FixItHint::CreateInsertion(EndLoc, Spelling); } else Diag(Tok, DiagID) << Msg; if (SkipToTok != tok::unknown) SkipUntil(SkipToTok); return true; } bool Parser::ExpectAndConsumeSemi(unsigned DiagID) { if (Tok.is(tok::semi) || Tok.is(tok::code_completion)) { ConsumeAnyToken(); return false; } if ((Tok.is(tok::r_paren) || Tok.is(tok::r_square)) && NextToken().is(tok::semi)) { Diag(Tok, diag::err_extraneous_token_before_semi) << PP.getSpelling(Tok) << FixItHint::CreateRemoval(Tok.getLocation()); ConsumeAnyToken(); // The ')' or ']'. ConsumeToken(); // The ';'. return false; } return ExpectAndConsume(tok::semi, DiagID); } //===----------------------------------------------------------------------===// // Error recovery. //===----------------------------------------------------------------------===// /// SkipUntil - Read tokens until we get to the specified token, then consume /// it (unless DontConsume is true). Because we cannot guarantee that the /// token will ever occur, this skips to the next token, or to some likely /// good stopping point. If StopAtSemi is true, skipping will stop at a ';' /// character. /// /// If SkipUntil finds the specified token, it returns true, otherwise it /// returns false. bool Parser::SkipUntil(const tok::TokenKind *Toks, unsigned NumToks, bool StopAtSemi, bool DontConsume, bool StopAtCodeCompletion) { // We always want this function to skip at least one token if the first token // isn't T and if not at EOF. bool isFirstTokenSkipped = true; while (1) { // If we found one of the tokens, stop and return true. for (unsigned i = 0; i != NumToks; ++i) { if (Tok.is(Toks[i])) { if (DontConsume) { // Noop, don't consume the token. } else { ConsumeAnyToken(); } return true; } } switch (Tok.getKind()) { case tok::eof: // Ran out of tokens. return false; case tok::code_completion: if (!StopAtCodeCompletion) ConsumeToken(); return false; case tok::l_paren: // Recursively skip properly-nested parens. ConsumeParen(); SkipUntil(tok::r_paren, false, false, StopAtCodeCompletion); break; case tok::l_square: // Recursively skip properly-nested square brackets. ConsumeBracket(); SkipUntil(tok::r_square, false, false, StopAtCodeCompletion); break; case tok::l_brace: // Recursively skip properly-nested braces. ConsumeBrace(); SkipUntil(tok::r_brace, false, false, StopAtCodeCompletion); break; // Okay, we found a ']' or '}' or ')', which we think should be balanced. // Since the user wasn't looking for this token (if they were, it would // already be handled), this isn't balanced. If there is a LHS token at a // higher level, we will assume that this matches the unbalanced token // and return it. Otherwise, this is a spurious RHS token, which we skip. case tok::r_paren: if (ParenCount && !isFirstTokenSkipped) return false; // Matches something. ConsumeParen(); break; case tok::r_square: if (BracketCount && !isFirstTokenSkipped) return false; // Matches something. ConsumeBracket(); break; case tok::r_brace: if (BraceCount && !isFirstTokenSkipped) return false; // Matches something. ConsumeBrace(); break; case tok::string_literal: case tok::wide_string_literal: ConsumeStringToken(); break; case tok::at: return false; case tok::semi: if (StopAtSemi) return false; // FALL THROUGH. default: // Skip this token. ConsumeToken(); break; } isFirstTokenSkipped = false; } } //===----------------------------------------------------------------------===// // Scope manipulation //===----------------------------------------------------------------------===// /// EnterScope - Start a new scope. void Parser::EnterScope(unsigned ScopeFlags) { if (NumCachedScopes) { Scope *N = ScopeCache[--NumCachedScopes]; N->Init(getCurScope(), ScopeFlags); Actions.CurScope = N; } else { Actions.CurScope = new Scope(getCurScope(), ScopeFlags, Diags); } } /// ExitScope - Pop a scope off the scope stack. void Parser::ExitScope() { assert(getCurScope() && "Scope imbalance!"); // Inform the actions module that this scope is going away if there are any // decls in it. if (!getCurScope()->decl_empty()) Actions.ActOnPopScope(Tok.getLocation(), getCurScope()); Scope *OldScope = getCurScope(); Actions.CurScope = OldScope->getParent(); if (NumCachedScopes == ScopeCacheSize) delete OldScope; else ScopeCache[NumCachedScopes++] = OldScope; } /// Set the flags for the current scope to ScopeFlags. If ManageFlags is false, /// this object does nothing. Parser::ParseScopeFlags::ParseScopeFlags(Parser *Self, unsigned ScopeFlags, bool ManageFlags) : CurScope(ManageFlags ? Self->getCurScope() : 0) { if (CurScope) { OldFlags = CurScope->getFlags(); CurScope->setFlags(ScopeFlags); } } /// Restore the flags for the current scope to what they were before this /// object overrode them. Parser::ParseScopeFlags::~ParseScopeFlags() { if (CurScope) CurScope->setFlags(OldFlags); } //===----------------------------------------------------------------------===// // C99 6.9: External Definitions. //===----------------------------------------------------------------------===// Parser::~Parser() { // If we still have scopes active, delete the scope tree. delete getCurScope(); Actions.CurScope = 0; // Free the scope cache. for (unsigned i = 0, e = NumCachedScopes; i != e; ++i) delete ScopeCache[i]; // Free