// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "crypto/encryptor.h" #include <string> #include "base/memory/scoped_ptr.h" #include "base/string_number_conversions.h" #include "crypto/symmetric_key.h" #include "testing/gtest/include/gtest/gtest.h" TEST(EncryptorTest, EncryptDecrypt) { scoped_ptr<crypto::SymmetricKey> key( crypto::SymmetricKey::DeriveKeyFromPassword( crypto::SymmetricKey::AES, "password", "saltiest", 1000, 256)); EXPECT_TRUE(NULL != key.get()); crypto::Encryptor encryptor; // The IV must be exactly as long as the cipher block size. std::string iv("the iv: 16 bytes"); EXPECT_EQ(16U, iv.size()); EXPECT_TRUE(encryptor.Init(key.get(), crypto::Encryptor::CBC, iv)); std::string plaintext("this is the plaintext"); std::string ciphertext; EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext)); EXPECT_LT(0U, ciphertext.size()); std::string decypted; EXPECT_TRUE(encryptor.Decrypt(ciphertext, &decypted)); EXPECT_EQ(plaintext, decypted); } // TODO(wtc): add more known-answer tests. Test vectors are available from // http://www.ietf.org/rfc/rfc3602 // http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf // http://gladman.plushost.co.uk/oldsite/AES/index.php // http://csrc.nist.gov/groups/STM/cavp/documents/aes/KAT_AES.zip // NIST SP 800-38A test vector F.2.5 CBC-AES256.Encrypt. TEST(EncryptorTest, EncryptAES256CBC) { // From NIST SP 800-38a test cast F.2.5 CBC-AES256.Encrypt. static const unsigned char raw_key[] = { 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81, 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4 }; static const unsigned char raw_iv[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f }; static const unsigned char raw_plaintext[] = { // Block #1 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a, // Block #2 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51, // Block #3 0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11, 0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef, // Block #4 0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17, 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10, }; static const unsigned char raw_ciphertext[] = { // Block #1 0xf5, 0x8c, 0x4c, 0x04, 0xd6, 0xe5, 0xf1, 0xba, 0x77, 0x9e, 0xab, 0xfb, 0x5f, 0x7b, 0xfb, 0xd6, // Block #2 0x9c, 0xfc, 0x4e, 0x96, 0x7e, 0xdb, 0x80, 0x8d, 0x67, 0x9f, 0x77, 0x7b, 0xc6, 0x70, 0x2c, 0x7d, // Block #3 0x39, 0xf2, 0x33, 0x69, 0xa9, 0xd9, 0xba, 0xcf, 0xa5, 0x30, 0xe2, 0x63, 0x04, 0x23, 0x14, 0x61, // Block #4 0xb2, 0xeb, 0x05, 0xe2, 0xc3, 0x9b, 0xe9, 0xfc, 0xda, 0x6c, 0x19, 0x07, 0x8c, 0x6a, 0x9d, 0x1b, // PKCS #5 padding, encrypted. 0x3f, 0x46, 0x17, 0x96, 0xd6, 0xb0, 0xd6, 0xb2, 0xe0, 0xc2, 0xa7, 0x2b, 0x4d, 0x80, 0xe6, 0x44 }; std::string key(reinterpret_cast<const char*>(raw_key), sizeof(raw_key)); scoped_ptr<crypto::SymmetricKey> sym_key(crypto::SymmetricKey::Import( crypto::SymmetricKey::AES, key)); ASSERT_TRUE(NULL != sym_key.get()); crypto::Encryptor encryptor; // The IV must be exactly as long a the cipher block size. std::string iv(reinterpret_cast<const char*>(raw_iv), sizeof(raw_iv)); EXPECT_EQ(16U, iv.size()); EXPECT_TRUE(encryptor.Init(sym_key.get(), crypto::Encryptor::CBC, iv)); std::string plaintext(reinterpret_cast<const char*>(raw_plaintext), sizeof(raw_plaintext)); std::string ciphertext; EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext)); EXPECT_EQ(sizeof(raw_ciphertext), ciphertext.size()); EXPECT_EQ(0, memcmp(ciphertext.data(), raw_ciphertext, ciphertext.size())); std::string decypted; EXPECT_TRUE(encryptor.Decrypt(ciphertext, &decypted)); EXPECT_EQ(plaintext, decypted); } // Expected output derived from the NSS implementation. TEST(EncryptorTest, EncryptAES128CBCRegression) { std::string key = "128=SixteenBytes"; std::string iv = "Sweet Sixteen IV"; std::string plaintext = "Plain text with a g-clef U+1D11E \360\235\204\236"; std::string