// Copyright 2005, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Authors: wan@google.com (Zhanyong Wan), eefacm@gmail.com (Sean Mcafee) // // The Google C++ Testing Framework (Google Test) // // This header file declares functions and macros used internally by // Google Test. They are subject to change without notice. #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_ #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_ #include <gtest/internal/gtest-port.h> #ifdef GTEST_OS_LINUX #include <stdlib.h> #include <sys/types.h> #include <sys/wait.h> #include <unistd.h> #endif // GTEST_OS_LINUX #include <iomanip> // NOLINT #include <limits> // NOLINT #include <gtest/internal/gtest-string.h> #include <gtest/internal/gtest-filepath.h> // Due to C++ preprocessor weirdness, we need double indirection to // concatenate two tokens when one of them is __LINE__. Writing // // foo ## __LINE__ // // will result in the token foo__LINE__, instead of foo followed by // the current line number. For more details, see // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6 #define GTEST_CONCAT_TOKEN(foo, bar) GTEST_CONCAT_TOKEN_IMPL(foo, bar) #define GTEST_CONCAT_TOKEN_IMPL(foo, bar) foo ## bar // Google Test defines the testing::Message class to allow construction of // test messages via the << operator. The idea is that anything // streamable to std::ostream can be streamed to a testing::Message. // This allows a user to use his own types in Google Test assertions by // overloading the << operator. // // util/gtl/stl_logging-inl.h overloads << for STL containers. These // overloads cannot be defined in the std namespace, as that will be // undefined behavior. Therefore, they are defined in the global // namespace instead. // // C++'s symbol lookup rule (i.e. Koenig lookup) says that these // overloads are visible in either the std namespace or the global // namespace, but not other namespaces, including the testing // namespace which Google Test's Message class is in. // // To allow STL containers (and other types that has a << operator // defined in the global namespace) to be used in Google Test assertions, // testing::Message must access the custom << operator from the global // namespace. Hence this helper function. // // Note: Jeffrey Yasskin suggested an alternative fix by "using // ::operator<<;" in the definition of Message's operator<<. That fix // doesn't require a helper function, but unfortunately doesn't // compile with MSVC. template <typename T> inline void GTestStreamToHelper(std::ostream* os, const T& val) { *os << val; } namespace testing { // Forward declaration of classes. class Message; // Represents a failure message. class TestCase; // A collection of related tests. class TestPartResult; // Result of a test part. class TestInfo; // Information about a test. class UnitTest; // A collection of test cases. class UnitTestEventListenerInterface; // Listens to Google Test events. class AssertionResult; // Result of an assertion. namespace internal { struct TraceInfo; // Information about a trace point. class ScopedTrace; // Implements scoped trace. class TestInfoImpl; // Opaque implementation of TestInfo class TestResult; // Result of a single Test. class UnitTestImpl; // Opaque implementation of UnitTest template <typename E> class List; // A generic list. template <typename E> class ListNode; // A node in a generic list. // A secret type that Google Test users don't know about. It has no // definition on purpose. Therefore it's impossible to create a // Secret object, which is what we want. class Secret; // Two overloaded helpers for checking at compile time whether an // expression is a null pointer literal (i.e. NULL or any 0-valued // compile-time integral constant). Their return values have // different sizes, so we can use sizeof() to test which version is // picked by the compiler. These helpers have no implementations, as // we only need their signatures. // // Given IsNullLiteralHelper(x), the compiler will pick the first // version if x can be implicitly converted to Secret*, and pick the // second version otherwise. Since Secret is a secret and incomplete // type, the only expression a user can write that has type Secret* is // a null pointer literal. Therefore, we know that x is a null // pointer literal if and only if the first version is picked by the // compiler. char IsNullLiteralHelper(Secret* p); char (&IsNullLiteralHelper(...))