//===--- Diagnostic.cpp - C Language Family Diagnostic Handling -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Diagnostic-related interfaces. // //===----------------------------------------------------------------------===// #include "clang/Basic/Diagnostic.h" #include "clang/Basic/IdentifierTable.h" #include "clang/Basic/PartialDiagnostic.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/CrashRecoveryContext.h" using namespace clang; static void DummyArgToStringFn(Diagnostic::ArgumentKind AK, intptr_t QT, const char *Modifier, unsigned ML, const char *Argument, unsigned ArgLen, const Diagnostic::ArgumentValue *PrevArgs, unsigned NumPrevArgs, llvm::SmallVectorImpl<char> &Output, void *Cookie, llvm::SmallVectorImpl<intptr_t> &QualTypeVals) { const char *Str = "<can't format argument>"; Output.append(Str, Str+strlen(Str)); } Diagnostic::Diagnostic(const llvm::IntrusiveRefCntPtr<DiagnosticIDs> &diags, DiagnosticClient *client, bool ShouldOwnClient) : Diags(diags), Client(client), OwnsDiagClient(ShouldOwnClient), SourceMgr(0) { ArgToStringFn = DummyArgToStringFn; ArgToStringCookie = 0; AllExtensionsSilenced = 0; IgnoreAllWarnings = false; WarningsAsErrors = false; ErrorsAsFatal = false; SuppressSystemWarnings = false; SuppressAllDiagnostics = false; ShowOverloads = Ovl_All; ExtBehavior = Ext_Ignore; ErrorLimit = 0; TemplateBacktraceLimit = 0; Reset(); } Diagnostic::~Diagnostic() { if (OwnsDiagClient) delete Client; } void Diagnostic::setClient(DiagnosticClient *client, bool ShouldOwnClient) { if (OwnsDiagClient && Client) delete Client; Client = client; OwnsDiagClient = ShouldOwnClient; } void Diagnostic::pushMappings(SourceLocation Loc) { DiagStateOnPushStack.push_back(GetCurDiagState()); } bool Diagnostic::popMappings(SourceLocation Loc) { if (DiagStateOnPushStack.empty()) return false; if (DiagStateOnPushStack.back() != GetCurDiagState()) { // State changed at some point between push/pop. PushDiagStatePoint(DiagStateOnPushStack.back(), Loc); } DiagStateOnPushStack.pop_back(); return true; } void Diagnostic::Reset() { ErrorOccurred = false; FatalErrorOccurred = false; UnrecoverableErrorOccurred = false; NumWarnings = 0; NumErrors = 0; NumErrorsSuppressed = 0; CurDiagID = ~0U; // Set LastDiagLevel to an "unset" state. If we set it to 'Ignored', notes // using a Diagnostic associated to a translation unit that follow // diagnostics from a Diagnostic associated to anoter t.u. will not be // displayed. LastDiagLevel = (DiagnosticIDs::Level)-1; DelayedDiagID = 0; // Clear state related to #pragma diagnostic. DiagStates.clear(); DiagStatePoints.clear(); DiagStateOnPushStack.clear(); // Create a DiagState and DiagStatePoint representing diagnostic changes // through command-line. DiagStates.push_back(DiagState()); PushDiagStatePoint(&DiagStates.back(), SourceLocation()); } void Diagnostic::SetDelayedDiagnostic(unsigned DiagID, llvm::StringRef Arg1, llvm::StringRef Arg2) { if (DelayedDiagID) return; DelayedDiagID = DiagID; DelayedDiagArg1 = Arg1.str(); DelayedDiagArg2 = Arg2.str(); } void Diagnostic::ReportDelayed() { Report(DelayedDiagID) << DelayedDiagArg1 << DelayedDiagArg2; DelayedDiagID = 0; DelayedDiagArg1.clear(); DelayedDiagArg2.clear(); } Diagnostic::DiagStatePointsTy::iterator Diagnostic::GetDiagStatePointForLoc(SourceLocation L) const { assert(!DiagStatePoints.empty()); assert(DiagStatePoints.front().Loc.isInvalid() && "Should have created a DiagStatePoint for command-line"); FullSourceLoc Loc(L, *SourceMgr); if (Loc.isInvalid()) return DiagStatePoints.end() - 1; DiagStatePointsTy::iterator Pos = DiagStatePoints.end(); FullSourceLoc LastStateChangePos = DiagStatePoints.back().Loc; if (LastStateChangePos.isValid() && Loc.isBeforeInTranslationUnitThan(LastStateChangePos)) Pos = std::upper_bound(DiagStatePoints.begin(), DiagStatePoints.end(), DiagStatePoint(0, Loc)); --Pos; return Pos; } /// \brief This allows the client to specify that certain /// warnings are ignored. Notes can never be mapped, errors can only be /// mapped to fatal, and WARNINGs and EXTENSIONs can be mapped arbitrarily. /// /// \param The source location that this change of diagnostic state should /// take affect. It can be null if we are setting the latest state. void Diagnostic::setDiagnosticMapping(diag::kind Diag, diag::Mapping Map, SourceLocation L) { assert(Diag < diag::DIAG_UPPER_LIMIT && "Can only map builtin diagnostics"); assert((Diags->isBuiltinWarningOrExtension(Diag) || (Map == diag::MAP_FATAL || Map == diag::MAP_ERROR)) && "Cannot map errors into warnings!"); assert(!DiagStatePoints.empty()); bool isPragma = L.isValid(); FullSourceLoc Loc(L, *SourceMgr); FullSourceLoc LastStateChangePos = DiagStatePoints.back().Loc; // Common case; setting all the diagnostics of a group in one place. if (Loc.isInvalid() || Loc == LastStateChangePos) { setDiagnosticMappingInternal(Diag, Map, GetCurDiagState(), true, isPragma); return; } // Another common case; modifying diagnostic state in a source location // after the previous one. if ((Loc.isValid() && LastStateChangePos.isInvalid()) || LastStateChangePos.isBeforeInTranslationUnitThan(Loc)) { // A diagnostic pragma occurred, create a new DiagState initialized with // the current one and a new DiagStatePoint to record at which location // the new state became active. DiagStates.push_back(*GetCurDiagState()); PushDiagStatePoint(&DiagStates.back(), Loc); setDiagnosticMappingInternal(Diag, Map, GetCurDiagState(), true, isPragma); return; } // We allow setting the diagnostic state in random source order for // completeness but it should not be actually happening in normal practice. DiagStatePointsTy::iterator Pos = GetDiagStatePointForLoc(Loc); assert(Pos != DiagStatePoints.end()); // Update all diagnostic states that are active after the given location. for (DiagStatePointsTy::iterator I = Pos+1, E = DiagStatePoints.end(); I != E; ++I) { setDiagnosticMappingInternal(Diag, Map, I->State, true, isPragma); } // If the location corresponds to an existing point, just update its state. if (Pos->Loc == Loc) { setDiagnosticMappingInternal(Diag, Map, Pos->State, true, isPragma); return; } // Create a new state/point and fit it into the vector of DiagStatePoints // so that the vector is always ordered according to location. Pos->Loc.isBeforeInTranslationUnitThan(Loc); DiagStates.push_back(*Pos->State); DiagState *NewState = &DiagStates.back(); setDiagnosticMappingInternal(Diag, Map, NewState, true, isPragma); DiagStatePoints.insert(Pos+1, DiagStatePoint(NewState, FullSourceLoc(Loc, *SourceMgr))); } void Diagnostic::Report(const StoredDiagnostic &storedDiag) { assert(CurDiagID == ~0U && "Multiple diagnostics in flight at once!"); CurDiagLoc = storedDiag.getLocation(); CurDiagID = storedDiag.getID(); NumDiagArgs = 0; NumDiagRanges = storedDiag.range_size(); assert(NumDiagRanges < sizeof(DiagRanges)/sizeof(DiagRanges[0]) && "Too many arguments to diagnostic!"); unsigned i = 0; for (StoredDiagnostic::range_iterator RI = storedDiag.range_begin(), RE = storedDiag.range_end(); RI != RE; ++RI) DiagRanges[i++] = *RI; NumFixItHints = storedDiag.fixit_size(); assert(NumFixItHints < Diagnostic::MaxFixItHints && "Too many fix-it hints!"); i = 0; for (StoredDiagnostic::fixit_iterator FI = storedDiag.fixit_begin(), FE = storedDiag.fixit_end(); FI != FE; ++FI) FixItHints[i++] = *FI; assert(Client && "DiagnosticClient not set!"); Level DiagLevel = storedDiag.getLevel(); DiagnosticInfo Info(this, storedDiag.getMessage()); Client->HandleDiagnostic(DiagLevel, Info); if (Client->IncludeInDiagnosticCounts()) { if (DiagLevel == Diagnostic::Warning) ++NumWarnings; } CurDiagID = ~0U; } void DiagnosticBuilder::FlushCounts() { DiagObj->NumDiagArgs = NumArgs; DiagObj->NumDiagRanges = NumRanges; DiagObj->NumFixItHints = NumFixItHints; } bool DiagnosticBuilder::Emit() { // If DiagObj is null, then its soul was stolen by the copy ctor // or the user called Emit(). if (DiagObj == 0) return false; // When emitting diagnostics, we set the final argument count into // the Diagnostic object. FlushCounts(); // Process the diagnostic, sending the accumulated information to the // DiagnosticClient. bool Emitted = DiagObj->ProcessDiag(); // Clear out the current diagnostic object. unsigned DiagID = DiagObj->CurDiagID; DiagObj->Clear(); // If there was a delayed diagnostic, emit it now. if (DiagObj->DelayedDiagID && DiagObj->DelayedDiagID != DiagID) DiagObj->ReportDelayed(); // This diagnostic is dead. DiagObj = 0; return Emitted; } DiagnosticClient::~DiagnosticClient() {} void DiagnosticClient::HandleDiagnostic(Diagnostic::Level DiagLevel, const DiagnosticInfo &Info) { if (!IncludeInDiagnosticCounts()) return; if (DiagLevel == Diagnostic::Warning) ++NumWarnings; else if (DiagLevel >= Diagnostic::Error) ++NumErrors; } /// ModifierIs - Return true if the specified modifier matches specified string. template <std::size_t StrLen> static bool ModifierIs(const char *Modifier, unsigned ModifierLen, const char (&Str)[StrLen]) { return StrLen-1 == ModifierLen && !memcmp(Modifier, Str, StrLen-1); } /// ScanForward - Scans forward, looking for the given character, skipping /// nested clauses and escaped characters. static const char *ScanFormat(const char *I, const char *E, char Target) { unsigned Depth = 0; for ( ; I != E; ++I) { if (Depth == 0 && *I == Target) return I; if (Depth != 0 && *I == '}') Depth--; if (*I == '%') { I++; if (I == E) break; // Escaped characters get implicitly skipped here. // Format specifier. if (!isdigit(*I) && !ispunct(*I)) { for (I++; I != E && !isdigit(*I) && *I != '{'; I++) ; if (I == E) break; if (*I == '{') Depth++; } } } return E; } /// HandleSelectModifier - Handle the integer 'select' modifier. This is used /// like this: %select{foo|bar|baz}2. This means that the integer argument /// "%2" has a value from 0-2. If the value is 0, the diagnostic prints 'foo'. /// If the value is 1, it prints 'bar'. If it has the value 2, it prints 'baz'. /// This is very useful for certain classes of variant diagnostics. static void HandleSelectModifier(const