/* * * BlueZ - Bluetooth protocol stack for Linux * * Copyright (C) 2009-2010 Marcel Holtmann <marcel@holtmann.org> * Copyright (C) 2009-2010 Nokia Corporation * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * */ #include <stdarg.h> #include <stdlib.h> #include <unistd.h> #include <errno.h> #include <poll.h> #include <sys/types.h> #include <sys/socket.h> #include <bluetooth/bluetooth.h> #include <bluetooth/l2cap.h> #include <bluetooth/rfcomm.h> #include <bluetooth/sco.h> #include <bluetooth/hci.h> #include <bluetooth/hci_lib.h> #include <glib.h> #include "btio.h" #define ERROR_FAILED(gerr, str, err) \ g_set_error(gerr, BT_IO_ERROR, BT_IO_ERROR_FAILED, \ str ": %s (%d)", strerror(err), err) #define DEFAULT_DEFER_TIMEOUT 30 struct set_opts { bdaddr_t src; bdaddr_t dst; int defer; int sec_level; uint8_t channel; uint16_t psm; uint16_t cid; uint16_t mtu; uint16_t imtu; uint16_t omtu; int master; uint8_t mode; int flushable; uint8_t force_active; }; struct connect { BtIOConnect connect; gpointer user_data; GDestroyNotify destroy; }; struct accept { BtIOConnect connect; gpointer user_data; GDestroyNotify destroy; }; struct server { BtIOConnect connect; BtIOConfirm confirm; gpointer user_data; GDestroyNotify destroy; }; static void server_remove(struct server *server) { if (server->destroy) server->destroy(server->user_data); g_free(server); } static void connect_remove(struct connect *conn) { if (conn->destroy) conn->destroy(conn->user_data); g_free(conn); } static void accept_remove(struct accept *accept) { if (accept->destroy) accept->destroy(accept->user_data); g_free(accept); } static gboolean check_nval(GIOChannel *io) { struct pollfd fds; memset(&fds, 0, sizeof(fds)); fds.fd = g_io_channel_unix_get_fd(io); fds.events = POLLNVAL; if (poll(&fds, 1, 0) > 0 && (fds.revents & POLLNVAL)) return TRUE; return FALSE; } static gboolean accept_cb(GIOChannel *io, GIOCondition cond, gpointer user_data) { struct accept *accept = user_data; GError *err = NULL; /* If the user aborted this accept attempt */ if ((cond & G_IO_NVAL) || check_nval(io)) return FALSE; if (cond & (G_IO_HUP | G_IO_ERR)) g_set_error(&err, BT_IO_ERROR, BT_IO_ERROR_DISCONNECTED, "HUP or ERR on socket"); accept->connect(io, err, accept->user_data); g_clear_error(&err); return FALSE; } static gboolean connect_cb(GIOChannel *io, GIOCondition cond, gpointer user_data) { struct connect *conn = user_data; GError *gerr = NULL; /* If the user aborted this connect attempt */ if ((cond & G_IO_NVAL) || check_nval(io)) return FALSE; if (cond & G_IO_OUT) { int err = 0, sock = g_io_channel_unix_get_fd(io); socklen_t len = sizeof(err); if (getsockopt(sock, SOL_SOCKET, SO_ERROR, &err, &len) < 0) err = errno; if (err) g_set_error(&gerr, BT_IO_ERROR, BT_IO_ERROR_CONNECT_FAILED, "%s (%d)", strerror(err), err); } else if (cond & (G_IO_HUP | G_IO_ERR)) g_set_error(&gerr, BT_IO_ERROR, BT_IO_ERROR_CONNECT_FAILED, "HUP or ERR on socket"); conn->connect(io, gerr, conn->user_data); if (gerr) g_error_free(gerr); return FALSE; } static