[2]; // NOLINT // A compile-time bool constant that is true if and only if x is a // null pointer literal (i.e. NULL or any 0-valued compile-time // integral constant). #ifdef __SYMBIAN32__ // Symbian // Passing non-POD classes through ellipsis (...) crashes the ARM compiler. // The Nokia Symbian compiler tries to instantiate a copy constructor for // objects passed through ellipsis (...), failing for uncopyable objects. // Hence we define this to false (and lose support for NULL detection). #define GTEST_IS_NULL_LITERAL(x) false #else // ! __SYMBIAN32__ #define GTEST_IS_NULL_LITERAL(x) \ (sizeof(::testing::internal::IsNullLiteralHelper(x)) == 1) #endif // __SYMBIAN32__ // Appends the user-supplied message to the Google-Test-generated message. String AppendUserMessage(const String& gtest_msg, const Message& user_msg); // A helper class for creating scoped traces in user programs. class ScopedTrace { public: // The c'tor pushes the given source file location and message onto // a trace stack maintained by Google Test. ScopedTrace(const char* file, int line, const Message& message); // The d'tor pops the info pushed by the c'tor. // // Note that the d'tor is not virtual in order to be efficient. // Don't inherit from ScopedTrace! ~ScopedTrace(); private: GTEST_DISALLOW_COPY_AND_ASSIGN(ScopedTrace); } GTEST_ATTRIBUTE_UNUSED; // A ScopedTrace object does its job in its // c'tor and d'tor. Therefore it doesn't // need to be used otherwise. // Converts a streamable value to a String. A NULL pointer is // converted to "(null)". When the input value is a ::string, // ::std::string, ::wstring, or ::std::wstring object, each NUL // character in it is replaced with "\\0". // Declared here but defined in gtest.h, so that it has access // to the definition of the Message class, required by the ARM // compiler. template <typename T> String StreamableToString(const T& streamable); // Formats a value to be used in a failure message. #ifdef __SYMBIAN32__ // These are needed as the Nokia Symbian Compiler cannot decide between // const T& and const T* in a function template. The Nokia compiler _can_ // decide between class template specializations for T and T*, so a // tr1::type_traits-like is_pointer works, and we can overload on that. // This overload makes sure that all pointers (including // those to char or wchar_t) are printed as raw pointers. template <typename T> inline String FormatValueForFailureMessage(internal::true_type dummy, T* pointer) { return StreamableToString(static_cast<const void*>(pointer)); } template <typename T> inline String FormatValueForFailureMessage(internal::false_type dummy, const T& value) { return StreamableToString(value); } template <typename T> inline String FormatForFailureMessage(const T& value) { return FormatValueForFailureMessage( typename internal::is_pointer<T>::type(), value); } #else template <typename T> inline String FormatForFailureMessage(const T& value) { return StreamableToString(value); } // This overload makes sure that all pointers (including // those to char or wchar_t) are printed as raw pointers. template <typename T> inline String FormatForFailureMessage(T* pointer) { return StreamableToString(static_cast<const void*>(pointer)); } #endif // __SYMBIAN32__ // These overloaded versions handle narrow and wide characters. String FormatForFailureMessage(char ch); String FormatForFailureMessage(wchar_t wchar); // When this operand is a const char* or char*, and the other operand // is a ::std::string or ::string, we print this operand as a C string // rather than a pointer. We do the same for wide strings. // This internal macro is used to avoid duplicated code. #define GTEST_FORMAT_IMPL(operand2_type, operand1_printer)\ inline String FormatForComparisonFailureMessage(\ operand2_type::value_type* str, const operand2_type& /*operand2*/) {\ return operand1_printer(str);\ }\ inline String FormatForComparisonFailureMessage(\ const operand2_type::value_type* str, const operand2_type& /*operand2*/) {\ return operand1_printer(str);\ } #if GTEST_HAS_STD_STRING GTEST_FORMAT_IMPL(::std::string, String::ShowCStringQuoted) #endif // GTEST_HAS_STD_STRING #if GTEST_HAS_STD_WSTRING GTEST_FORMAT_IMPL(::std::wstring, String::ShowWideCStringQuoted) #endif // GTEST_HAS_STD_WSTRING #if GTEST_HAS_GLOBAL_STRING GTEST_FORMAT_IMPL(::string, String::ShowCStringQuoted) #endif // GTEST_HAS_GLOBAL_STRING #if GTEST_HAS_GLOBAL_WSTRING GTEST_FORMAT_IMPL(::wstring, String::ShowWideCStringQuoted) #endif // GTEST_HAS_GLOBAL_WSTRING #undef GTEST_FORMAT_IMPL // Constructs and returns the message for an equality assertion // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure. // // The first four parameters are the expressions used in the assertion // and their values, as strings. For example, for ASSERT_EQ(foo, bar) // where