// Copyright 2007, 2008 Google Inc. // Authors: Jeff Dean, Sanjay Ghemawat, Lincoln Smith // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef OPEN_VCDIFF_ROLLING_HASH_H_ #define OPEN_VCDIFF_ROLLING_HASH_H_ #include <config.h> #include <stdint.h> // uint32_t #include "logging.h" namespace open_vcdiff { // Rabin-Karp hasher module -- this is a faster version with different // constants, so it's not quite Rabin-Karp fingerprinting, but its behavior is // close enough for most applications. // Definitions common to all hash window sizes. class RollingHashUtil { public: // Multiplier for incremental hashing. The compiler should be smart enough to // convert (val * kMult) into ((val << 8) + val). static const uint32_t kMult = 257; // All hashes are returned modulo "kBase". Current implementation requires // kBase <= 2^32/kMult to avoid overflow. Also, kBase must be a power of two // so that we can compute modulus efficiently. static const uint32_t kBase = (1 << 23); // Returns operand % kBase, assuming that kBase is a power of two. static inline uint32_t ModBase(uint32_t operand) { return operand & (kBase - 1); } // Given an unsigned integer "operand", returns an unsigned integer "result" // such that // result < kBase // and // ModBase(operand + result) == 0 static inline uint32_t FindModBaseInverse(uint32_t operand) { // The subtraction (0 - operand) produces an unsigned underflow for any // operand except 0. The underflow results in a (very large) unsigned // number. Binary subtraction is used instead of unary negation because // some compilers (e.g. Visual Studio 7+) produce a warning if an unsigned // value is negated. // // The C++ mod operation (operand % kBase) may produce different results for // different compilers if operand is negative. That is not a problem in // this case, since all numbers used are unsigned, and ModBase does its work // using bitwise arithmetic rather than the % operator. return ModBase(uint32_t(0) - operand); } // Here's the heart of the hash algorithm. Start with a partial_hash value of // 0, and run this HashStep once against each byte in the data window to be // hashed. The result will be the hash value for the entire data window. The // Hash() function, below, does exactly this, albeit with some refinements. static inline uint32_t HashStep(uint32_t partial_hash, unsigned char next_byte) { return ModBase((partial_hash * kMult) + next_byte); } // Use this function to start computing a new hash value based on the first // two bytes in the window. It is equivalent to calling // HashStep(HashStep(0, ptr[0]), ptr[1]) // but takes advantage of the fact that the maximum value of // (ptr[0] * kMult) + ptr[1] is not large enough to exceed kBase, thus // avoiding an unnecessary ModBase operation. static inline uint32_t HashFirstTwoBytes(const char* ptr) { return (static_cast<unsigned char>(ptr[0]) * kMult) + static_cast<unsigned char>(ptr[1]); } private: // Making these private avoids copy constructor and assignment operator. // No objects of this type should be constructed. RollingHashUtil(); RollingHashUtil(const RollingHashUtil&); // NOLINT void operator=(const RollingHashUtil&); }; // window_size must be >= 2. template<int window_size> class RollingHash { public: // Perform global initialization that is required in order to instantiate a // RollingHash. This function *must* be called (preferably on startup) by any // program that uses a RollingHash. It is harmless to call this function more // than once. It is not thread-safe, but calling it from two different // threads at the same time can only cause a memory leak, not incorrect // behavior. Make sure to call it before spawning any threads that could use // RollingHash. The function returns true if initialization succeeds, or // false if initialization fails, in which case the caller should not proceed // to construct any objects of type RollingHash. static bool Init(); // Initialize hasher to maintain a window of the specified size. You need an // instance of this type to use UpdateHash(), but Hash() does not depend on // remove_table_, so it is static. RollingHash() { if (!remove_table_) { LOG(DFATAL) << "RollingHash object instantiated" " before calling RollingHash::Init()" << LOG_ENDL; } } // Compute a hash of the window "ptr[0, window_size - 1]". static uint32_t Hash(const char* ptr) { uint32_t h = RollingHashUtil::HashFirstTwoBytes(ptr); for (int i = 2; i < window_size; ++i) { h = RollingHashUtil::HashStep(h, ptr[i]); } return h; } // Update a hash by removing the oldest byte and adding a new byte. // // UpdateHash takes the hash value of