LateParsedTemplatedFunction nodes. for (LateParsedTemplateMapT::iterator it = LateParsedTemplateMap.begin(); it != LateParsedTemplateMap.end(); ++it) delete it->second; // Remove the pragma handlers we installed. PP.RemovePragmaHandler(AlignHandler.get()); AlignHandler.reset(); PP.RemovePragmaHandler("GCC", GCCVisibilityHandler.get()); GCCVisibilityHandler.reset(); PP.RemovePragmaHandler(OptionsHandler.get()); OptionsHandler.reset(); PP.RemovePragmaHandler(PackHandler.get()); PackHandler.reset(); PP.RemovePragmaHandler(MSStructHandler.get()); MSStructHandler.reset(); PP.RemovePragmaHandler(UnusedHandler.get()); UnusedHandler.reset(); PP.RemovePragmaHandler(WeakHandler.get()); WeakHandler.reset(); if (getLang().OpenCL) { PP.RemovePragmaHandler("OPENCL", OpenCLExtensionHandler.get()); OpenCLExtensionHandler.reset(); PP.RemovePragmaHandler("OPENCL", FPContractHandler.get()); } PP.RemovePragmaHandler("STDC", FPContractHandler.get()); FPContractHandler.reset(); PP.clearCodeCompletionHandler(); } /// Initialize - Warm up the parser. /// void Parser::Initialize() { // Create the translation unit scope. Install it as the current scope. assert(getCurScope() == 0 && "A scope is already active?"); EnterScope(Scope::DeclScope); Actions.ActOnTranslationUnitScope(getCurScope()); // Prime the lexer look-ahead. ConsumeToken(); if (Tok.is(tok::eof) && !getLang().CPlusPlus) // Empty source file is an extension in C Diag(Tok, diag::ext_empty_source_file); // Initialization for Objective-C context sensitive keywords recognition. // Referenced in Parser::ParseObjCTypeQualifierList. if (getLang().ObjC1) { ObjCTypeQuals[objc_in] = &PP.getIdentifierTable().get("in"); ObjCTypeQuals[objc_out] = &PP.getIdentifierTable().get("out"); ObjCTypeQuals[objc_inout] = &PP.getIdentifierTable().get("inout"); ObjCTypeQuals[objc_oneway] = &PP.getIdentifierTable().get("oneway"); ObjCTypeQuals[objc_bycopy] = &PP.getIdentifierTable().get("bycopy"); ObjCTypeQuals[objc_byref] = &PP.getIdentifierTable().get("byref"); } Ident_final = 0; Ident_override = 0; Ident_super = &PP.getIdentifierTable().get("super"); if (getLang().AltiVec) { Ident_vector = &PP.getIdentifierTable().get("vector"); Ident_pixel = &PP.getIdentifierTable().get("pixel"); } Ident_introduced = 0; Ident_deprecated = 0; Ident_obsoleted = 0; Ident_unavailable = 0; Ident__exception_code = Ident__exception_info = Ident__abnormal_termination = 0; Ident___exception_code = Ident___exception_info = Ident___abnormal_termination = 0; Ident_GetExceptionCode = Ident_GetExceptionInfo = Ident_AbnormalTermination = 0; if(getLang().Borland) { Ident__exception_info = PP.getIdentifierInfo("_exception_info"); Ident___exception_info = PP.getIdentifierInfo("__exception_info"); Ident_GetExceptionInfo = PP.getIdentifierInfo("GetExceptionInformation"); Ident__exception_code = PP.getIdentifierInfo("_exception_code"); Ident___exception_code = PP.getIdentifierInfo("__exception_code"); Ident_GetExceptionCode = PP.getIdentifierInfo("GetExceptionCode"); Ident__abnormal_termination = PP.getIdentifierInfo("_abnormal_termination"); Ident___abnormal_termination = PP.getIdentifierInfo("__abnormal_termination"); Ident_AbnormalTermination = PP.getIdentifierInfo("AbnormalTermination"); PP.SetPoisonReason(Ident__exception_code,diag::err_seh___except_block); PP.SetPoisonReason(Ident___exception_code,diag::err_seh___except_block); PP.SetPoisonReason(Ident_GetExceptionCode,diag::err_seh___except_block); PP.SetPoisonReason(Ident__exception_info,diag::err_seh___except_filter); PP.SetPoisonReason(Ident___exception_info,diag::err_seh___except_filter); PP.SetPoisonReason(Ident_GetExceptionInfo,diag::err_seh___except_filter); PP.SetPoisonReason(Ident__abnormal_termination,diag::err_seh___finally_block); PP.SetPoisonReason(Ident___abnormal_termination,diag::err_seh___finally_block); PP.SetPoisonReason(Ident_AbnormalTermination,diag::err_seh___finally_block); } } /// ParseTopLevelDecl - Parse one top-level declaration, return whatever the /// action tells us to. This returns true if the EOF was encountered. bool Parser::ParseTopLevelDecl(DeclGroupPtrTy &Result) { DelayedCleanupPoint CleanupRAII(TopLevelDeclCleanupPool); while (Tok.is(tok::annot_pragma_unused)) HandlePragmaUnused(); Result = DeclGroupPtrTy(); if (Tok.is(tok::eof)) { // Late template parsing can begin. if (getLang().DelayedTemplateParsing) Actions.SetLateTemplateParser(LateTemplateParserCallback, this); Actions.ActOnEndOfTranslationUnit(); return true; } ParsedAttributesWithRange attrs(AttrFactory); MaybeParseCXX0XAttributes(attrs); MaybeParseMicrosoftAttributes(attrs); Result = ParseExternalDeclaration(attrs); return false; } /// ParseTranslationUnit: /// translation-unit: [C99 6.9] /// external-declaration /// translation-unit external-declaration void Parser::ParseTranslationUnit() { Initialize(); DeclGroupPtrTy Res; while (!ParseTopLevelDecl(Res)) /*parse them all*/; ExitScope(); assert(getCurScope() == 0 && "Scope imbalance!"); } /// ParseExternalDeclaration: /// /// external-declaration: [C99 6.9], declaration: [C++ dcl.dcl] /// function-definition /// declaration /// [C++0x] empty-declaration /// [GNU] asm-definition /// [GNU] __extension__ external-declaration /// [OBJC] objc-class-definition /// [OBJC] objc-class-declaration /// [OBJC] objc-alias-declaration /// [OBJC] objc-protocol-definition /// [OBJC] objc-method-definition /// [OBJC] @end /// [C++] linkage-specification /// [GNU] asm-definition: /// simple-asm-expr ';' /// /// [C++0x] empty-declaration: /// ';' /// /// [C++0x/GNU] 'extern' 'template' declaration Parser::DeclGroupPtrTy Parser::ParseExternalDeclaration(ParsedAttributesWithRange &attrs, ParsingDeclSpec *DS) { DelayedCleanupPoint CleanupRAII(TopLevelDeclCleanupPool); ParenBraceBracketBalancer BalancerRAIIObj(*this); Decl *SingleDecl = 0; switch (Tok.getKind()) { case tok::semi: if (!getLang().CPlusPlus0x) Diag(Tok, diag::ext_top_level_semi) << FixItHint::CreateRemoval(Tok.getLocation()); ConsumeToken(); // TODO: Invoke action for top-level semicolon. return DeclGroupPtrTy(); case tok::r_brace: Diag(Tok, diag::err_expected_external_declaration); ConsumeBrace(); return DeclGroupPtrTy(); case tok::eof: Diag(Tok, diag::err_expected_external_declaration); return DeclGroupPtrTy(); case tok::kw___extension__: { // __extension__ silences extension warnings in the subexpression. ExtensionRAIIObject O(Diags); // Use RAII to do this. ConsumeToken(); return ParseExternalDeclaration(attrs); } case tok::kw_asm: { ProhibitAttributes(attrs); SourceLocation StartLoc = Tok.getLocation(); SourceLocation EndLoc; ExprResult Result(ParseSimpleAsm(&EndLoc)); ExpectAndConsume(tok::semi, diag::err_expected_semi_after, "top-level asm block"); if (Result.isInvalid()) return DeclGroupPtrTy(); SingleDecl = Actions.ActOnFileScopeAsmDecl(Result.get(), StartLoc, EndLoc); break; } case tok::at: // @ is not a legal token unless objc is enabled, no need to check for ObjC. /// FIXME: ParseObjCAtDirectives should return a DeclGroup for things like /// @class foo, bar; SingleDecl = ParseObjCAtDirectives(); break; case tok::minus: case tok::plus: if (!getLang().ObjC1) { Diag(Tok, diag::err_expected_external_declaration); ConsumeToken(); return DeclGroupPtrTy(); } SingleDecl = ParseObjCMethodDefinition(); break; case tok::code_completion: Actions.CodeCompleteOrdinaryName(getCurScope(), ObjCImpDecl? Sema::PCC_ObjCImplementation : Sema::PCC_Namespace); ConsumeCodeCompletionToken(); return ParseExternalDeclaration(attrs); case tok::kw_using: case tok::kw_namespace: case tok::kw_typedef: case tok::kw_template: case tok::kw_export: // As in 'export template' case tok::kw_static_assert: case tok::kw__Static_assert: // A function definition cannot start with a these keywords. { SourceLocation DeclEnd; StmtVector Stmts(Actions); return ParseDeclaration(Stmts, Declarator::FileContext, DeclEnd, attrs); } case tok::kw_static: // Parse (then ignore) 'static' prior to a template instantiation. This is // a GCC extension that we intentionally do not support. if (getLang().CPlusPlus && NextToken().is(tok::kw_template)) { Diag(ConsumeToken(), diag::warn_static_inline_explicit_inst_ignored) << 0; SourceLocation DeclEnd; StmtVector Stmts(Actions); return ParseDeclaration(Stmts, Declarator::FileContext, DeclEnd, attrs); } goto dont_know; case tok::kw_inline: if (getLang().CPlusPlus) { tok::TokenKind NextKind = NextToken().getKind(); // Inline namespaces. Allowed as an extension even in C++03. if (NextKind == tok::kw_namespace) { SourceLocation DeclEnd; StmtVector Stmts(Actions); return ParseDeclaration(Stmts, Declarator::FileContext, DeclEnd, attrs); } // Parse (then ignore) 'inline' prior to a template instantiation. This is // a GCC extension that we intentionally do not support. if (NextKind == tok::kw_template) { Diag(ConsumeToken(), diag::warn_static_inline_explicit_inst_ignored) << 1; SourceLocation DeclEnd; StmtVector Stmts(Actions); return ParseDeclaration(Stmts, Declarator::FileContext, DeclEnd, attrs); } } goto dont_know; case tok::kw_extern: if (getLang().CPlusPlus && NextToken().is(tok::kw_template)) { // Extern templates SourceLocation ExternLoc = ConsumeToken(); SourceLocation TemplateLoc = ConsumeToken(); SourceLocation DeclEnd; return Actions.ConvertDeclToDeclGroup( ParseExplicitInstantiation(ExternLoc, TemplateLoc, DeclEnd)); } // FIXME: Detect C++ linkage specifications here? goto dont_know; case tok::kw___if_exists: case tok::kw___if_not_exists: ParseMicrosoftIfExistsExternalDeclaration(); return DeclGroupPtrTy(); default: dont_know: // We can't tell whether this is a function-definition or declaration yet. if (DS) { DS->takeAttributesFrom(attrs); return ParseDeclarationOrFunctionDefinition(*DS); } else { return ParseDeclarationOrFunctionDefinition(attrs); } } // This routine returns a DeclGroup, if the thing we parsed only contains a // single decl, convert it now. return Actions.ConvertDeclToDeclGroup(SingleDecl); } /// \brief Determine whether the current token, if it occurs after a /// declarator, continues a declaration or declaration list. bool Parser::isDeclarationAfterDeclarator() { // Check for '= delete' or '= default' if (getLang().CPlusPlus && Tok.is(tok::equal)) { const Token &KW = NextToken(); if (KW.is(tok::kw_default) || KW.is(tok::kw_delete)) return false; } return Tok.is(tok::equal) || // int X()= -> not a function def Tok.is(tok::comma) || // int X(), -> not a function def Tok.is(tok::semi) || // int X(); -> not a function def Tok.is(tok::kw_asm) || // int