foo is 5 and bar is 6, we have: // // expected_expression: "foo" // actual_expression: "bar" // expected_value: "5" // actual_value: "6" // // The ignoring_case parameter is true iff the assertion is a // *_STRCASEEQ*. When it's true, the string " (ignoring case)" will // be inserted into the message. AssertionResult EqFailure(const char* expected_expression, const char* actual_expression, const String& expected_value, const String& actual_value, bool ignoring_case); // This template class represents an IEEE floating-point number // (either single-precision or double-precision, depending on the // template parameters). // // The purpose of this class is to do more sophisticated number // comparison. (Due to round-off error, etc, it's very unlikely that // two floating-points will be equal exactly. Hence a naive // comparison by the == operation often doesn't work.) // // Format of IEEE floating-point: // // The most-significant bit being the leftmost, an IEEE // floating-point looks like // // sign_bit exponent_bits fraction_bits // // Here, sign_bit is a single bit that designates the sign of the // number. // // For float, there are 8 exponent bits and 23 fraction bits. // // For double, there are 11 exponent bits and 52 fraction bits. // // More details can be found at // http://en.wikipedia.org/wiki/IEEE_floating-point_standard. // // Template parameter: // // RawType: the raw floating-point type (either float or double) template <typename RawType> class FloatingPoint { public: // Defines the unsigned integer type that has the same size as the // floating point number. typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits; // Constants. // # of bits in a number. static const size_t kBitCount = 8*sizeof(RawType); // # of fraction bits in a number. static const size_t kFractionBitCount = std::numeric_limits<RawType>::digits - 1; // # of exponent bits in a number. static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount; // The mask for the sign bit. static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1); // The mask for the fraction bits. static const Bits kFractionBitMask = ~static_cast<Bits>(0) >> (kExponentBitCount + 1); // The mask for the exponent bits. static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask); // How many ULP's (Units in the Last Place) we want to tolerate when // comparing two numbers. The larger the value, the more error we // allow. A 0 value means that two numbers must be exactly the same // to be considered equal. // // The maximum error of a single floating-point operation is 0.5 // units in the last place. On Intel CPU's, all floating-point // calculations are done with 80-bit precision, while double has 64 // bits. Therefore, 4 should be enough for ordinary use. // // See the following article for more details on ULP: // http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm. static const size_t kMaxUlps = 4; // Constructs a FloatingPoint from a raw floating-point number. // // On an Intel CPU, passing a non-normalized NAN (Not a Number) // around may change its bits, although the new value is guaranteed // to be also a NAN. Therefore, don't expect this constructor to // preserve the bits in x when x is a NAN. explicit FloatingPoint(const RawType& x) : value_(x) {} // Static methods // Reinterprets a bit pattern as a floating-point number. // // This function is needed to test the AlmostEquals() method. static RawType ReinterpretBits(const Bits bits) { FloatingPoint fp(0); fp.bits_ = bits; return fp.value_; } // Returns the floating-point number that represent positive infinity. static RawType Infinity() { return ReinterpretBits(kExponentBitMask); } // Non-static methods // Returns the bits that represents this number. const Bits &bits() const { return bits_; } // Returns the exponent bits of this number. Bits exponent_bits() const { return kExponentBitMask & bits_; } // Returns the fraction bits of this number. Bits fraction_bits() const { return kFractionBitMask & bits_; } // Returns the sign bit of this number. Bits sign_bit() const { return kSignBitMask & bits_; } // Returns true iff this is NAN (not a number). bool is_nan() const { // It's a NAN if the exponent bits are all ones and the fraction // bits are not entirely zeros. return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0); } // Returns true iff this number is at most kMaxUlps ULP's away from // rhs. In particular, this function: // // - returns false if either number is (or both are) NAN. // - treats really large numbers as almost equal to infinity. // - thinks +0.0 and -0.0 are 0 DLP's apart. bool