gboolean server_cb(GIOChannel *io, GIOCondition cond, gpointer user_data) { struct server *server = user_data; int srv_sock, cli_sock; GIOChannel *cli_io; /* If the user closed the server */ if ((cond & G_IO_NVAL) || check_nval(io)) return FALSE; srv_sock = g_io_channel_unix_get_fd(io); cli_sock = accept(srv_sock, NULL, NULL); if (cli_sock < 0) return TRUE; cli_io = g_io_channel_unix_new(cli_sock); g_io_channel_set_close_on_unref(cli_io, TRUE); g_io_channel_set_flags(cli_io, G_IO_FLAG_NONBLOCK, NULL); if (server->confirm) server->confirm(cli_io, server->user_data); else server->connect(cli_io, NULL, server->user_data); g_io_channel_unref(cli_io); return TRUE; } static void server_add(GIOChannel *io, BtIOConnect connect, BtIOConfirm confirm, gpointer user_data, GDestroyNotify destroy) { struct server *server; GIOCondition cond; server = g_new0(struct server, 1); server->connect = connect; server->confirm = confirm; server->user_data = user_data; server->destroy = destroy; cond = G_IO_IN | G_IO_ERR | G_IO_HUP | G_IO_NVAL; g_io_add_watch_full(io, G_PRIORITY_DEFAULT, cond, server_cb, server, (GDestroyNotify) server_remove); } static void connect_add(GIOChannel *io, BtIOConnect connect, gpointer user_data, GDestroyNotify destroy) { struct connect *conn; GIOCondition cond; conn = g_new0(struct connect, 1); conn->connect = connect; conn->user_data = user_data; conn->destroy = destroy; cond = G_IO_OUT | G_IO_ERR | G_IO_HUP | G_IO_NVAL; g_io_add_watch_full(io, G_PRIORITY_DEFAULT, cond, connect_cb, conn, (GDestroyNotify) connect_remove); } static void accept_add(GIOChannel *io, BtIOConnect connect, gpointer user_data, GDestroyNotify destroy) { struct accept *accept; GIOCondition cond; accept = g_new0(struct accept, 1); accept->connect = connect; accept->user_data = user_data; accept->destroy = destroy; cond = G_IO_OUT | G_IO_ERR | G_IO_HUP | G_IO_NVAL; g_io_add_watch_full(io, G_PRIORITY_DEFAULT, cond, accept_cb, accept, (GDestroyNotify) accept_remove); } static int l2cap_bind(int sock, const bdaddr_t *src, uint16_t psm, uint16_t cid, GError **err) { struct sockaddr_l2 addr; memset(&addr, 0, sizeof(addr)); addr.l2_family = AF_BLUETOOTH; bacpy(&addr.l2_bdaddr, src); if (cid) addr.l2_cid = htobs(cid); else addr.l2_psm = htobs(psm); if (bind(sock, (struct sockaddr *) &addr, sizeof(addr)) < 0) { ERROR_FAILED(err, "l2cap_bind", errno); return -1; } return 0; } static int l2cap_connect(int sock, const bdaddr_t *dst, uint16_t psm, uint16_t cid) { int err; struct sockaddr_l2 addr; memset(&addr, 0, sizeof(addr)); addr.l2_family = AF_BLUETOOTH; bacpy(&addr.l2_bdaddr, dst); if (cid) addr.l2_cid = htobs(cid); else addr.l2_psm = htobs(psm); err = connect(sock, (struct sockaddr *) &addr, sizeof(addr)); if (err < 0 && !(errno == EAGAIN || errno == EINPROGRESS)) return err; return 0; } static int l2cap_set_master(int sock, int master) { int flags; socklen_t len; len = sizeof(flags); if (getsockopt(sock, SOL_L2CAP, L2CAP_LM, &flags, &len) < 0) return -errno; if (master) { if (flags & L2CAP_LM_MASTER) return 0; flags |= L2CAP_LM_MASTER; } else { if (!