DiagnosticInfo &DInfo, unsigned ValNo, const char *Argument, unsigned ArgumentLen, llvm::SmallVectorImpl<char> &OutStr) { const char *ArgumentEnd = Argument+ArgumentLen; // Skip over 'ValNo' |'s. while (ValNo) { const char *NextVal = ScanFormat(Argument, ArgumentEnd, '|'); assert(NextVal != ArgumentEnd && "Value for integer select modifier was" " larger than the number of options in the diagnostic string!"); Argument = NextVal+1; // Skip this string. --ValNo; } // Get the end of the value. This is either the } or the |. const char *EndPtr = ScanFormat(Argument, ArgumentEnd, '|'); // Recursively format the result of the select clause into the output string. DInfo.FormatDiagnostic(Argument, EndPtr, OutStr); } /// HandleIntegerSModifier - Handle the integer 's' modifier. This adds the /// letter 's' to the string if the value is not 1. This is used in cases like /// this: "you idiot, you have %4 parameter%s4!". static void HandleIntegerSModifier(unsigned ValNo, llvm::SmallVectorImpl<char> &OutStr) { if (ValNo != 1) OutStr.push_back('s'); } /// HandleOrdinalModifier - Handle the integer 'ord' modifier. This /// prints the ordinal form of the given integer, with 1 corresponding /// to the first ordinal. Currently this is hard-coded to use the /// English form. static void HandleOrdinalModifier(unsigned ValNo, llvm::SmallVectorImpl<char> &OutStr) { assert(ValNo != 0 && "ValNo must be strictly positive!"); llvm::raw_svector_ostream Out(OutStr); // We could use text forms for the first N ordinals, but the numeric // forms are actually nicer in diagnostics because they stand out. Out << ValNo; // It is critically important that we do this perfectly for // user-written sequences with over 100 elements. switch (ValNo % 100) { case 11: case 12: case 13: Out << "th"; return; default: switch (ValNo % 10) { case 1: Out << "st"; return; case 2: Out << "nd"; return; case 3: Out << "rd"; return; default: Out << "th"; return; } } } /// PluralNumber - Parse an unsigned integer and advance Start. static unsigned PluralNumber(const char *&Start, const char *End) { // Programming 101: Parse a decimal number :-) unsigned Val = 0; while (Start != End && *Start >= '0' && *Start <= '9') { Val *= 10; Val += *Start - '0'; ++Start; } return Val; } /// TestPluralRange - Test if Val is in the parsed range. Modifies Start. static bool TestPluralRange(unsigned Val, const char *&Start, const char *End) { if (*Start != '[') { unsigned Ref = PluralNumber(Start, End); return Ref == Val; } ++Start; unsigned Low = PluralNumber(Start, End); assert(*Start == ',' && "Bad plural expression syntax: expected ,"); ++Start; unsigned High = PluralNumber(Start, End); assert(*Start == ']' && "Bad plural expression syntax: expected )"); ++Start; return Low <= Val && Val <= High; } /// EvalPluralExpr - Actual expression evaluator for HandlePluralModifier. static bool EvalPluralExpr(unsigned ValNo, const char *Start, const char *End) { // Empty condition? if (*Start == ':') return true; while (1) { char C = *Start; if (C == '%') { // Modulo expression ++Start; unsigned Arg = PluralNumber(Start, End); assert(*Start == '=' && "Bad plural expression syntax: expected ="); ++Start; unsigned ValMod = ValNo % Arg; if (TestPluralRange(ValMod, Start, End)) return true; } else { assert((C == '[' || (C >= '0' && C <= '9')) && "Bad