AlmostEquals(const FloatingPoint& rhs) const { // The IEEE standard says that any comparison operation involving // a NAN must return false. if (is_nan() || rhs.is_nan()) return false; return DistanceBetweenSignAndMagnitudeNumbers(bits_, rhs.bits_) <= kMaxUlps; } private: // Converts an integer from the sign-and-magnitude representation to // the biased representation. More precisely, let N be 2 to the // power of (kBitCount - 1), an integer x is represented by the // unsigned number x + N. // // For instance, // // -N + 1 (the most negative number representable using // sign-and-magnitude) is represented by 1; // 0 is represented by N; and // N - 1 (the biggest number representable using // sign-and-magnitude) is represented by 2N - 1. // // Read http://en.wikipedia.org/wiki/Signed_number_representations // for more details on signed number representations. static Bits SignAndMagnitudeToBiased(const Bits &sam) { if (kSignBitMask & sam) { // sam represents a negative number. return ~sam + 1; } else { // sam represents a positive number. return kSignBitMask | sam; } } // Given two numbers in the sign-and-magnitude representation, // returns the distance between them as an unsigned number. static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1, const Bits &sam2) { const Bits biased1 = SignAndMagnitudeToBiased(sam1); const Bits biased2 = SignAndMagnitudeToBiased(sam2); return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1); } union { RawType value_; // The raw floating-point number. Bits bits_; // The bits that represent the number. }; }; // Typedefs the instances of the FloatingPoint template class that we // care to use. typedef FloatingPoint<float> Float; typedef FloatingPoint<double> Double; // In order to catch the mistake of putting tests that use different // test fixture classes in the same test case, we need to assign // unique IDs to fixture classes and compare them. The TypeId type is // used to hold such IDs. The user should treat TypeId as an opaque // type: the only operation allowed on TypeId values is to compare // them for equality using the == operator. typedef void* TypeId; // GetTypeId<T>() returns the ID of type T. Different values will be // returned for different types. Calling the function twice with the // same type argument is guaranteed to return the same ID. template <typename T> inline TypeId GetTypeId() { static bool dummy = false; // The compiler is required to create an instance of the static // variable dummy for each T used to instantiate the template. // Therefore, the address of dummy is guaranteed to be unique. return &dummy; } #ifdef GTEST_OS_WINDOWS // Predicate-formatters for implementing the HRESULT checking macros // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED} // We pass a long instead of HRESULT to avoid causing an // include dependency for the HRESULT type. AssertionResult IsHRESULTSuccess(const char* expr, long hr); // NOLINT AssertionResult IsHRESULTFailure(const char* expr, long hr); // NOLINT #endif // GTEST_OS_WINDOWS } // namespace internal } // namespace testing #define GTEST_MESSAGE(message, result_type) \ ::testing::internal::AssertHelper(result_type, __FILE__, __LINE__, message) \ = ::testing::Message() #define GTEST_FATAL_FAILURE(message) \ return GTEST_MESSAGE(message, ::testing::TPRT_FATAL_FAILURE) #define GTEST_NONFATAL_FAILURE(message) \ GTEST_MESSAGE(message, ::testing::TPRT_NONFATAL_FAILURE) #define GTEST_SUCCESS(message) \ GTEST_MESSAGE(message, ::testing::TPRT_SUCCESS) #define GTEST_TEST_BOOLEAN(boolexpr, booltext, actual, expected, fail) \ GTEST_AMBIGUOUS_ELSE_BLOCKER \ if (boolexpr) \ ; \ else \ fail("Value of: " booltext "\n Actual: " #actual "\nExpected: " #expected) // Helper macro for defining tests. #define GTEST_TEST(test_case_name, test_name, parent_class)\ class test_case_name##_##test_name##_Test : public parent_class {\ public:\ test_case_name##_##test_name##_Test() {}\ static ::testing::Test* NewTest() {\ return new test_case_name##_##test_name##_Test;\ }\ private:\ virtual void TestBody();\ static ::testing::TestInfo* const test_info_;\ GTEST_DISALLOW_COPY_AND_ASSIGN(test_case_name##_##test_name##_Test);\ };\ \ ::testing::TestInfo* const test_case_name##_##test_name##_Test::test_info_ =\ ::testing::TestInfo::MakeAndRegisterInstance(\ #test_case_name, \ #test_name, \ ::testing::internal::GetTypeId< parent_class >(), \ parent_class::SetUpTestCase, \ parent_class::TearDownTestCase, \ test_case_name##_##test_name##_Test::NewTest);\ void test_case_name##_##test_name##_Test::TestBody() #endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_