// Copyright (c) 2010 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // STL utility functions. Usually, these replace built-in, but slow(!), // STL functions with more efficient versions. #ifndef BASE_STL_UTIL_INL_H_ #define BASE_STL_UTIL_INL_H_ #pragma once #include <string.h> // for memcpy #include <functional> #include <set> #include <string> #include <vector> #include <cassert> // Clear internal memory of an STL object. // STL clear()/reserve(0) does not always free internal memory allocated // This function uses swap/destructor to ensure the internal memory is freed. template<class T> void STLClearObject(T* obj) { T tmp; tmp.swap(*obj); obj->reserve(0); // this is because sometimes "T tmp" allocates objects with // memory (arena implementation?). use reserve() // to clear() even if it doesn't always work } // Reduce memory usage on behalf of object if it is using more than // "bytes" bytes of space. By default, we clear objects over 1MB. template <class T> inline void STLClearIfBig(T* obj, size_t limit = 1<<20) { if (obj->capacity() >= limit) { STLClearObject(obj); } else { obj->clear(); } } // Reserve space for STL object. // STL's reserve() will always copy. // This function avoid the copy if we already have capacity template<class T> void STLReserveIfNeeded(T* obj, int new_size) { if (obj->capacity() < new_size) // increase capacity obj->reserve(new_size); else if (obj->size() > new_size) // reduce size obj->resize(new_size); } // STLDeleteContainerPointers() // For a range within a container of pointers, calls delete // (non-array version) on these pointers. // NOTE: for these three functions, we could just implement a DeleteObject // functor and then call for_each() on the range and functor, but this // requires us to pull in all of algorithm.h, which seems expensive. // For hash_[multi]set, it is important that this deletes behind the iterator // because the hash_set may call the hash function on the iterator when it is // advanced, which could result in the hash function trying to deference a // stale pointer. template <class ForwardIterator> void STLDeleteContainerPointers(ForwardIterator begin, ForwardIterator end) { while (begin != end) { ForwardIterator temp = begin; ++begin; delete *temp; } } // STLDeleteContainerPairPointers() // For a range within a container of pairs, calls delete // (non-array version) on BOTH items in the pairs. // NOTE: Like STLDeleteContainerPointers, it is important that this deletes // behind the iterator because if both the key and value are deleted, the // container may call the hash function on the iterator when it is advanced, // which could result in the hash function trying to dereference a stale // pointer. template <class ForwardIterator> void STLDeleteContainerPairPointers(ForwardIterator begin, ForwardIterator end) { while (begin != end) { ForwardIterator temp = begin; ++begin; delete temp->first; delete temp->second; } } // STLDeleteContainerPairFirstPointers() // For a range within a container of pairs, calls delete (non-array version) // on the FIRST item in the pairs. // NOTE: Like STLDeleteContainerPointers, deleting behind the iterator. template <class ForwardIterator> void STLDeleteContainerPairFirstPointers(ForwardIterator begin, ForwardIterator end) { while (begin != end) { ForwardIterator temp = begin; ++begin; delete temp->first; } } // STLDeleteContainerPairSecondPointers() // For a range within a container of pairs, calls delete // (non-array version) on the SECOND item in the pairs. template <class ForwardIterator> void STLDeleteContainerPairSecondPointers(ForwardIterator begin, ForwardIterator end) { while (begin != end) { delete begin->second; ++begin; } } template<typename T> inline void STLAssignToVector(std::vector<T>* vec, const T* ptr, size_t n) { vec->resize(n); memcpy(&vec->front(), ptr, n*sizeof(T)); } /***** Hack to allow faster assignment to a vector *****/ // This routine speeds up an assignment of 32 bytes to a vector from // about 250 cycles per assignment to about 140 cycles. // // Usage: // STLAssignToVectorChar(&vec, ptr, size); // STLAssignToString(&str, ptr, size); inline void STLAssignToVectorChar(std::vector<char>* vec, const char* ptr, size_t n) { STLAssignToVector(vec, ptr, n); } inline void STLAssignToString(std::string* str, const char* ptr, size_t n) { str->resize(n); memcpy(&*str->begin(), ptr, n); } // To treat a possibly-empty vector as an array, use these functions. // If you know the array will never be empty, you can use &*v.begin() // directly, but that is allowed to dump core if v is empty. This // function is the most efficient code that will work, taking into // account how our STL is actually implemented. THIS