(flags & L2CAP_LM_MASTER)) return 0; flags &= ~L2CAP_LM_MASTER; } if (setsockopt(sock, SOL_L2CAP, L2CAP_LM, &flags, sizeof(flags)) < 0) return -errno; return 0; } static int rfcomm_set_master(int sock, int master) { int flags; socklen_t len; len = sizeof(flags); if (getsockopt(sock, SOL_RFCOMM, RFCOMM_LM, &flags, &len) < 0) return -errno; if (master) { if (flags & RFCOMM_LM_MASTER) return 0; flags |= RFCOMM_LM_MASTER; } else { if (!(flags & RFCOMM_LM_MASTER)) return 0; flags &= ~RFCOMM_LM_MASTER; } if (setsockopt(sock, SOL_RFCOMM, RFCOMM_LM, &flags, sizeof(flags)) < 0) return -errno; return 0; } static int l2cap_set_lm(int sock, int level) { int lm_map[] = { 0, L2CAP_LM_AUTH, L2CAP_LM_AUTH | L2CAP_LM_ENCRYPT, L2CAP_LM_AUTH | L2CAP_LM_ENCRYPT | L2CAP_LM_SECURE, }, opt = lm_map[level]; if (setsockopt(sock, SOL_L2CAP, L2CAP_LM, &opt, sizeof(opt)) < 0) return -errno; return 0; } static int rfcomm_set_lm(int sock, int level) { int lm_map[] = { 0, RFCOMM_LM_AUTH, RFCOMM_LM_AUTH | RFCOMM_LM_ENCRYPT, RFCOMM_LM_AUTH | RFCOMM_LM_ENCRYPT | RFCOMM_LM_SECURE, }, opt = lm_map[level]; if (setsockopt(sock, SOL_RFCOMM, RFCOMM_LM, &opt, sizeof(opt)) < 0) return -errno; return 0; } static gboolean set_force_active(int sock, BtIOType type, uint8_t force_active, GError **err) { struct bt_power pwr; memset(&pwr, 0, sizeof(struct bt_power)); pwr.force_active = force_active; if (setsockopt(sock, SOL_BLUETOOTH, BT_POWER, &pwr, sizeof(pwr)) == 0) return TRUE; if (errno != ENOPROTOOPT) { ERROR_FAILED(err, "setsockopt(BT_POWER)", errno); return FALSE; } return TRUE; } static gboolean set_sec_level(int sock, BtIOType type, int level, GError **err) { struct bt_security sec; int ret; if (level < BT_SECURITY_LOW || level > BT_SECURITY_HIGH) { g_set_error(err, BT_IO_ERROR, BT_IO_ERROR_INVALID_ARGS, "Valid security level range is %d-%d", BT_SECURITY_LOW, BT_SECURITY_HIGH); return FALSE; } memset(&sec, 0, sizeof(sec)); sec.level = level; if (setsockopt(sock, SOL_BLUETOOTH, BT_SECURITY, &sec, sizeof(sec)) == 0) return TRUE; if (errno != ENOPROTOOPT) { ERROR_FAILED(err, "setsockopt(BT_SECURITY)", errno); return FALSE; } if (type == BT_IO_L2CAP) ret = l2cap_set_lm(sock, level); else ret = rfcomm_set_lm(sock, level); if (ret < 0) { ERROR_FAILED(err, "setsockopt(LM)", -ret); return FALSE; } return TRUE; } static int l2cap_get_lm(int sock, int *sec_level) { int opt; socklen_t len; len = sizeof(opt); if (getsockopt(sock, SOL_L2CAP, L2CAP_LM, &opt, &len) < 0) return -errno; *sec_level = 0; if (opt & L2CAP_LM_AUTH) *sec_level = BT_SECURITY_LOW; if (opt & L2CAP_LM_ENCRYPT) *sec_level = BT_SECURITY_MEDIUM; if (opt & L2CAP_LM_SECURE) *sec_level = BT_SECURITY_HIGH; return 0; } static int rfcomm_get_lm(int sock, int *sec_level) { int opt; socklen_t len; len = sizeof(opt); if (getsockopt(sock, SOL_RFCOMM, RFCOMM_LM, &opt, &len) < 0) return -errno; *sec_level = 0; if (opt & RFCOMM_LM_AUTH) *sec_level = BT_SECURITY_LOW; if (opt & RFCOMM_LM_ENCRYPT) *sec_level = BT_SECURITY_MEDIUM; if (opt & RFCOMM_LM_SECURE) *sec_level = BT_SECURITY_HIGH; return 0; } static gboolean get_force_active(int sock, BtIOType type, uint8_t *force_active, GError **err) { struct bt_power pwr; socklen_t len; memset(&pwr, 0, sizeof(pwr)); len = sizeof(pwr); if (getsockopt(sock, SOL_BLUETOOTH, BT_POWER, &pwr, &len) == 0) { *force_active = pwr.force_active; return TRUE; } if (errno != ENOPROTOOPT) { ERROR_FAILED(err, "getsockopt(BT_POWER)", errno); return FALSE; } return TRUE; } static gboolean get_sec_level(int sock, BtIOType type, int *level, GError **err) { struct bt_security sec; socklen_t len; int ret; memset(&sec, 0, sizeof(sec)); len = sizeof(sec); if (getsockopt(sock, SOL_BLUETOOTH, BT_SECURITY, &sec, &len) == 0) { *level = sec.level; return TRUE; } if (errno != ENOPROTOOPT) { ERROR_FAILED(err, "getsockopt(BT_SECURITY)", errno); return FALSE; } if (type == BT_IO_L2CAP) ret = l2cap_get_lm(sock, level); else ret = rfcomm_get_lm(sock, level); if (ret < 0) { ERROR_FAILED(err, "getsockopt(LM)", -ret); return FALSE; } return TRUE; } static int l2cap_set_flushable(int sock, gboolean flushable) { int f; f = flushable; if (setsockopt(sock, SOL_BLUETOOTH, BT_FLUSHABLE, &f, sizeof(f)) < 0) return -errno; return 0; } static gboolean l2cap_set(int sock, int sec_level, uint16_t imtu, uint16_t omtu, uint8_t mode, int master, int flushable, uint8_t force_active, GError **err) { if (imtu || omtu || mode) { struct l2cap_options l2o; socklen_t len; memset(&l2o, 0, sizeof(l2o)); len = sizeof(l2o); if (getsockopt(sock, SOL_L2CAP, L2CAP_OPTIONS, &l2o, &len) < 0) { ERROR_FAILED(err, "getsockopt(L2CAP_OPTIONS)", errno); return FALSE; } if (imtu) l2o.imtu = imtu; if (omtu) l2o.omtu = omtu; if (mode) l2o.mode = mode; if (setsockopt(sock, SOL_L2CAP, L2CAP_OPTIONS, &l2o, sizeof(l2o)) < 0) { ERROR_FAILED(err, "setsockopt(L2CAP_OPTIONS)", errno); return FALSE; } } if (master >= 0 && l2cap_set_master(sock, master) < 0) { ERROR_FAILED(err, "l2cap_set_master", errno); return FALSE; } if (flushable >= 0 && l2cap_set_flushable(sock, flushable) < 0) { ERROR_FAILED(err, "l2cap_set_flushable", errno); return FALSE; } if (sec_level && !set_sec_level(sock, BT_IO_L2CAP, sec_level, err)) return FALSE; if (!set_force_active(sock, BT_IO_L2CAP, force_active, err)) return FALSE; return TRUE; } static int rfcomm_bind(int sock, const bdaddr_t *src, uint8_t channel, GError **err) { struct sockaddr_rc addr; memset(&addr, 0, sizeof(addr)); addr.rc_family = AF_BLUETOOTH; bacpy(&addr.rc_bdaddr, src); addr.rc_channel = channel; if (bind(sock, (struct sockaddr *) &addr, sizeof(addr)) < 0) { ERROR_FAILED(err, "rfcomm_bind", errno); return -1; } return 0; } static int rfcomm_connect(int sock, const bdaddr_t *dst, uint8_t channel) { int err; struct sockaddr_rc addr; memset(&addr, 0, sizeof(addr)); addr.rc_family = AF_BLUETOOTH; bacpy(&addr.rc_bdaddr, dst); addr.rc_channel = channel; err = connect(sock, (struct sockaddr *) &addr, sizeof(addr)); if (err < 0 && !