X() __asm__ -> not a function def Tok.is(tok::kw___attribute) || // int X() __attr__ -> not a function def (getLang().CPlusPlus && Tok.is(tok::l_paren)); // int X(0) -> not a function def [C++] } /// \brief Determine whether the current token, if it occurs after a /// declarator, indicates the start of a function definition. bool Parser::isStartOfFunctionDefinition(const ParsingDeclarator &Declarator) { assert(Declarator.isFunctionDeclarator() && "Isn't a function declarator"); if (Tok.is(tok::l_brace)) // int X() {} return true; // Handle K&R C argument lists: int X(f) int f; {} if (!getLang().CPlusPlus && Declarator.getFunctionTypeInfo().isKNRPrototype()) return isDeclarationSpecifier(); if (getLang().CPlusPlus && Tok.is(tok::equal)) { const Token &KW = NextToken(); return KW.is(tok::kw_default) || KW.is(tok::kw_delete); } return Tok.is(tok::colon) || // X() : Base() {} (used for ctors) Tok.is(tok::kw_try); // X() try { ... } } /// ParseDeclarationOrFunctionDefinition - Parse either a function-definition or /// a declaration. We can't tell which we have until we read up to the /// compound-statement in function-definition. TemplateParams, if /// non-NULL, provides the template parameters when we're parsing a /// C++ template-declaration. /// /// function-definition: [C99 6.9.1] /// decl-specs declarator declaration-list[opt] compound-statement /// [C90] function-definition: [C99 6.7.1] - implicit int result /// [C90] decl-specs[opt] declarator declaration-list[opt] compound-statement /// /// declaration: [C99 6.7] /// declaration-specifiers init-declarator-list[opt] ';' /// [!C99] init-declarator-list ';' [TODO: warn in c99 mode] /// [OMP] threadprivate-directive [TODO] /// Parser::DeclGroupPtrTy Parser::ParseDeclarationOrFunctionDefinition(ParsingDeclSpec &DS, AccessSpecifier AS) { // Parse the common declaration-specifiers piece. ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS, DSC_top_level); // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };" // declaration-specifiers init-declarator-list[opt] ';' if (Tok.is(tok::semi)) { ConsumeToken(); Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS, DS); DS.complete(TheDecl); return Actions.ConvertDeclToDeclGroup(TheDecl); } // ObjC2 allows prefix attributes on class interfaces and protocols. // FIXME: This still needs better diagnostics. We should only accept // attributes here, no types, etc. if (getLang().ObjC2 && Tok.is(tok::at)) { SourceLocation AtLoc = ConsumeToken(); // the "@" if (!Tok.isObjCAtKeyword(tok::objc_interface) && !Tok.isObjCAtKeyword(tok::objc_protocol)) { Diag(Tok, diag::err_objc_unexpected_attr); SkipUntil(tok::semi); // FIXME: better skip? return DeclGroupPtrTy(); } DS.abort(); const char *PrevSpec = 0; unsigned DiagID; if (DS.SetTypeSpecType(DeclSpec::TST_unspecified, AtLoc, PrevSpec, DiagID)) Diag(AtLoc, DiagID) << PrevSpec; Decl *TheDecl = 0; if (Tok.isObjCAtKeyword(tok::objc_protocol)) TheDecl = ParseObjCAtProtocolDeclaration(AtLoc, DS.getAttributes()); else TheDecl = ParseObjCAtInterfaceDeclaration(AtLoc, DS.getAttributes()); return Actions.ConvertDeclToDeclGroup(TheDecl); } // If the declspec consisted only of 'extern' and we have a string // literal following it, this must be a C++ linkage specifier like // 'extern "C"'. if (Tok.is(tok::string_literal) && getLang().CPlusPlus && DS.getStorageClassSpec() == DeclSpec::SCS_extern && DS.getParsedSpecifiers() == DeclSpec::PQ_StorageClassSpecifier) { Decl *TheDecl = ParseLinkage(DS, Declarator::FileContext); return Actions.ConvertDeclToDeclGroup(TheDecl); } return ParseDeclGroup(DS, Declarator::FileContext, true); } Parser::DeclGroupPtrTy Parser::ParseDeclarationOrFunctionDefinition(ParsedAttributes &attrs, AccessSpecifier AS) { ParsingDeclSpec DS(*this); DS.takeAttributesFrom(attrs); return ParseDeclarationOrFunctionDefinition(DS, AS); } /// ParseFunctionDefinition - We parsed and verified that the specified /// Declarator is well formed. If this is a K&R-style function, read the /// parameters declaration-list, then start the compound-statement. /// /// function-definition: [C99 6.9.1] /// decl-specs declarator declaration-list[opt] compound-statement /// [C90] function-definition: [C99 6.7.1] - implicit int result /// [C90] decl-specs[opt] declarator declaration-list[opt] compound-statement /// [C++] function-definition: [C++ 8.4] /// decl-specifier-seq[opt] declarator ctor-initializer[opt] /// function-body /// [C++] function-definition: [C++ 8.4] /// decl-specifier-seq[opt] declarator function-try-block /// Decl *Parser::ParseFunctionDefinition(ParsingDeclarator &D, const ParsedTemplateInfo &TemplateInfo) { // Poison the SEH identifiers so they are flagged as illegal in function bodies PoisonSEHIdentifiersRAIIObject PoisonSEHIdentifiers(*this, true); const DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); // If this is C90 and the declspecs were completely missing, fudge in an // implicit int. We do this here because this is the only place where // declaration-specifiers are completely optional in the grammar. if (getLang().ImplicitInt && D.getDeclSpec().isEmpty()) { const char *PrevSpec; unsigned DiagID; D.getMutableDeclSpec().SetTypeSpecType(DeclSpec::TST_int, D.getIdentifierLoc(), PrevSpec, DiagID); D.SetRangeBegin(D.getDeclSpec().getSourceRange().getBegin()); } // If