IS NON-PORTABLE // CODE, so call us instead of repeating the nonportable code // everywhere. If our STL implementation changes, we will need to // change this as well. template<typename T> inline T* vector_as_array(std::vector<T>* v) { # ifdef NDEBUG return &*v->begin(); # else return v->empty() ? NULL : &*v->begin(); # endif } template<typename T> inline const T* vector_as_array(const std::vector<T>* v) { # ifdef NDEBUG return &*v->begin(); # else return v->empty() ? NULL : &*v->begin(); # endif } // Return a mutable char* pointing to a string's internal buffer, // which may not be null-terminated. Writing through this pointer will // modify the string. // // string_as_array(&str)[i] is valid for 0 <= i < str.size() until the // next call to a string method that invalidates iterators. // // As of 2006-04, there is no standard-blessed way of getting a // mutable reference to a string's internal buffer. However, issue 530 // (http://www.open-std.org/JTC1/SC22/WG21/docs/lwg-active.html#530) // proposes this as the method. According to Matt Austern, this should // already work on all current implementations. inline char* string_as_array(std::string* str) { // DO NOT USE const_cast<char*>(str->data())! See the unittest for why. return str->empty() ? NULL : &*str->begin(); } // These are methods that test two hash maps/sets for equality. These exist // because the == operator in the STL can return false when the maps/sets // contain identical elements. This is because it compares the internal hash // tables which may be different if the order of insertions and deletions // differed. template <class HashSet> inline bool HashSetEquality(const HashSet& set_a, const HashSet& set_b) { if (set_a.size() != set_b.size()) return false; for (typename HashSet::const_iterator i = set_a.begin(); i != set_a.end(); ++i) { if (set_b.find(*i) == set_b.end()) return false; } return true; } template <class HashMap> inline bool HashMapEquality(const HashMap& map_a, const HashMap& map_b) { if (map_a.size() != map_b.size()) return false; for (typename HashMap::const_iterator i = map_a.begin(); i != map_a.end(); ++i) { typename HashMap::const_iterator j = map_b.find(i->first); if (j == map_b.end()) return false; if (i->second != j->second) return false; } return true; } // The following functions are useful for cleaning up STL containers // whose elements point to allocated memory. // STLDeleteElements() deletes all the elements in an STL container and clears // the container. This function is suitable for use with a vector, set, // hash_set, or any other STL container which defines sensible begin(), end(), // and clear() methods. // // If container is NULL, this function is a no-op. // // As an alternative to calling STLDeleteElements() directly, consider // STLElementDeleter (defined below), which ensures that your container's // elements are deleted when the STLElementDeleter goes out of scope. template <class T> void STLDeleteElements(T *container) { if (!container) return; STLDeleteContainerPointers(container->begin(), container->end()); container->clear(); } // Given an STL container consisting of (key, value) pairs, STLDeleteValues // deletes all the "value" components and clears the container. Does nothing // in the case it's given a NULL pointer. template <class T> void STLDeleteValues(T *v) { if (!v) return; for (typename T::iterator i = v->begin(); i != v->end(); ++i) { delete i->second; } v->clear(); } // The following classes provide a convenient way to delete all elements or // values from STL containers when they goes out of scope. This greatly // simplifies code that creates temporary objects and has multiple return // statements. Example: // // vector<MyProto *> tmp_proto; // STLElementDeleter<vector<MyProto *> > d(&tmp_proto); // if (...) return false; // ... // return success; // Given a pointer to an STL container this class will delete all the element // pointers when it goes out of scope. template<class STLContainer> class STLElementDeleter { public: STLElementDeleter<STLContainer>(STLContainer *ptr) : container_ptr_(ptr) {} ~STLElementDeleter<STLContainer>() { STLDeleteElements(container_ptr_); } private: STLContainer *container_ptr_; }; // Given a pointer to an STL container this class will delete all the value // pointers when it goes out of scope. template<class STLContainer> class STLValueDeleter { public: STLValueDeleter<STLContainer>(STLContainer *ptr) : container_ptr_(ptr) {} ~STLValueDeleter<STLContainer>() { STLDeleteValues(container_ptr_); } private: STLContainer *container_ptr_; }; // Forward declare some callback classes in callback.h for STLBinaryFunction template <class R, class T1, class T2> class