//===--- InitPreprocessor.cpp - PP initialization code. ---------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the clang::InitializePreprocessor function. // //===----------------------------------------------------------------------===// #include "clang/Basic/Version.h" #include "clang/Frontend/Utils.h" #include "clang/Basic/MacroBuilder.h" #include "clang/Basic/TargetInfo.h" #include "clang/Frontend/FrontendDiagnostic.h" #include "clang/Frontend/FrontendOptions.h" #include "clang/Frontend/PreprocessorOptions.h" #include "clang/Lex/Preprocessor.h" #include "clang/Basic/FileManager.h" #include "clang/Basic/SourceManager.h" #include "llvm/ADT/APFloat.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Path.h" using namespace clang; // Append a #define line to Buf for Macro. Macro should be of the form XXX, // in which case we emit "#define XXX 1" or "XXX=Y z W" in which case we emit // "#define XXX Y z W". To get a #define with no value, use "XXX=". static void DefineBuiltinMacro(MacroBuilder &Builder, llvm::StringRef Macro, Diagnostic &Diags) { std::pair<llvm::StringRef, llvm::StringRef> MacroPair = Macro.split('='); llvm::StringRef MacroName = MacroPair.first; llvm::StringRef MacroBody = MacroPair.second; if (MacroName.size() != Macro.size()) { // Per GCC -D semantics, the macro ends at \n if it exists. llvm::StringRef::size_type End = MacroBody.find_first_of("\n\r"); if (End != llvm::StringRef::npos) Diags.Report(diag::warn_fe_macro_contains_embedded_newline) << MacroName; Builder.defineMacro(MacroName, MacroBody.substr(0, End)); } else { // Push "macroname 1". Builder.defineMacro(Macro); } } std::string clang::NormalizeDashIncludePath(llvm::StringRef File, FileManager &FileMgr) { // Implicit include paths should be resolved relative to the current // working directory first, and then use the regular header search // mechanism. The proper way to handle this is to have the // predefines buffer located at the current working directory, but // it has no file entry. For now, workaround this by using an // absolute path if we find the file here, and otherwise letting // header search handle it. llvm::SmallString<128> Path(File); llvm::sys::fs::make_absolute(Path); bool exists; if (llvm::sys::fs::exists(Path.str(), exists) || !exists) Path = File; else if (exists) FileMgr.getFile(File); return Lexer::Stringify(Path.str()); } /// AddImplicitInclude - Add an implicit #include of the specified file to the /// predefines buffer. static void AddImplicitInclude(MacroBuilder &Builder, llvm::StringRef File, FileManager &FileMgr) { Builder.append("#include \"" + llvm::Twine(NormalizeDashIncludePath(File, FileMgr)) + "\""); } static void AddImplicitIncludeMacros(MacroBuilder &Builder, llvm::StringRef File, FileManager &FileMgr) { Builder.append("#__include_macros \"" + llvm::Twine(NormalizeDashIncludePath(File, FileMgr)) + "\""); // Marker token to stop the __include_macros fetch loop. Builder.append("##"); // ##? } /// AddImplicitIncludePTH - Add an implicit #include using the original file /// used to generate a PTH cache. static void AddImplicitIncludePTH(MacroBuilder &Builder, Preprocessor &PP, llvm::StringRef ImplicitIncludePTH) { PTHManager *P = PP.getPTHManager(); // Null check 'P' in the corner case where it couldn't be created. const char *OriginalFile = P ? P->getOriginalSourceFile() : 0; if (!OriginalFile) { PP.getDiagnostics().Report(diag::err_fe_pth_file_has_no_source_header) << ImplicitIncludePTH; return; } AddImplicitInclude(Builder, OriginalFile, PP.getFileManager()); } /// PickFP - This is used to pick a value based on the FP semantics of the /// specified FP model. template <typename T> static T PickFP(const llvm::fltSemantics *Sem, T IEEESingleVal, T IEEEDoubleVal, T X87DoubleExtendedVal, T PPCDoubleDoubleVal, T IEEEQuadVal) { if (Sem == (const llvm::fltSemantics*)&llvm::APFloat::IEEEsingle) return IEEESingleVal; if (Sem == (const llvm::fltSemantics*)&llvm::APFloat::IEEEdouble) return IEEEDoubleVal; if (Sem == (const llvm::fltSemantics*)&llvm::APFloat::x87DoubleExtended) return X87DoubleExtendedVal; if (Sem == (const llvm::fltSemantics*)&llvm::APFloat::PPCDoubleDouble) return PPCDoubleDoubleVal; assert(Sem == (const llvm::fltSemantics*)&llvm::APFloat::IEEEquad); return IEEEQuadVal; } static void DefineFloatMacros(MacroBuilder &Builder, llvm::StringRef Prefix, const llvm::fltSemantics *Sem) { const char *DenormMin, *Epsilon, *Max, *Min; DenormMin = PickFP(Sem, "1.40129846e-45F", "4.9406564584124654e-324", "3.64519953188247460253e-4951L", "4.94065645841246544176568792868221e-324L", "6.47517511943802511092443895822764655e-4966L"); int Digits = PickFP(Sem, 6, 15, 18, 31, 33); Epsilon = PickFP(Sem, "1.19209290e-7F", "2.2204460492503131e-16", "1.08420217248550443401e-19L", "4.94065645841246544176568792868221e-324L", "1.92592994438723585305597794258492732e-34L"); int MantissaDigits = PickFP(Sem, 24, 53, 64, 106, 113); int Min10Exp = PickFP(Sem, -37, -307, -4931, -291, -4931); int Max10Exp = PickFP(Sem, 38, 308, 4932, 308, 4932); int MinExp = PickFP(Sem, -125, -1021, -16381, -968, -16381); int MaxExp = PickFP(Sem, 128, 1024, 16384, 1024, 16384); Min = PickFP(Sem, "1.17549435e-38F", "2.2250738585072014e-308", "3.36210314311209350626e-4932L", "2.00416836000897277799610805135016e-292L", "3.36210314311209350626267781732175260e-4932L"); Max = PickFP(Sem, "3.40282347e+38F", "1.7976931348623157e+308", "1.18973149535723176502e+4932L", "1.79769313486231580793728971405301e+308L", "1.18973149535723176508575932662800702e+4932L"); llvm::SmallString<32> DefPrefix; DefPrefix = "__"; DefPrefix += Prefix; DefPrefix += "_"; Builder.defineMacro(DefPrefix + "DENORM_MIN__", DenormMin); Builder.defineMacro(DefPrefix + "HAS_DENORM__"); Builder.defineMacro(DefPrefix + "DIG__", llvm::Twine(Digits)); Builder.defineMacro(DefPrefix + "EPSILON__", llvm::Twine(Epsilon)); Builder.defineMacro(DefPrefix + "HAS_INFINITY__"); Builder.defineMacro(DefPrefix + "HAS_QUIET_NAN__"); Builder.defineMacro(DefPrefix + "MANT_DIG__", llvm::Twine(MantissaDigits)); Builder.defineMacro(DefPrefix + "MAX_10_EXP__", llvm::Twine(Max10Exp)); Builder.defineMacro(DefPrefix + "MAX_EXP__", llvm::Twine(MaxExp)); Builder.defineMacro(DefPrefix + "MAX__", llvm::Twine(Max)); Builder.defineMacro(DefPrefix + "MIN_10_EXP__","("+llvm::Twine(Min10Exp)+")"); Builder.defineMacro(DefPrefix + "MIN_EXP__", "("+llvm::Twine(MinExp)+")"); Builder.defineMacro(DefPrefix + "MIN__", llvm::Twine(Min)); } /// DefineTypeSize - Emit a macro to the predefines buffer that declares a macro /// named MacroName with the max value for a type with width 'TypeWidth' a /// signedness of 'isSigned' and with a value suffix of 'ValSuffix' (e.g. LL). static void DefineTypeSize(llvm::StringRef MacroName, unsigned TypeWidth, llvm::StringRef ValSuffix, bool isSigned, MacroBuilder &Builder) { llvm::APInt MaxVal = isSigned ? llvm::APInt::getSignedMaxValue(TypeWidth) : llvm::APInt::getMaxValue(TypeWidth); Builder.defineMacro(MacroName, MaxVal.toString(10, isSigned) + ValSuffix); } /// DefineTypeSize - An overloaded helper that uses TargetInfo to determine /// the width, suffix, and signedness of the given type static void DefineTypeSize(llvm::StringRef MacroName, TargetInfo::IntType Ty, const TargetInfo &TI, MacroBuilder &Builder) { DefineTypeSize(MacroName, TI.getTypeWidth(Ty), TI.getTypeConstantSuffix(Ty), TI.isTypeSigned(Ty), Builder); } static void DefineType(const llvm::Twine &MacroName, TargetInfo::IntType Ty, MacroBuilder &Builder) { Builder.defineMacro(MacroName, TargetInfo::getTypeName(Ty)); } static void DefineTypeWidth(llvm::StringRef MacroName, TargetInfo::IntType Ty, const TargetInfo &TI, MacroBuilder &Builder) { Builder.defineMacro(MacroName, llvm::Twine(TI.getTypeWidth(Ty))); } static void DefineTypeSizeof(llvm::StringRef MacroName, unsigned BitWidth, const TargetInfo &TI, MacroBuilder &Builder) { Builder.defineMacro(MacroName, llvm::Twine(BitWidth / TI.getCharWidth())); } static void DefineExactWidthIntType(TargetInfo::IntType Ty, const TargetInfo &TI, MacroBuilder &Builder) { int TypeWidth = TI.getTypeWidth(Ty); // Use the target specified int64 type, when appropriate, so that [u]int64_t // ends up being defined in terms of the correct type. if (TypeWidth == 64) Ty = TI.getInt64Type(); DefineType("__INT" + llvm::Twine(TypeWidth) + "_TYPE__", Ty, Builder); llvm::StringRef ConstSuffix(TargetInfo::getTypeConstantSuffix(Ty)); if (!ConstSuffix.empty()) Builder.defineMacro("__INT" + llvm::Twine(TypeWidth) + "_C_SUFFIX__", ConstSuffix); } /// \brief Add definitions required for a smooth interaction between /// Objective-C++ automatic reference counting and libc++. static void AddObjCXXARCLibcxxDefines(const LangOptions &LangOpts, MacroBuilder &Builder) { Builder.defineMacro("_LIBCPP_PREDEFINED_OBJC_ARC_ADDRESSOF"); std::string Result; { // Provide overloads of the function std::__1::addressof() that accept // references to lifetime-qualified objects. libc++'s (more general) // std::__1::addressof() template fails to instantiate with such types, // because it attempts to convert the object to a char& before // dereferencing. llvm::raw_string_ostream Out(Result); Out << "#pragma clang diagnostic push\n" << "#pragma clang diagnostic ignored \"-Wc++0x-extensions\"\n" << "namespace std { inline namespace __1 {\n" << "\n"; Out << "template <class _Tp>\n" << "inline __attribute__ ((__visibility__(\"hidden\"), " << "__always_inline__))\n" << "__attribute__((objc_ownership(strong))) _Tp*\n" << "addressof(__attribute__((objc_ownership(strong))) _Tp& __x) {\n" << " return &__x;\n" << "}\n" << "\n"; if (LangOpts.ObjCRuntimeHasWeak) { Out << "template <class _Tp>\n" << "inline __attribute__ ((__visibility__(\"hidden\")," << "__always_inline__))\n" << "__attribute__((objc_ownership(weak))) _Tp*\n" << "addressof(__attribute__((objc_ownership(weak))) _Tp& __x) {\n" << " return &__x;\n" << "};\n" << "\n"; } Out << "template <class _Tp>\n" << "inline __attribute__ ((__visibility__(\"hidden\")," << "__always_inline__))\n" << "__attribute__((objc_ownership(autoreleasing))) _Tp*\n" << "addressof(__attribute__((objc_ownership(autoreleasing))) _Tp& __x) " << "{\n" << " return &__x;\n" << "}\n" << "\n"; Out << "template <class _Tp>\n" << "inline __attribute__ ((__visibility__(\"hidden\"), " << "__always_inline__))\n" << "__unsafe_unretained _Tp* addressof(__unsafe_unretained _Tp& __x)" << " {\n" << " return &__x;\n" << "}\n"; Out << "\n" << "} }\n" << "#pragma clang diagnostic pop\n" << "\n"; } Builder.append(Result); } /// \brief Add definitions required for a smooth interaction between /// Objective-C++ automated reference counting and libstdc++ (4.2). static void AddObjCXXARCLibstdcxxDefines(const LangOptions &LangOpts, MacroBuilder &Builder) { Builder.defineMacro("_GLIBCXX_PREDEFINED_OBJC_ARC_IS_SCALAR"); std::string Result; { // Provide specializations for the __is_scalar type trait so that // lifetime-qualified objects are not considered "scalar" types, which // libstdc++ uses as an indicator of the presence of trivial copy, assign, // default-construct, and destruct semantics (none of which hold for // lifetime-qualified objects in ARC). llvm::raw_string_ostream Out(Result); Out << "namespace std {\n" << "\n" << "struct __true_type;\n" << "struct __false_type;\n" << "\n"; Out << "template<typename _Tp> struct __is_scalar;\n" << "\n"; Out << "template<typename _Tp>\n" << "struct __is_scalar<__attribute__((objc_ownership(strong))) _Tp> {\n" << " enum { __value = 0 };\n" << " typedef __false_type __type;\n" << "};\n" << "\n"; if (LangOpts.ObjCRuntimeHasWeak) { Out << "template<typename _Tp>\n" << "struct __is_scalar<__attribute__((objc_ownership(weak))) _Tp> {\n" << " enum { __value = 0 };\n" << " typedef __false_type __type;\n" << "};\n" << "\n"; } Out << "template<typename _Tp>\n" << "struct __is_scalar<__attribute__((objc_ownership(autoreleasing)))" << " _Tp> {\n" << " enum { __value = 0 };\n" << " typedef __false_type __type;\n" << "};\n" << "\n"; Out << "}\n"; } Builder.append(Result); } static void InitializeStandardPredefinedMacros(const TargetInfo &TI, const LangOptions &LangOpts, const FrontendOptions &FEOpts, MacroBuilder &Builder) { if (!LangOpts.Microsoft && !LangOpts.TraditionalCPP) Builder.defineMacro("__STDC__"); if (LangOpts.Freestanding) Builder.defineMacro("__STDC_HOSTED__", "0"); else Builder.defineMacro("__STDC_HOSTED__"); if (!LangOpts.CPlusPlus) { if (LangOpts.C99) Builder.defineMacro("__STDC_VERSION__", "199901L"); else if (!LangOpts.GNUMode && LangOpts.Digraphs) Builder.defineMacro("__STDC_VERSION__", "199409L"); } else { if (LangOpts.GNUMode) Builder.defineMacro("__cplusplus"); else { // C++0x [cpp.predefined]p1: // The name_ _cplusplus is defined to the value 201103L when compiling a // C++ translation unit. if (LangOpts.CPlusPlus0x) Builder.defineMacro("__cplusplus", "201103L"); // C++03 [cpp.predefined]p1: // The name_ _cplusplus is defined to the value 199711L when compiling a // C++ translation unit. else Builder.defineMacro("__cplusplus", "199711L"); } } if (LangOpts.ObjC1) Builder.defineMacro("__OBJC__"); // Not "standard" per se, but available even with the -undef flag. if (LangOpts.AsmPreprocessor) Builder.defineMacro("__ASSEMBLER__"); } static void InitializePredefinedMacros(const TargetInfo &TI, const LangOptions &LangOpts, const FrontendOptions &FEOpts, MacroBuilder &Builder) { // Compiler version introspection macros. Builder.defineMacro("__llvm__"); // LLVM Backend Builder.defineMacro("__clang__"); // Clang Frontend #define TOSTR2(X) #X #define TOSTR(X) TOSTR2(X) Builder.defineMacro("__clang_major__", TOSTR(CLANG_VERSION_MAJOR)); Builder.defineMacro("__clang_minor__", TOSTR(CLANG_VERSION_MINOR)); #ifdef CLANG_VERSION_PATCHLEVEL Builder.defineMacro("__clang_patchlevel__", TOSTR(CLANG_VERSION_PATCHLEVEL)); #else Builder.defineMacro("__clang_patchlevel__", "0"); #endif