expected_ciphertext_hex = "D4A67A0BA33C30F207344D81D1E944BBE65587C3D7D9939A" "C070C62B9C15A3EA312EA4AD1BC7929F4D3C16B03AD5ADA8"; scoped_ptr<crypto::SymmetricKey> sym_key(crypto::SymmetricKey::Import( crypto::SymmetricKey::AES, key)); ASSERT_TRUE(NULL != sym_key.get()); crypto::Encryptor encryptor; // The IV must be exactly as long a the cipher block size. EXPECT_EQ(16U, iv.size()); EXPECT_TRUE(encryptor.Init(sym_key.get(), crypto::Encryptor::CBC, iv)); std::string ciphertext; EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext)); EXPECT_EQ(expected_ciphertext_hex, base::HexEncode(ciphertext.data(), ciphertext.size())); std::string decypted; EXPECT_TRUE(encryptor.Decrypt(ciphertext, &decypted)); EXPECT_EQ(plaintext, decypted); } // Expected output derived from the NSS implementation. TEST(EncryptorTest, EncryptAES192CBCRegression) { std::string key = "192bitsIsTwentyFourByte!"; std::string iv = "Sweet Sixteen IV"; std::string plaintext = "Small text"; std::string expected_ciphertext_hex = "78DE5D7C2714FC5C61346C5416F6C89A"; scoped_ptr<crypto::SymmetricKey> sym_key(crypto::SymmetricKey::Import( crypto::SymmetricKey::AES, key)); ASSERT_TRUE(NULL != sym_key.get()); crypto::Encryptor encryptor; // The IV must be exactly as long a the cipher block size. EXPECT_EQ(16U, iv.size()); EXPECT_TRUE(encryptor.Init(sym_key.get(), crypto::Encryptor::CBC, iv)); std::string ciphertext; EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext)); EXPECT_EQ(expected_ciphertext_hex, base::HexEncode(ciphertext.data(), ciphertext.size())); std::string decypted; EXPECT_TRUE(encryptor.Decrypt(ciphertext, &decypted)); EXPECT_EQ(plaintext, decypted); } // Not all platforms allow import/generation of symmetric keys with an // unsupported size. #if !defined(OS_WIN) && !defined(USE_NSS) TEST(EncryptorTest, UnsupportedKeySize) { std::string key = "7 = bad"; std::string iv = "Sweet Sixteen IV"; scoped_ptr<crypto::SymmetricKey> sym_key(crypto::SymmetricKey::Import( crypto::SymmetricKey::AES, key)); ASSERT_TRUE(NULL != sym_key.get()); crypto::Encryptor encryptor; // The IV must be exactly as long a the cipher block size. EXPECT_EQ(16U, iv.size()); EXPECT_FALSE(encryptor.Init(sym_key.get(), crypto::Encryptor::CBC, iv)); } #endif // unsupported platforms. TEST(EncryptorTest, UnsupportedIV) { std::string key = "128=SixteenBytes"; std::string iv = "OnlyForteen :("; scoped_ptr<crypto::SymmetricKey> sym_key(crypto::SymmetricKey::Import( crypto::SymmetricKey::AES, key)); ASSERT_TRUE(NULL != sym_key.get()); crypto::Encryptor encryptor; EXPECT_FALSE(encryptor.Init(sym_key.get(), crypto::Encryptor::CBC, iv)); } TEST(EncryptorTest, EmptyEncrypt) { std::string key = "128=SixteenBytes"; std::string iv = "Sweet Sixteen IV"; std::string plaintext; std::string expected_ciphertext_hex = "8518B8878D34E7185E300D0FCC426396"; scoped_ptr<crypto::SymmetricKey> sym_key(crypto::SymmetricKey::Import( crypto::SymmetricKey::AES, key)); ASSERT_TRUE(NULL != sym_key.get()); crypto::Encryptor encryptor; // The IV must be exactly as long a the cipher block size. EXPECT_EQ(16U, iv.size()); EXPECT_TRUE(encryptor.Init(sym_key.get(), crypto::Encryptor::CBC, iv)); std::string ciphertext; EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext)); EXPECT_EQ(expected_ciphertext_hex, base::HexEncode(ciphertext.data(), ciphertext.size())); } TEST(EncryptorTest, EmptyDecrypt) { std::string key = "128=SixteenBytes"; std::string iv = "Sweet Sixteen IV"; scoped_ptr<crypto::SymmetricKey> sym_key(crypto::SymmetricKey::Import( crypto::SymmetricKey::AES, key)); ASSERT_TRUE(NULL != sym_key.get()); crypto::Encryptor encryptor; // The IV must be exactly as long a the cipher block size. EXPECT_EQ(16U, iv.size()); EXPECT_TRUE(encryptor.Init(sym_key.get(), crypto::Encryptor::CBC, iv)); std::string decrypted; EXPECT_FALSE(encryptor.Decrypt("", &decrypted)); EXPECT_EQ("", decrypted); }