ResultCallback2; // STLBinaryFunction is a wrapper for the ResultCallback2 class in callback.h // It provides an operator () method instead of a Run method, so it may be // passed to STL functions in <algorithm>. // // The client should create callback with NewPermanentCallback, and should // delete callback after it is done using the STLBinaryFunction. template <class Result, class Arg1, class Arg2> class STLBinaryFunction : public std::binary_function<Arg1, Arg2, Result> { public: typedef ResultCallback2<Result, Arg1, Arg2> Callback; STLBinaryFunction(Callback* callback) : callback_(callback) { assert(callback_); } Result operator() (Arg1 arg1, Arg2 arg2) { return callback_->Run(arg1, arg2); } private: Callback* callback_; }; // STLBinaryPredicate is a specialized version of STLBinaryFunction, where the // return type is bool and both arguments have type Arg. It can be used // wherever STL requires a StrictWeakOrdering, such as in sort() or // lower_bound(). // // templated typedefs are not supported, so instead we use inheritance. template <class Arg> class STLBinaryPredicate : public STLBinaryFunction<bool, Arg, Arg> { public: typedef typename STLBinaryPredicate<Arg>::Callback Callback; STLBinaryPredicate(Callback* callback) : STLBinaryFunction<bool, Arg, Arg>(callback) { } }; // Functors that compose arbitrary unary and binary functions with a // function that "projects" one of the members of a pair. // Specifically, if p1 and p2, respectively, are the functions that // map a pair to its first and second, respectively, members, the // table below summarizes the functions that can be constructed: // // * UnaryOperate1st<pair>(f) returns the function x -> f(p1(x)) // * UnaryOperate2nd<pair>(f) returns the function x -> f(p2(x)) // * BinaryOperate1st<pair>(f) returns the function (x,y) -> f(p1(x),p1(y)) // * BinaryOperate2nd<pair>(f) returns the function (x,y) -> f(p2(x),p2(y)) // // A typical usage for these functions would be when iterating over // the contents of an STL map. For other sample usage, see the unittest. template<typename Pair, typename UnaryOp> class UnaryOperateOnFirst : public std::unary_function<Pair, typename UnaryOp::result_type> { public: UnaryOperateOnFirst() { } UnaryOperateOnFirst(const UnaryOp& f) : f_(f) { } typename UnaryOp::result_type operator()(const Pair& p) const { return f_(p.first); } private: UnaryOp f_; }; template<typename Pair, typename UnaryOp> UnaryOperateOnFirst<Pair, UnaryOp> UnaryOperate1st(const UnaryOp& f) { return UnaryOperateOnFirst<Pair, UnaryOp>(f); } template<typename Pair, typename UnaryOp> class UnaryOperateOnSecond : public std::unary_function<Pair, typename UnaryOp::result_type> { public: UnaryOperateOnSecond() { } UnaryOperateOnSecond(const UnaryOp& f) : f_(f) { } typename UnaryOp::result_type operator()(const Pair& p) const { return f_(p.second); } private: UnaryOp f_; }; template<typename Pair, typename UnaryOp> UnaryOperateOnSecond<Pair, UnaryOp> UnaryOperate2nd(const UnaryOp& f) { return UnaryOperateOnSecond<Pair, UnaryOp>(f); } template<typename Pair, typename BinaryOp> class BinaryOperateOnFirst : public std::binary_function<Pair, Pair, typename BinaryOp::result_type> { public: BinaryOperateOnFirst() { } BinaryOperateOnFirst(const BinaryOp& f) : f_(f) { } typename BinaryOp::result_type operator()(const Pair& p1, const Pair& p2) const { return f_(p1.first, p2.first); } private: BinaryOp f_; }; template<typename Pair, typename BinaryOp> BinaryOperateOnFirst<Pair, BinaryOp> BinaryOperate1st(const BinaryOp& f) { return BinaryOperateOnFirst<Pair, BinaryOp>(f); } template<typename Pair, typename BinaryOp> class BinaryOperateOnSecond : public std::binary_function<Pair, Pair, typename BinaryOp::result_type> { public: BinaryOperateOnSecond() { } BinaryOperateOnSecond(const BinaryOp& f) : f_(f) { } typename BinaryOp::result_type operator()(const Pair& p1, const Pair& p2) const { return f_(p1.second, p2.second); } private: BinaryOp f_; }; template<typename Pair, typename BinaryOp> BinaryOperateOnSecond<Pair, BinaryOp> BinaryOperate2nd(const BinaryOp& f) { return BinaryOperateOnSecond<Pair, BinaryOp>(f); } // Translates a set into a vector. template<typename T> std::vector<T> SetToVector(const std::set<T>& values) { std::vector<T> result; result.reserve(values.size()); result.insert(result.begin(), values.begin(), values.end()); return result; } // Test to see if a set, map, hash_set or hash_map contains a particular key. // Returns true if the key is in the collection. template <typename Collection, typename Key> bool ContainsKey(const Collection& collection, const Key& key) { return collection.find(key) != collection.end(); } #endif // BASE_STL_UTIL_INL_H_