Builder.defineMacro("__clang_version__", "\"" CLANG_VERSION_STRING " (" + getClangFullRepositoryVersion() + ")\""); #undef TOSTR #undef TOSTR2 // Currently claim to be compatible with GCC 4.2.1-5621. Builder.defineMacro("__GNUC_MINOR__", "2"); Builder.defineMacro("__GNUC_PATCHLEVEL__", "1"); Builder.defineMacro("__GNUC__", "4"); Builder.defineMacro("__GXX_ABI_VERSION", "1002"); // As sad as it is, enough software depends on the __VERSION__ for version // checks that it is necessary to report 4.2.1 (the base GCC version we claim // compatibility with) first. Builder.defineMacro("__VERSION__", "\"4.2.1 Compatible " + llvm::Twine(getClangFullCPPVersion()) + "\""); // Initialize language-specific preprocessor defines. // Standard conforming mode? if (!LangOpts.GNUMode) Builder.defineMacro("__STRICT_ANSI__"); if (LangOpts.CPlusPlus0x) Builder.defineMacro("__GXX_EXPERIMENTAL_CXX0X__"); if (LangOpts.ObjC1) { if (LangOpts.ObjCNonFragileABI) { Builder.defineMacro("__OBJC2__"); Builder.defineMacro("OBJC_ZEROCOST_EXCEPTIONS"); } if (LangOpts.getGCMode() != LangOptions::NonGC) Builder.defineMacro("__OBJC_GC__"); if (LangOpts.NeXTRuntime) Builder.defineMacro("__NEXT_RUNTIME__"); } // darwin_constant_cfstrings controls this. This is also dependent // on other things like the runtime I believe. This is set even for C code. if (!LangOpts.NoConstantCFStrings) Builder.defineMacro("__CONSTANT_CFSTRINGS__"); if (LangOpts.ObjC2) Builder.defineMacro("OBJC_NEW_PROPERTIES"); if (LangOpts.PascalStrings) Builder.defineMacro("__PASCAL_STRINGS__"); if (LangOpts.Blocks) { Builder.defineMacro("__block", "__attribute__((__blocks__(byref)))"); Builder.defineMacro("__BLOCKS__"); } if (LangOpts.Exceptions) Builder.defineMacro("__EXCEPTIONS"); if (LangOpts.RTTI) Builder.defineMacro("__GXX_RTTI"); if (LangOpts.SjLjExceptions) Builder.defineMacro("__USING_SJLJ_EXCEPTIONS__"); if (LangOpts.Deprecated) Builder.defineMacro("__DEPRECATED"); if (LangOpts.CPlusPlus) { Builder.defineMacro("__GNUG__", "4"); Builder.defineMacro("__GXX_WEAK__"); Builder.defineMacro("__private_extern__", "extern"); } if (LangOpts.Microsoft) { // Both __PRETTY_FUNCTION__ and __FUNCTION__ are GCC extensions, however // VC++ appears to only like __FUNCTION__. Builder.defineMacro("__PRETTY_FUNCTION__", "__FUNCTION__"); // Work around some issues with Visual C++ headerws. if (LangOpts.CPlusPlus) { // Since we define wchar_t in C++ mode. Builder.defineMacro("_WCHAR_T_DEFINED"); Builder.defineMacro("_NATIVE_WCHAR_T_DEFINED"); // FIXME: Support Microsoft's __identifier extension in the lexer. Builder.append("#define __identifier(x) x"); Builder.append("class type_info;"); } if (LangOpts.CPlusPlus0x) { Builder.defineMacro("_HAS_CHAR16_T_LANGUAGE_SUPPORT", "1"); } } if (LangOpts.Optimize) Builder.defineMacro("__OPTIMIZE__"); if (LangOpts.OptimizeSize) Builder.defineMacro("__OPTIMIZE_SIZE__"); // Initialize target-specific preprocessor defines. // Define type sizing macros based on the target properties. assert(TI.getCharWidth() == 8 && "Only support 8-bit char so