this declaration was formed with a K&R-style identifier list for the // arguments, parse declarations for all of the args next. // int foo(a,b) int a; float b; {} if (FTI.isKNRPrototype()) ParseKNRParamDeclarations(D); // We should have either an opening brace or, in a C++ constructor, // we may have a colon. if (Tok.isNot(tok::l_brace) && (!getLang().CPlusPlus || (Tok.isNot(tok::colon) && Tok.isNot(tok::kw_try) && Tok.isNot(tok::equal)))) { Diag(Tok, diag::err_expected_fn_body); // Skip over garbage, until we get to '{'. Don't eat the '{'. SkipUntil(tok::l_brace, true, true); // If we didn't find the '{', bail out. if (Tok.isNot(tok::l_brace)) return 0; } // In delayed template parsing mode, for function template we consume the // tokens and store them for late parsing at the end of the translation unit. if (getLang().DelayedTemplateParsing && TemplateInfo.Kind == ParsedTemplateInfo::Template) { MultiTemplateParamsArg TemplateParameterLists(Actions, TemplateInfo.TemplateParams->data(), TemplateInfo.TemplateParams->size()); ParseScope BodyScope(this, Scope::FnScope|Scope::DeclScope); Scope *ParentScope = getCurScope()->getParent(); Decl *DP = Actions.HandleDeclarator(ParentScope, D, move(TemplateParameterLists), /*IsFunctionDefinition=*/true); D.complete(DP); D.getMutableDeclSpec().abort(); if (DP) { LateParsedTemplatedFunction *LPT = new LateParsedTemplatedFunction(this, DP); FunctionDecl *FnD = 0; if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(DP)) FnD = FunTmpl->getTemplatedDecl(); else FnD = cast<FunctionDecl>(DP); Actions.CheckForFunctionRedefinition(FnD); LateParsedTemplateMap[FnD] = LPT; Actions.MarkAsLateParsedTemplate(FnD); LexTemplateFunctionForLateParsing(LPT->Toks); } else { CachedTokens Toks; LexTemplateFunctionForLateParsing(Toks); } return DP; } // Enter a scope for the function body. ParseScope BodyScope(this, Scope::FnScope|Scope::DeclScope); // Tell the actions module that we have entered a function definition with the // specified Declarator for the function. Decl *Res = TemplateInfo.TemplateParams? Actions.ActOnStartOfFunctionTemplateDef(getCurScope(), MultiTemplateParamsArg(Actions, TemplateInfo.TemplateParams->data(), TemplateInfo.TemplateParams->size()), D) : Actions.ActOnStartOfFunctionDef(getCurScope(), D); // Break out of the ParsingDeclarator context before we parse the body. D.complete(Res); // Break out of the ParsingDeclSpec context, too. This const_cast is // safe because we're always the sole owner. D.getMutableDeclSpec().abort(); if (Tok.is(tok::equal)) { assert(getLang().CPlusPlus && "Only C++ function definitions have '='"); ConsumeToken(); Actions.ActOnFinishFunctionBody(Res, 0, false); bool Delete = false; SourceLocation KWLoc; if (Tok.is(tok::kw_delete)) { if (!getLang().CPlusPlus0x) Diag(Tok, diag::warn_deleted_function_accepted_as_extension); KWLoc = ConsumeToken(); Actions.SetDeclDeleted(Res, KWLoc); Delete = true; } else if (Tok.is(tok::kw_default)) { if (!getLang().CPlusPlus0x) Diag(Tok, diag::warn_defaulted_function_accepted_as_extension); KWLoc = ConsumeToken(); Actions.SetDeclDefaulted(Res, KWLoc); } else { llvm_unreachable("function definition after = not 'delete' or 'default'"); } if (Tok.is(tok::comma)) { Diag(KWLoc, diag::err_default_delete_in_multiple_declaration) << Delete; SkipUntil(tok::semi); } else { ExpectAndConsume(tok::semi, diag::err_expected_semi_after, Delete ? "delete" : "default", tok::semi); } return Res; } if (Tok.is(tok::kw_try)) return ParseFunctionTryBlock(Res, BodyScope); // If we have a colon, then we're probably parsing a C++ // ctor-initializer. if (Tok.is(tok::colon)) { ParseConstructorInitializer(Res); // Recover from error. if (!Tok.is(tok::l_brace)) { BodyScope.Exit(); Actions.ActOnFinishFunctionBody(Res, 0); return Res; } } else Actions.ActOnDefaultCtorInitializers(Res); return ParseFunctionStatementBody(Res, BodyScope); } /// ParseKNRParamDeclarations - Parse 'declaration-list[opt]' which provides /// types for a function with a K&R-style identifier list for arguments. void Parser::ParseKNRParamDeclarations(Declarator &D) { // We know that the top-level of this declarator is a function. DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); // Enter function-declaration scope, limiting any declarators to the // function prototype scope, including parameter declarators. ParseScope PrototypeScope(this, Scope::FunctionPrototypeScope|Scope::DeclScope); // Read all the argument declarations. while (isDeclarationSpecifier()) { SourceLocation DSStart = Tok.getLocation(); // Parse the common declaration-specifiers piece. DeclSpec DS(AttrFactory); ParseDeclarationSpecifiers(DS); // C99 6.9.1p6: 'each declaration in the declaration list shall have at // least one declarator'. // NOTE: GCC just makes this an ext-warn. It's not clear what it does with // the declarations though. It's trivial to ignore them, really hard to do // anything else with them. if (Tok.is(tok::semi)) { Diag(DSStart, diag::err_declaration_does_not_declare_param); ConsumeToken(); continue; } // C99 6.9.1p6: Declarations shall contain no storage-class specifiers other // than register. if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified && DS.getStorageClassSpec() != DeclSpec::SCS_register) { Diag(DS.getStorageClassSpecLoc(), diag::err_invalid_storage_class_in_func_decl); DS.ClearStorageClassSpecs(); } if (DS.isThreadSpecified()) { Diag(DS.getThreadSpecLoc(), diag::err_invalid_storage_class_in_func_decl); DS.ClearStorageClassSpecs(); } // Parse the first declarator attached to this declspec. Declarator ParmDeclarator(DS, Declarator::KNRTypeListContext); ParseDeclarator(ParmDeclarator); // Handle the full declarator list. while (1) { // If attributes are present, parse them. MaybeParseGNUAttributes(ParmDeclarator); // Ask the actions module to compute the type for this declarator. Decl *Param = Actions.ActOnParamDeclarator(getCurScope(), ParmDeclarator); if (Param && // A missing identifier has already been diagnosed. ParmDeclarator.getIdentifier()) { // Scan the argument list looking for the correct param to apply this // type. for (unsigned i = 0; ; ++i) { // C99 6.9.1p6: those declarators shall declare only identifiers from // the identifier list. if (i == FTI.NumArgs) { Diag(ParmDeclarator.getIdentifierLoc(), diag::err_no_matching_param) << ParmDeclarator.getIdentifier(); break; } if (FTI.ArgInfo[i].Ident == ParmDeclarator.getIdentifier()) { // Reject redefinitions of parameters. if (FTI.ArgInfo[i].Param) { Diag(ParmDeclarator.getIdentifierLoc(), diag::err_param_redefinition) << ParmDeclarator.getIdentifier(); } else { FTI.ArgInfo[i].Param = Param; } break; } } } // If we don't have a comma, it is either the end of the list (a ';') or // an error, bail out. if (Tok.isNot(tok::comma)) break; // Consume the comma. ConsumeToken(); // Parse the next declarator. ParmDeclarator.clear(); ParseDeclarator(ParmDeclarator); } if (Tok.is(tok::semi)) { ConsumeToken(); } else { Diag(Tok, diag::err_parse_error); // Skip to end of block or statement SkipUntil(tok::semi, true); if (Tok.is(tok::semi)) ConsumeToken(); } } // The actions module must verify that all arguments were declared. Actions.ActOnFinishKNRParamDeclarations(getCurScope(), D, Tok.getLocation()); } /// ParseAsmStringLiteral - This is just a normal string-literal, but is not /// allowed to be a wide string, and is not subject to character translation. /// /// [GNU] asm-string-literal: /// string-literal /// Parser::ExprResult Parser::ParseAsmStringLiteral() { if (!isTokenStringLiteral()) { Diag(Tok, diag::err_expected_string_literal); return ExprError(); } ExprResult Res(ParseStringLiteralExpression()); if (Res.isInvalid()) return move(Res); // TODO: Diagnose: wide string literal in 'asm' return move(Res); } /// ParseSimpleAsm /// /// [GNU] simple-asm-expr: /// 'asm' '(' asm-string-literal ')' /// Parser::ExprResult Parser::ParseSimpleAsm(SourceLocation *EndLoc) { assert(Tok.is(tok::kw_asm) && "Not an asm!"); SourceLocation Loc = ConsumeToken(); if (Tok.is(tok::kw_volatile)) { // Remove from the end of 'asm' to the end of 'volatile'. SourceRange RemovalRange(PP.getLocForEndOfToken(Loc), PP.getLocForEndOfToken(Tok.getLocation())); Diag(Tok, diag::warn_file_asm_volatile) << FixItHint::CreateRemoval(RemovalRange); ConsumeToken(); } if (Tok.isNot(tok::l_paren)) { Diag(Tok, diag::err_expected_lparen_after) << "asm"; return ExprError(); } Loc = ConsumeParen(); ExprResult Result(ParseAsmStringLiteral()); if (Result.isInvalid()) { SkipUntil(tok::r_paren, true, true); if (EndLoc) *EndLoc = Tok.getLocation(); ConsumeAnyToken(); } else { Loc = MatchRHSPunctuation(tok::r_paren, Loc); if (EndLoc) *EndLoc = Loc; } return move(Result); } /// \brief Get the TemplateIdAnnotation from the token and put it in the /// cleanup pool so that it gets destroyed when parsing the current top level /// declaration is finished. TemplateIdAnnotation *Parser::takeTemplateIdAnnotation(const Token &tok) { assert(tok.is(tok::annot_template_id) && "Expected template-id token"); TemplateIdAnnotation * Id = static_cast<TemplateIdAnnotation *>(tok.getAnnotationValue()); TopLevelDeclCleanupPool.delayMemberFunc< TemplateIdAnnotation, &TemplateIdAnnotation::Destroy>(Id); return Id; } /// TryAnnotateTypeOrScopeToken - If the current token position is on a /// typename (possibly qualified in C++) or a C++ scope specifier not followed /// by a typename, TryAnnotateTypeOrScopeToken will replace one or more tokens /// with a single annotation token representing the typename or C++ scope /// respectively. /// This simplifies handling of C++ scope specifiers and allows efficient /// backtracking without the need to re-parse and resolve nested-names and /// typenames. /// It will mainly be called when we expect to treat identifiers as typenames /// (if they are typenames). For example, in C we do not expect identifiers /// inside expressions to be treated as typenames so it will not be called /// for expressions in C. /// The benefit for C/ObjC is that a typename will be annotated and /// Actions.getTypeName will not be needed to be called again (e.g. getTypeName /// will not be called twice, once to check whether we have a declaration /// specifier, and another one to get the actual type inside /// ParseDeclarationSpecifiers). /// /// This returns true if an error occurred. /// /// Note that this routine emits an error if you call it with ::new or ::delete /// as the current tokens, so only call it in contexts where these are invalid. bool Parser::TryAnnotateTypeOrScopeToken(bool EnteringContext) { assert((Tok.is(tok::identifier) || Tok.is(tok::coloncolon) || Tok.is(tok::kw_typename) || Tok.is(tok::annot_cxxscope)) && "Cannot be a type or scope token!"); if (Tok.is(tok::kw_typename)) { // Parse a C++ typename-specifier, e.g., "typename T::type". // // typename-specifier: // 'typename' '::' [opt] nested-name-specifier identifier // 'typename' '::' [opt] nested-name-specifier template [opt] // simple-template-id SourceLocation TypenameLoc = ConsumeToken(); CXXScopeSpec SS; if (ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/ParsedType(), false, 0, /*IsTypename*/true)) return true; if (!SS.isSet()) { if (getLang().Microsoft) Diag(Tok.getLocation(), diag::warn_expected_qualified_after_typename); else Diag(Tok.getLocation(), diag::err_expected_qualified_after_typename); return true; } TypeResult Ty; if (Tok.is(tok::identifier)) { // FIXME: check whether the next token is '<', first! Ty = Actions.ActOnTypenameType(getCurScope(), TypenameLoc, SS, *Tok.getIdentifierInfo(), Tok.getLocation()); } else if (Tok.is(tok::annot_template_id)) { TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); if (TemplateId->Kind == TNK_Function_template) { Diag(Tok, diag::err_typename_refers_to_non_type_template) << Tok.getAnnotationRange(); return true; } ASTTemplateArgsPtr TemplateArgsPtr(Actions, TemplateId->getTemplateArgs(), TemplateId->NumArgs); Ty = Actions.ActOnTypenameType(getCurScope(), TypenameLoc, SS, /*FIXME:*/SourceLocation(), TemplateId->Template, TemplateId->TemplateNameLoc, TemplateId->LAngleLoc, TemplateArgsPtr, TemplateId->RAngleLoc); } else { Diag(Tok, diag::err_expected_type_name_after_typename) << SS.getRange(); return true; } SourceLocation EndLoc = Tok.getLastLoc(); Tok.setKind(tok::annot_typename); setTypeAnnotation(Tok, Ty.isInvalid() ? ParsedType() : Ty.get()); Tok.setAnnotationEndLoc(EndLoc); Tok.setLocation(TypenameLoc); PP.AnnotateCachedTokens(Tok); return false; } // Remembers whether the token was originally a scope annotation. bool wasScopeAnnotation = Tok.is(tok::annot_cxxscope); CXXScopeSpec SS; if (getLang().CPlusPlus) if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(), EnteringContext)) return true; if (Tok.is(tok::identifier)) { // Determine whether the identifier is a type name. if (ParsedType Ty = Actions.getTypeName(*Tok.getIdentifierInfo(), Tok.getLocation(), getCurScope(), &SS, false, NextToken().is(tok::period), ParsedType(), /*NonTrivialTypeSourceInfo*/true)) { // This is a typename. Replace the current token in-place with an // annotation type token. Tok.setKind(tok::annot_typename); setTypeAnnotation(Tok, Ty); Tok.setAnnotationEndLoc(Tok.getLocation()); if (SS.isNotEmpty()) // it was a C++ qualified type name. Tok.setLocation(SS.getBeginLoc()); // In case the tokens were cached, have Preprocessor replace // them with the annotation token. PP.AnnotateCachedTokens(Tok); return false; } if (!getLang().CPlusPlus) { // If we're in C, we can't have :: tokens at all (the lexer won't return // them). If the identifier is not a type, then it can't be scope either, // just early exit. return false; } // If this is a template-id, annotate with a template-id or type token. if (NextToken().is(tok::less)) { TemplateTy Template; UnqualifiedId TemplateName; TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation()); bool MemberOfUnknownSpecialization; if (TemplateNameKind TNK = Actions.isTemplateName(getCurScope(), SS, /*hasTemplateKeyword=*/false, TemplateName, /*ObjectType=*/ ParsedType(), EnteringContext, Template, MemberOfUnknownSpecialization)) { // Consume the identifier. ConsumeToken(); if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateName)) { // If an unrecoverable error occurred, we need to return true here, // because the token stream is in a damaged state. We may not return // a valid identifier. return true; } } } // The current token, which is either an identifier or a // template-id, is not part of the annotation. Fall through to // push that token back into the stream and complete the C++ scope // specifier annotation. } if (Tok.is(tok::annot_template_id)) { TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); if (TemplateId->Kind == TNK_Type_template) { // A template-id that refers to a type was parsed into a // template-id annotation in a context where we weren't allowed // to produce a type annotation token. Update the template-id // annotation token to a type annotation token now. AnnotateTemplateIdTokenAsType(); return false; } } if (SS.isEmpty()) return false; // A C++ scope specifier that isn't followed by a typename. // Push the current token back into the token stream (or revert it if it is // cached) and use an annotation scope token for current token. if (PP.isBacktrackEnabled()) PP.RevertCachedTokens(1); else PP.EnterToken(Tok); Tok.setKind(tok::annot_cxxscope); Tok.setAnnotationValue(Actions.SaveNestedNameSpecifierAnnotation(SS)); Tok.setAnnotationRange(SS.getRange()); // In case the tokens were cached, have Preprocessor replace them // with the annotation token. We don't need to do this if we've // just reverted back to the state we