plural expression syntax: unexpected character"); // Range expression if (TestPluralRange(ValNo, Start, End)) return true; } // Scan for next or-expr part. Start = std::find(Start, End, ','); if (Start == End) break; ++Start; } return false; } /// HandlePluralModifier - Handle the integer 'plural' modifier. This is used /// for complex plural forms, or in languages where all plurals are complex. /// The syntax is: %plural{cond1:form1|cond2:form2|:form3}, where condn are /// conditions that are tested in order, the form corresponding to the first /// that applies being emitted. The empty condition is always true, making the /// last form a default case. /// Conditions are simple boolean expressions, where n is the number argument. /// Here are the rules. /// condition := expression | empty /// empty := -> always true /// expression := numeric [',' expression] -> logical or /// numeric := range -> true if n in range /// | '%' number '=' range -> true if n % number in range /// range := number /// | '[' number ',' number ']' -> ranges are inclusive both ends /// /// Here are some examples from the GNU gettext manual written in this form: /// English: /// {1:form0|:form1} /// Latvian: /// {0:form2|%100=11,%10=0,%10=[2,9]:form1|:form0} /// Gaeilge: /// {1:form0|2:form1|:form2} /// Romanian: /// {1:form0|0,%100=[1,19]:form1|:form2} /// Lithuanian: /// {%10=0,%100=[10,19]:form2|%10=1:form0|:form1} /// Russian (requires repeated form): /// {%100=[11,14]:form2|%10=1:form0|%10=[2,4]:form1|:form2} /// Slovak /// {1:form0|[2,4]:form1|:form2} /// Polish (requires repeated form): /// {1:form0|%100=[10,20]:form2|%10=[2,4]:form1|:form2} static void HandlePluralModifier(const DiagnosticInfo &DInfo, unsigned ValNo, const char *Argument, unsigned ArgumentLen, llvm::SmallVectorImpl<char> &OutStr) { const char *ArgumentEnd = Argument + ArgumentLen; while (1) { assert(Argument < ArgumentEnd && "Plural expression didn't match."); const char *ExprEnd = Argument; while (*ExprEnd != ':') { assert(ExprEnd != ArgumentEnd && "Plural missing expression end"); ++ExprEnd; } if (EvalPluralExpr(ValNo, Argument, ExprEnd)) { Argument = ExprEnd + 1; ExprEnd = ScanFormat(Argument, ArgumentEnd, '|'); // Recursively format the result of the plural clause into the // output string. DInfo.FormatDiagnostic(Argument, ExprEnd, OutStr); return; } Argument = ScanFormat(Argument, ArgumentEnd - 1, '|') + 1; } } /// FormatDiagnostic - Format this diagnostic into a string, substituting the /// formal arguments into the %0 slots. The result is appended onto the Str /// array. void DiagnosticInfo:: FormatDiagnostic(llvm::SmallVectorImpl<char> &OutStr) const { if (!StoredDiagMessage.empty()) { OutStr.append(StoredDiagMessage.begin(), StoredDiagMessage.end()); return; } llvm::StringRef Diag = getDiags()->getDiagnosticIDs()->getDescription(getID()); FormatDiagnostic(Diag.begin(), Diag.end(), OutStr); } void DiagnosticInfo:: FormatDiagnostic(const char *DiagStr, const char *DiagEnd, llvm::SmallVectorImpl<char> &OutStr) const { /// FormattedArgs - Keep track of all of the arguments formatted by /// ConvertArgToString and pass them into subsequent calls to /// ConvertArgToString, allowing the implementation to avoid redundancies in /// obvious cases. llvm::SmallVector<Diagnostic::ArgumentValue, 8> FormattedArgs; /// QualTypeVals - Pass a