far"); Builder.defineMacro("__CHAR_BIT__", "8"); DefineTypeSize("__SCHAR_MAX__", TI.getCharWidth(), "", true, Builder); DefineTypeSize("__SHRT_MAX__", TargetInfo::SignedShort, TI, Builder); DefineTypeSize("__INT_MAX__", TargetInfo::SignedInt, TI, Builder); DefineTypeSize("__LONG_MAX__", TargetInfo::SignedLong, TI, Builder); DefineTypeSize("__LONG_LONG_MAX__", TargetInfo::SignedLongLong, TI, Builder); DefineTypeSize("__WCHAR_MAX__", TI.getWCharType(), TI, Builder); DefineTypeSize("__INTMAX_MAX__", TI.getIntMaxType(), TI, Builder); DefineTypeSizeof("__SIZEOF_DOUBLE__", TI.getDoubleWidth(), TI, Builder); DefineTypeSizeof("__SIZEOF_FLOAT__", TI.getFloatWidth(), TI, Builder); DefineTypeSizeof("__SIZEOF_INT__", TI.getIntWidth(), TI, Builder); DefineTypeSizeof("__SIZEOF_LONG__", TI.getLongWidth(), TI, Builder); DefineTypeSizeof("__SIZEOF_LONG_DOUBLE__",TI.getLongDoubleWidth(),TI,Builder); DefineTypeSizeof("__SIZEOF_LONG_LONG__", TI.getLongLongWidth(), TI, Builder); DefineTypeSizeof("__SIZEOF_POINTER__", TI.getPointerWidth(0), TI, Builder); DefineTypeSizeof("__SIZEOF_SHORT__", TI.getShortWidth(), TI, Builder); DefineTypeSizeof("__SIZEOF_PTRDIFF_T__", TI.getTypeWidth(TI.getPtrDiffType(0)), TI, Builder); DefineTypeSizeof("__SIZEOF_SIZE_T__", TI.getTypeWidth(TI.getSizeType()), TI, Builder); DefineTypeSizeof("__SIZEOF_WCHAR_T__", TI.getTypeWidth(TI.getWCharType()), TI, Builder); DefineTypeSizeof("__SIZEOF_WINT_T__", TI.getTypeWidth(TI.getWIntType()), TI, Builder); DefineType("__INTMAX_TYPE__", TI.getIntMaxType(), Builder); DefineType("__UINTMAX_TYPE__", TI.getUIntMaxType(), Builder); DefineTypeWidth("__INTMAX_WIDTH__", TI.getIntMaxType(), TI, Builder); DefineType("__PTRDIFF_TYPE__", TI.getPtrDiffType(0), Builder); DefineTypeWidth("__PTRDIFF_WIDTH__", TI.getPtrDiffType(0), TI, Builder); DefineType("__INTPTR_TYPE__", TI.getIntPtrType(), Builder); DefineTypeWidth("__INTPTR_WIDTH__", TI.getIntPtrType(), TI, Builder); DefineType("__SIZE_TYPE__", TI.getSizeType(), Builder); DefineTypeWidth("__SIZE_WIDTH__", TI.getSizeType(), TI, Builder); DefineType("__WCHAR_TYPE__", TI.getWCharType(), Builder); DefineTypeWidth("__WCHAR_WIDTH__", TI.getWCharType(), TI, Builder); DefineType("__WINT_TYPE__", TI.getWIntType(), Builder); DefineTypeWidth("__WINT_WIDTH__", TI.getWIntType(), TI, Builder); DefineTypeWidth("__SIG_ATOMIC_WIDTH__", TI.getSigAtomicType(), TI, Builder); DefineType("__CHAR16_TYPE__", TI.getChar16Type(), Builder); DefineType("__CHAR32_TYPE__", TI.getChar32Type(), Builder); DefineFloatMacros(Builder, "FLT", &TI.getFloatFormat()); DefineFloatMacros(Builder, "DBL", &TI.getDoubleFormat()); DefineFloatMacros(Builder, "LDBL", &TI.getLongDoubleFormat()); // Define a __POINTER_WIDTH__ macro for stdint.h. Builder.defineMacro("__POINTER_WIDTH__", llvm::Twine((int)TI.getPointerWidth(0))); if (!LangOpts.CharIsSigned) Builder.defineMacro("__CHAR_UNSIGNED__"); if (!TargetInfo::isTypeSigned(TI.getWIntType())) Builder.defineMacro("__WINT_UNSIGNED__"); if (!TargetInfo::isTypeSigned(TI.getWCharType())) Builder.defineMacro("__WCHAR_UNSIGNED__"); // Define exact-width integer types for stdint.h Builder.defineMacro("__INT" + llvm::Twine(TI.getCharWidth()) + "_TYPE__", "char"); if (TI.getShortWidth() > TI.getCharWidth()) DefineExactWidthIntType(TargetInfo::SignedShort, TI, Builder); if (TI.getIntWidth() > TI.getShortWidth()) DefineExactWidthIntType(TargetInfo::SignedInt, TI, Builder); if (TI.getLongWidth() > TI.getIntWidth()) DefineExactWidthIntType(TargetInfo::SignedLong, TI, Builder); if (TI.getLongLongWidth() > TI.getLongWidth()) DefineExactWidthIntType(TargetInfo::SignedLongLong, TI, Builder); // Add __builtin_va_list typedef. Builder.append(TI.getVAListDeclaration()); if (const char *Prefix = TI.getUserLabelPrefix()) Builder.defineMacro("__USER_LABEL_PREFIX__", Prefix); // Build configuration options. FIXME: these should be controlled by // command line options or something. Builder.defineMacro("__FINITE_MATH_ONLY__", "0"); if (LangOpts.GNUInline) Builder.defineMacro("__GNUC_GNU_INLINE__"); else Builder.defineMacro("__GNUC_STDC_INLINE__"); if (LangOpts.NoInline) Builder.defineMacro("__NO_INLINE__"); if (unsigned PICLevel = LangOpts.PICLevel) { Builder.defineMacro("__PIC__", llvm::Twine(PICLevel)); Builder.defineMacro("__pic__", llvm::Twine(PICLevel)); } // Macros to control C99 numerics and <float.h> Builder.defineMacro("__FLT_EVAL_METHOD__", "0"); Builder.defineMacro("__FLT_RADIX__", "2"); int Dig = PickFP(&TI.getLongDoubleFormat(), -1/*FIXME*/, 17, 21, 33, 36); Builder.defineMacro("__DECIMAL_DIG__", llvm::Twine(Dig)); if (LangOpts.getStackProtectorMode() == LangOptions::SSPOn) Builder.defineMacro("__SSP__"); else if (LangOpts.getStackProtectorMode() == LangOptions::SSPReq) Builder.defineMacro("__SSP_ALL__", "2"); if (FEOpts.ProgramAction == frontend::RewriteObjC) Builder.defineMacro("__weak", "__attribute__((objc_gc(weak)))"); // Define a macro that exists only when using the static analyzer. if (FEOpts.ProgramAction == frontend::RunAnalysis) Builder.defineMacro("__clang_analyzer__"); if (LangOpts.FastRelaxedMath) Builder.defineMacro("__FAST_RELAXED_MATH__"); if (LangOpts.ObjCAutoRefCount) { Builder.defineMacro("__weak", "__attribute__((objc_ownership(weak)))"); Builder.defineMacro("__strong", "__attribute__((objc_ownership(strong)))"); Builder.defineMacro("__autoreleasing", "__attribute__((objc_ownership(autoreleasing)))"); Builder.defineMacro("__unsafe_unretained", "__attribute__((objc_ownership(none)))"); } // Get other target #defines. TI.getTargetDefines(LangOpts, Builder); } // Initialize the remapping of files to alternative contents, e.g., // those specified through other files. static void InitializeFileRemapping(Diagnostic &Diags, SourceManager &SourceMgr, FileManager &FileMgr, const PreprocessorOptions &InitOpts) { // Remap files in the source manager (with buffers). for (PreprocessorOptions::const_remapped_file_buffer_iterator Remap = InitOpts.remapped_file_buffer_begin(), RemapEnd = InitOpts.remapped_file_buffer_end(); Remap != RemapEnd; ++Remap) { // Create the file entry for the file that we're mapping from. const FileEntry *FromFile = FileMgr.getVirtualFile(Remap->first, Remap->second->getBufferSize(), 0); if (!FromFile) { Diags.Report(diag::err_fe_remap_missing_from_file) << Remap->first; if (!InitOpts.RetainRemappedFileBuffers) delete Remap->second; continue; } // Override the contents of the "from" file with the contents of // the "to" file. SourceMgr.overrideFileContents(FromFile, Remap->second, InitOpts.RetainRemappedFileBuffers); } // Remap files in the source manager (with other files). for (PreprocessorOptions::const_remapped_file_iterator Remap = InitOpts.remapped_file_begin(), RemapEnd = InitOpts.remapped_file_end(); Remap != RemapEnd; ++Remap) { // Find the file that we're mapping to. const FileEntry *ToFile = FileMgr.getFile(Remap->second); if (!ToFile) { Diags.Report(diag::err_fe_remap_missing_to_file) << Remap->first << Remap->second; continue; } // Create the file entry for the file that we're mapping from. const FileEntry *FromFile = FileMgr.getVirtualFile(Remap->first, ToFile->getSize(), 0); if (!FromFile) { Diags.Report(diag::err_fe_remap_missing_from_file) << Remap->first; continue; } // Override the contents of the "from" file with the contents of // the "to" file. SourceMgr.overrideFileContents(FromFile, ToFile); } SourceMgr.setOverridenFilesKeepOriginalName( InitOpts.RemappedFilesKeepOriginalName); } /// InitializePreprocessor - Initialize the preprocessor getting it and the /// environment ready to process a single file. This returns true on error. /// void clang::InitializePreprocessor(Preprocessor &PP, const PreprocessorOptions &InitOpts, const HeaderSearchOptions &HSOpts, const FrontendOptions &FEOpts) { const LangOptions &LangOpts = PP.getLangOptions(); std::string PredefineBuffer; PredefineBuffer.reserve(4080); llvm::raw_string_ostream Predefines(PredefineBuffer); MacroBuilder Builder(Predefines); InitializeFileRemapping(PP.getDiagnostics(), PP.getSourceManager(), PP.getFileManager(), InitOpts); // Emit line markers for various builtin sections of the file. We don't do // this in asm preprocessor mode, because "# 4" is not a line marker directive // in this mode. if (!PP.getLangOptions().AsmPreprocessor) Builder.append("# 1 \"<built-in>\" 3"); // Install things like __POWERPC__, __GNUC__, etc into the macro table. if (InitOpts.UsePredefines) { InitializePredefinedMacros(PP.getTargetInfo(), LangOpts, FEOpts, Builder); // Install definitions to make Objective-C++ ARC work well with various // C++ Standard Library implementations. if (LangOpts.ObjC1 && LangOpts.CPlusPlus && LangOpts.ObjCAutoRefCount) { switch (InitOpts.ObjCXXARCStandardLibrary) { case ARCXX_nolib: break; case ARCXX_libcxx: AddObjCXXARCLibcxxDefines(LangOpts, Builder); break; case ARCXX_libstdcxx: AddObjCXXARCLibstdcxxDefines(LangOpts, Builder); break; } } } // Even with predefines off, some macros are still predefined. // These should all be defined in the preprocessor according to the // current language configuration. InitializeStandardPredefinedMacros(PP.getTargetInfo(), PP.getLangOptions(), FEOpts, Builder); // Add on the predefines from the driver. Wrap in a #line directive to report // that they come from the command line. if (!PP.getLangOptions().AsmPreprocessor) Builder.append("# 1 \"<command line>\" 1"); // Process #define's and #undef's in the order they are given. for (unsigned i = 0, e = InitOpts.Macros.size(); i != e; ++i) { if (InitOpts.Macros[i].second) // isUndef Builder.undefineMacro(InitOpts.Macros[i].first); else DefineBuiltinMacro(Builder, InitOpts.Macros[i].first, PP.getDiagnostics()); } // If -imacros are specified, include them now. These are processed before // any -include directives. for (unsigned i = 0, e = InitOpts.MacroIncludes.size(); i != e; ++i) AddImplicitIncludeMacros(Builder, InitOpts.MacroIncludes[i], PP.getFileManager()); // Process -include directives. for (unsigned i = 0, e = InitOpts.Includes.size(); i != e; ++i) { const std::string &Path = InitOpts.Includes[i]; if (Path == InitOpts.ImplicitPTHInclude) AddImplicitIncludePTH(Builder, PP, Path); else AddImplicitInclude(Builder, Path, PP.getFileManager()); } // Exit the command line and go back to <built-in> (2 is LC_LEAVE). if (!PP.getLangOptions().AsmPreprocessor) Builder.append("# 1 \"<built-in>\" 2"); // Instruct the preprocessor to skip the preamble. PP.setSkipMainFilePreamble(InitOpts.PrecompiledPreambleBytes.first, InitOpts.PrecompiledPreambleBytes.second); // Copy PredefinedBuffer into the Preprocessor. PP.setPredefines(Predefines.str()); // Initialize the header search object. ApplyHeaderSearchOptions(PP.getHeaderSearchInfo(), HSOpts, PP.getLangOptions(), PP.getTargetInfo().getTriple()); }