were in before being called. if (!wasScopeAnnotation) PP.AnnotateCachedTokens(Tok); return false; } /// TryAnnotateScopeToken - Like TryAnnotateTypeOrScopeToken but only /// annotates C++ scope specifiers and template-ids. This returns /// true if the token was annotated or there was an error that could not be /// recovered from. /// /// Note that this routine emits an error if you call it with ::new or ::delete /// as the current tokens, so only call it in contexts where these are invalid. bool Parser::TryAnnotateCXXScopeToken(bool EnteringContext) { assert(getLang().CPlusPlus && "Call sites of this function should be guarded by checking for C++"); assert((Tok.is(tok::identifier) || Tok.is(tok::coloncolon) || (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)))&& "Cannot be a type or scope token!"); CXXScopeSpec SS; if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(), EnteringContext)) return true; if (SS.isEmpty()) return false; // Push the current token back into the token stream (or revert it if it is // cached) and use an annotation scope token for current token. if (PP.isBacktrackEnabled()) PP.RevertCachedTokens(1); else PP.EnterToken(Tok); Tok.setKind(tok::annot_cxxscope); Tok.setAnnotationValue(Actions.SaveNestedNameSpecifierAnnotation(SS)); Tok.setAnnotationRange(SS.getRange()); // In case the tokens were cached, have Preprocessor replace them with the // annotation token. PP.AnnotateCachedTokens(Tok); return false; } bool Parser::isTokenEqualOrMistypedEqualEqual(unsigned DiagID) { if (Tok.is(tok::equalequal)) { // We have '==' in a context that we would expect a '='. // The user probably made a typo, intending to type '='. Emit diagnostic, // fixit hint to turn '==' -> '=' and continue as if the user typed '='. Diag(Tok, DiagID) << FixItHint::CreateReplacement(SourceRange(Tok.getLocation()), getTokenSimpleSpelling(tok::equal)); return true; } return Tok.is(tok::equal); } void Parser::CodeCompletionRecovery() { for (Scope *S = getCurScope(); S; S = S->getParent()) { if (S->getFlags() & Scope::FnScope) { Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_RecoveryInFunction); return; } if (S->getFlags() & Scope::ClassScope) { Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Class); return; } } Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Namespace); } // Anchor the Parser::FieldCallback vtable to this translation unit. // We use a spurious method instead of the destructor because // destroying FieldCallbacks can actually be slightly // performance-sensitive. void Parser::FieldCallback::_anchor() { } // Code-completion pass-through functions void Parser::CodeCompleteDirective(bool InConditional) { Actions.CodeCompletePreprocessorDirective(InConditional); } void Parser::CodeCompleteInConditionalExclusion() { Actions.CodeCompleteInPreprocessorConditionalExclusion(getCurScope()); } void Parser::CodeCompleteMacroName(bool IsDefinition) { Actions.CodeCompletePreprocessorMacroName(IsDefinition); } void Parser::CodeCompletePreprocessorExpression() { Actions.CodeCompletePreprocessorExpression(); } void Parser::CodeCompleteMacroArgument(IdentifierInfo *Macro, MacroInfo *MacroInfo, unsigned ArgumentIndex) { Actions.CodeCompletePreprocessorMacroArgument(getCurScope(), Macro, MacroInfo, ArgumentIndex); } void Parser::CodeCompleteNaturalLanguage() { Actions.CodeCompleteNaturalLanguage(); } bool Parser::ParseMicrosoftIfExistsCondition(bool& Result) { assert((Tok.is(tok::kw___if_exists) || Tok.is(tok::kw___if_not_exists)) && "Expected '__if_exists' or '__if_not_exists'"); Token Condition = Tok; SourceLocation IfExistsLoc = ConsumeToken(); SourceLocation LParenLoc = Tok.getLocation(); if (Tok.isNot(tok::l_paren)) { Diag(Tok, diag::err_expected_lparen_after) << IfExistsLoc; SkipUntil(tok::semi); return true; } ConsumeParen(); // eat the '('. // Parse nested-name-specifier. CXXScopeSpec SS; ParseOptionalCXXScopeSpecifier(SS, ParsedType(), false); // Check nested-name specifier. if (SS.isInvalid()) { SkipUntil(tok::semi); return true; } // Parse the unqualified-id. UnqualifiedId Name; if (ParseUnqualifiedId(SS, false, true, true, ParsedType(), Name)) { SkipUntil(tok::semi); return true; } if (MatchRHSPunctuation(tok::r_paren, LParenLoc).isInvalid()) return true; // Check if the symbol exists. bool Exist = Actions.CheckMicrosoftIfExistsSymbol(SS, Name); Result = ((Condition.is(tok::kw___if_exists) && Exist) || (Condition.is(tok::kw___if_not_exists) && !Exist)); return false; } void Parser::ParseMicrosoftIfExistsExternalDeclaration() { bool Result; if (ParseMicrosoftIfExistsCondition(Result)) return; if (Tok.isNot(tok::l_brace)) { Diag(Tok, diag::err_expected_lbrace); return; } ConsumeBrace(); // Condition is false skip all inside the {}. if (!Result) { SkipUntil(tok::r_brace, false); return; } // Condition is true, parse the declaration. while (Tok.isNot(tok::r_brace)) { ParsedAttributesWithRange attrs(AttrFactory); MaybeParseCXX0XAttributes(attrs); MaybeParseMicrosoftAttributes(attrs); DeclGroupPtrTy Result = ParseExternalDeclaration(attrs); if (Result && !getCurScope()->getParent()) Actions.getASTConsumer().HandleTopLevelDecl(Result.get()); } if (Tok.isNot(tok::r_brace)) { Diag(Tok, diag::err_expected_rbrace); return; } ConsumeBrace(); }