vector of arrays so that QualType names can be /// compared to see if more information is needed to be printed. llvm::SmallVector<intptr_t, 2> QualTypeVals; for (unsigned i = 0, e = getNumArgs(); i < e; ++i) if (getArgKind(i) == Diagnostic::ak_qualtype) QualTypeVals.push_back(getRawArg(i)); while (DiagStr != DiagEnd) { if (DiagStr[0] != '%') { // Append non-%0 substrings to Str if we have one. const char *StrEnd = std::find(DiagStr, DiagEnd, '%'); OutStr.append(DiagStr, StrEnd); DiagStr = StrEnd; continue; } else if (ispunct(DiagStr[1])) { OutStr.push_back(DiagStr[1]); // %% -> %. DiagStr += 2; continue; } // Skip the %. ++DiagStr; // This must be a placeholder for a diagnostic argument. The format for a // placeholder is one of "%0", "%modifier0", or "%modifier{arguments}0". // The digit is a number from 0-9 indicating which argument this comes from. // The modifier is a string of digits from the set [-a-z]+, arguments is a // brace enclosed string. const char *Modifier = 0, *Argument = 0; unsigned ModifierLen = 0, ArgumentLen = 0; // Check to see if we have a modifier. If so eat it. if (!isdigit(DiagStr[0])) { Modifier = DiagStr; while (DiagStr[0] == '-' || (DiagStr[0] >= 'a' && DiagStr[0] <= 'z')) ++DiagStr; ModifierLen = DiagStr-Modifier; // If we have an argument, get it next. if (DiagStr[0] == '{') { ++DiagStr; // Skip {. Argument = DiagStr; DiagStr = ScanFormat(DiagStr, DiagEnd, '}'); assert(DiagStr != DiagEnd && "Mismatched {}'s in diagnostic string!"); ArgumentLen = DiagStr-Argument; ++DiagStr; // Skip }. } } assert(isdigit(*DiagStr) && "Invalid format for argument in diagnostic"); unsigned ArgNo = *DiagStr++ - '0'; Diagnostic::ArgumentKind Kind = getArgKind(ArgNo); switch (Kind) { // ---- STRINGS ---- case Diagnostic::ak_std_string: { const std::string &S = getArgStdStr(ArgNo); assert(ModifierLen == 0 && "No modifiers for strings yet"); OutStr.append(S.begin(), S.end()); break; } case Diagnostic::ak_c_string: { const char *S = getArgCStr(ArgNo); assert(ModifierLen == 0 && "No modifiers for strings yet"); // Don't crash if get passed a null pointer by accident. if (!S) S = "(null)"; OutStr.append(S, S + strlen(S)); break; } // ---- INTEGERS ---- case Diagnostic::ak_sint: { int Val = getArgSInt(ArgNo); if (ModifierIs(Modifier, ModifierLen, "select")) { HandleSelectModifier(*this, (unsigned)Val, Argument, ArgumentLen, OutStr); } else if (ModifierIs(Modifier, ModifierLen, "s")) { HandleIntegerSModifier(Val, OutStr); } else if (ModifierIs(Modifier, ModifierLen, "plural")) { HandlePluralModifier(*this, (unsigned)Val, Argument, ArgumentLen, OutStr); } else if (ModifierIs(Modifier, ModifierLen, "ordinal")) { HandleOrdinalModifier((unsigned)Val, OutStr); } else { assert(ModifierLen == 0 && "Unknown integer modifier"); llvm::raw_svector_ostream(OutStr) << Val; } break; } case Diagnostic::ak_uint: { unsigned Val = getArgUInt(ArgNo); if (ModifierIs(Modifier, ModifierLen, "select")) { HandleSelectModifier(*this, Val, Argument, ArgumentLen, OutStr); } else if (ModifierIs(Modifier, ModifierLen, "s")) { HandleIntegerSModifier(Val, OutStr); } else if (ModifierIs(Modifier, ModifierLen, "plural")) { HandlePluralModifier(*this, (unsigned)Val, Argument, ArgumentLen, OutStr); } else if (ModifierIs(Modifier, ModifierLen, "ordinal")) { HandleOrdinalModifier(Val, OutStr); } else { assert(ModifierLen == 0 && "Unknown integer modifier"); llvm::raw_svector_ostream(OutStr) << Val; } break; } // ---- NAMES and TYPES ---- case Diagnostic::ak_identifierinfo: { const IdentifierInfo *II = getArgIdentifier(ArgNo); assert(ModifierLen == 0 && "No modifiers for strings yet"); // Don't crash if get passed a null pointer by accident. if (!II) { const char *S = "(null)"; OutStr.append(S, S + strlen(S)); continue; } llvm::raw_svector_ostream(OutStr) << '\'' << II->getName() << '\''; break; } case Diagnostic::ak_qualtype: case Diagnostic::ak_declarationname: case Diagnostic::ak_nameddecl: case Diagnostic::ak_nestednamespec: case Diagnostic::ak_declcontext: getDiags()->ConvertArgToString(Kind, getRawArg(ArgNo), Modifier, ModifierLen, Argument, ArgumentLen, FormattedArgs.data(), FormattedArgs.size(), OutStr, QualTypeVals); break; } // Remember this argument info for subsequent formatting operations. Turn // std::strings into a null terminated string to make it be the same case as // all the other ones. if (Kind != Diagnostic::ak_std_string) FormattedArgs.push_back(std::make_pair(Kind, getRawArg(ArgNo))); else FormattedArgs.push_back(std::make_pair(Diagnostic::ak_c_string, (intptr_t)getArgStdStr(ArgNo).c_str())); } } StoredDiagnostic::StoredDiagnostic() { } StoredDiagnostic::StoredDiagnostic(Diagnostic::Level Level, unsigned ID, llvm::StringRef Message) : ID(ID), Level(Level), Loc(), Message(Message) { } StoredDiagnostic::StoredDiagnostic(Diagnostic::Level Level, const DiagnosticInfo &Info) : ID(Info.getID()), Level(Level) { assert((Info.getLocation().isInvalid() || Info.hasSourceManager()) && "Valid source location without setting a source manager for diagnostic"); if (Info.getLocation().isValid()) Loc = FullSourceLoc(Info.getLocation(), Info.getSourceManager()); llvm::SmallString<64> Message; Info.FormatDiagnostic(Message); this->Message.assign(Message.begin(), Message.end()); Ranges.reserve(Info.getNumRanges()); for (unsigned I = 0, N = Info.getNumRanges(); I != N; ++I) Ranges.push_back(Info.getRange(I)); FixIts.reserve(Info.getNumFixItHints()); for (unsigned I = 0, N = Info.getNumFixItHints(); I != N; ++I) FixIts.push_back(Info.getFixItHint(I)); } StoredDiagnostic::StoredDiagnostic(Diagnostic::Level Level, unsigned ID, llvm::StringRef Message, FullSourceLoc Loc, llvm::ArrayRef<CharSourceRange> Ranges, llvm::ArrayRef<FixItHint> Fixits) : ID(ID), Level(Level), Loc(Loc), Message(Message) { this->Ranges.assign(Ranges.begin(), Ranges.end()); this->FixIts.assign(FixIts.begin(), FixIts.end()); } StoredDiagnostic::~StoredDiagnostic() { } /// IncludeInDiagnosticCounts - This method (whose default implementation /// returns true) indicates whether the diagnostics handled by this /// DiagnosticClient should be included in the number of diagnostics /// reported by Diagnostic. bool DiagnosticClient::IncludeInDiagnosticCounts() const { return true; } PartialDiagnostic::StorageAllocator::StorageAllocator() { for (unsigned I = 0; I != NumCached; ++I) FreeList[I] = Cached + I; NumFreeListEntries = NumCached; } PartialDiagnostic::StorageAllocator::~StorageAllocator() { // Don't assert if we are in a CrashRecovery context, as this // invariant may be invalidated during a crash. assert((NumFreeListEntries == NumCached || llvm::CrashRecoveryContext::isRecoveringFromCrash()) && "A partial is on the lamb"); }