buffer[0] ... buffer[window_size -1] // along with the value of buffer[0] (the "old_first_byte" argument) // and the value of buffer[window_size] (the "new_last_byte" argument). // It quickly computes the hash value of buffer[1] ... buffer[window_size] // without having to run Hash() on the entire window. // // The larger the window, the more advantage comes from using UpdateHash() // (which runs in time independent of window_size) instead of Hash(). // Each time window_size doubles, the time to execute Hash() also doubles, // while the time to execute UpdateHash() remains constant. Empirical tests // have borne out this statement. uint32_t UpdateHash(uint32_t old_hash, const char old_first_byte, const char new_last_byte) const { uint32_t partial_hash = RemoveFirstByteFromHash(old_hash, old_first_byte); return RollingHashUtil::HashStep(partial_hash, new_last_byte); } protected: // Given a full hash value for buffer[0] ... buffer[window_size -1], plus the // value of the first byte buffer[0], this function returns a *partial* hash // value for buffer[1] ... buffer[window_size -1]. See the comments in // Init(), below, for a description of how the contents of remove_table_ are // computed. static uint32_t RemoveFirstByteFromHash(uint32_t full_hash, unsigned char first_byte) { return RollingHashUtil::ModBase(full_hash + remove_table_[first_byte]); } private: // We keep a table that maps from any byte "b" to // (- b * pow(kMult, window_size - 1)) % kBase static const uint32_t* remove_table_; }; // For each window_size, fill a 256-entry table such that // the hash value of buffer[0] ... buffer[window_size - 1] // + remove_table_[buffer[0]] // == the hash value of buffer[1] ... buffer[window_size - 1] // See the comments in Init(), below, for a description of how the contents of // remove_table_ are computed. template<int window_size> const uint32_t* RollingHash<window_size>::remove_table_ = NULL; // Init() checks to make sure that the static object remove_table_ has been // initialized; if not, it does the considerable work of populating it. Once // it's ready, the table can be used for any number of RollingHash objects of // the same window_size. // template<int window_size> bool RollingHash<window_size>::Init() { if (window_size < 2) { LOG(ERROR) << "RollingHash window size " << window_size << " is too small" << LOG_ENDL; return false; } if (remove_table_ == NULL) { // The new object is placed into a local pointer instead of directly into // remove_table_, for two reasons: // 1. remove_table_ is a pointer to const. The table is populated using // the non-const local pointer and then assigned to the global const // pointer once it's ready. // 2. No other thread will ever see remove_table_ pointing to a // partially-initialized table. If two threads happen to call Init() // at the same time, two tables with the same contents may be created // (causing a memory leak), but the results will be consistent // no matter which of the two tables is used. uint32_t* new_remove_table = new uint32_t[256]; // Compute multiplier. Concisely, it is: // pow(kMult, (window_size - 1)) % kBase, // but we compute the power in integer form. uint32_t multiplier = 1; for (int i = 0; i < window_size - 1; ++i) { multiplier = RollingHashUtil::ModBase(multiplier * RollingHashUtil::kMult); } // For each character removed_byte, compute // remove_table_[removed_byte] == // (- (removed_byte * pow(kMult, (window_size - 1)))) % kBase // where the power operator "pow" is taken in integer form. // // If you take a hash value fp representing the hash of // buffer[0] ... buffer[window_size - 1] // and add the value of remove_table_[buffer[0]] to it, the result will be // a partial hash value for // buffer[1] ... buffer[window_size - 1] // that is to say, it no longer includes buffer[0]. // // The following byte at buffer[window_size] can then be merged with this // partial hash value to arrive quickly at the hash value for a window that // has advanced by one byte, to // buffer[1] ... buffer[window_size] // In fact, that is precisely what happens in UpdateHash, above. uint32_t byte_times_multiplier = 0; for (int removed_byte = 0; removed_byte < 256; ++removed_byte) { new_remove_table[removed_byte] = RollingHashUtil::FindModBaseInverse(byte_times_multiplier); // Iteratively adding the multiplier in this loop is equivalent to // computing (removed_byte * multiplier), and is faster byte_times_multiplier = RollingHashUtil::ModBase(byte_times_multiplier + multiplier); } remove_table_ = new_remove_table; } return true; } } // namespace open_vcdiff #endif // OPEN_VCDIFF_ROLLING_HASH_H_