(errno == EAGAIN || errno == EINPROGRESS)) return err; return 0; } static gboolean rfcomm_set(int sock, int sec_level, int master, uint8_t force_active, GError **err) { if (sec_level && !set_sec_level(sock, BT_IO_RFCOMM, sec_level, err)) return FALSE; if (!set_force_active(sock, BT_IO_RFCOMM, force_active, err)) return FALSE; if (master >= 0 && rfcomm_set_master(sock, master) < 0) { ERROR_FAILED(err, "rfcomm_set_master", errno); return FALSE; } return TRUE; } static int sco_bind(int sock, const bdaddr_t *src, GError **err) { struct sockaddr_sco addr; memset(&addr, 0, sizeof(addr)); addr.sco_family = AF_BLUETOOTH; bacpy(&addr.sco_bdaddr, src); if (bind(sock, (struct sockaddr *) &addr, sizeof(addr)) < 0) { ERROR_FAILED(err, "sco_bind", errno); return -1; } return 0; } static int sco_connect(int sock, const bdaddr_t *dst) { struct sockaddr_sco addr; int err; memset(&addr, 0, sizeof(addr)); addr.sco_family = AF_BLUETOOTH; bacpy(&addr.sco_bdaddr, dst); err = connect(sock, (struct sockaddr *) &addr, sizeof(addr)); if (err < 0 && !(errno == EAGAIN || errno == EINPROGRESS)) return err; return 0; } static gboolean sco_set(int sock, uint16_t mtu, GError **err) { struct sco_options sco_opt; socklen_t len; if (!mtu) return TRUE; len = sizeof(sco_opt); memset(&sco_opt, 0, len); if (getsockopt(sock, SOL_SCO, SCO_OPTIONS, &sco_opt, &len) < 0) { ERROR_FAILED(err, "getsockopt(SCO_OPTIONS)", errno); return FALSE; } sco_opt.mtu = mtu; if (setsockopt(sock, SOL_SCO, SCO_OPTIONS, &sco_opt, sizeof(sco_opt)) < 0) { ERROR_FAILED(err, "setsockopt(SCO_OPTIONS)", errno); return FALSE; } return TRUE; } static gboolean parse_set_opts(struct set_opts *opts, GError **err, BtIOOption opt1, va_list args) { BtIOOption opt = opt1; const char *str; memset(opts, 0, sizeof(*opts)); /* Set defaults */ opts->defer = DEFAULT_DEFER_TIMEOUT; opts->master = -1; opts->sec_level = BT_IO_SEC_MEDIUM; opts->mode = L2CAP_MODE_BASIC; opts->flushable = -1; opts->force_active = 1; while (opt != BT_IO_OPT_INVALID) { switch (opt) { case BT_IO_OPT_SOURCE: str = va_arg(args, const char *); if (strncasecmp(str, "hci", 3) == 0) hci_devba(atoi(str + 3), &opts->src); else str2ba(str, &opts->src); break; case BT_IO_OPT_SOURCE_BDADDR: bacpy(&opts->src, va_arg(args, const bdaddr_t *)); break; case BT_IO_OPT_DEST: str2ba(va_arg(args, const char *), &opts->dst); break; case BT_IO_OPT_DEST_BDADDR: bacpy(&opts->dst, va_arg(args, const bdaddr_t *)); break; case BT_IO_OPT_DEFER_TIMEOUT: opts->defer = va_arg(args, int); break; case BT_IO_OPT_SEC_LEVEL: opts->sec_level = va_arg(args, int); break; case BT_IO_OPT_CHANNEL: opts->channel = va_arg(args, int); break; case BT_IO_OPT_PSM: opts->psm = va_arg(args, int); break; case BT_IO_OPT_CID: opts->cid = va_arg(args, int); break; case BT_IO_OPT_MTU: opts->mtu = va_arg(args, int); opts->imtu = opts->mtu; opts->omtu = opts->mtu; break; case BT_IO_OPT_OMTU: opts->omtu = va_arg(args, int); if (!opts->mtu) opts->mtu = opts->omtu; break; case BT_IO_OPT_IMTU: opts->imtu = va_arg(args, int); if (!opts->mtu) opts->mtu = opts->imtu; break; case BT_IO_OPT_MASTER: opts->master = va_arg(args, gboolean); break; case BT_IO_OPT_MODE: opts->mode = va_arg(args, int); break; case BT_IO_OPT_FLUSHABLE: opts->flushable = va_arg(args, gboolean); break; case BT_IO_OPT_POWER_ACTIVE: opts->force_active = va_arg(args, int); break; default: g_set_error(err, BT_IO_ERROR, BT_IO_ERROR_INVALID_ARGS, "Unknown option %d", opt); return FALSE; } opt = va_arg(args, int); } return TRUE; } static gboolean get_peers(int sock, struct sockaddr *src, struct sockaddr *dst, socklen_t len, GError **err) { socklen_t olen; memset(src, 0, len); olen = len; if (getsockname(sock, src, &olen) < 0) { ERROR_FAILED(err, "getsockname", errno); return FALSE; } memset(dst, 0, len); olen = len; if (getpeername(sock, dst, &olen) < 0) { ERROR_FAILED(err, "getpeername", errno); return FALSE; } return TRUE; } static int l2cap_get_info(int sock, uint16_t *handle, uint8_t *dev_class) { struct l2cap_conninfo info; socklen_t len; len = sizeof(info); if (getsockopt(sock, SOL_L2CAP, L2CAP_CONNINFO, &info, &len) < 0) return -errno; if (handle) *handle = info.hci_handle; if (dev_class) memcpy(dev_class, info.dev_class, 3); return 0; } static int l2cap_get_flushable(int sock, gboolean *flushable) { int f; socklen_t len; f = 0; len = sizeof(f); if (getsockopt(sock, SOL_BLUETOOTH, BT_FLUSHABLE, &f, &len) < 0) return -errno; if (f) *flushable = TRUE; else *flushable = FALSE; return 0; } static gboolean l2cap_get(int sock, GError **err, BtIOOption opt1, va_list args) { BtIOOption opt = opt1; struct sockaddr_l2 src, dst; struct l2cap_options l2o; int flags; uint8_t dev_class[3]; uint16_t handle; socklen_t len; gboolean flushable = FALSE; len = sizeof(l2o); memset(&l2o, 0, len); if (getsockopt(sock, SOL_L2CAP, L2CAP_OPTIONS, &l2o, &len) < 0) { ERROR_FAILED(err, "getsockopt(L2CAP_OPTIONS)", errno); return FALSE; } if (!get_peers(sock, (struct sockaddr *) &src, (struct sockaddr *) &dst, sizeof(src), err)) return FALSE; while (opt != BT_IO_OPT_INVALID) { switch (opt) { case BT_IO_OPT_SOURCE: ba2str(&src.l2_bdaddr, va_arg(args, char *)); break; case BT_IO_OPT_SOURCE_BDADDR: bacpy(va_arg(args, bdaddr_t *), &src.l2_bdaddr); break; case BT_IO_OPT_DEST: ba2str(&dst.l2_bdaddr, va_arg(args, char *)); break; case BT_IO_OPT_DEST_BDADDR: bacpy(va_arg(args, bdaddr_t *), &dst.l2_bdaddr); break; case BT_IO_OPT_DEFER_TIMEOUT: len = sizeof(int); if (getsockopt(sock, SOL_BLUETOOTH, BT_DEFER_SETUP, va_arg(args, int *), &len) < 0) { ERROR_FAILED(err, "getsockopt(DEFER_SETUP)", errno); return FALSE; } break; case BT_IO_OPT_SEC_LEVEL: if (!get_sec_level(sock, BT_IO_L2CAP, va_arg(args, int *), err)) return FALSE; break; case BT_IO_OPT_PSM: *(va_arg(args, uint16_t *)) = src.l2_psm ? src.l2_psm : dst.l2_psm; break; case BT_IO_OPT_CID: *(va_arg(args, uint16_t *)) = src.l2_cid ? src.l2_cid : dst.l2_cid; break; case BT_IO_OPT_OMTU: *(va_arg(args, uint16_t *)) = l2o.omtu; break; case BT_IO_OPT_IMTU: *(va_arg(args, uint16_t *)) = l2o.imtu; break; case BT_IO_OPT_MASTER: len = sizeof(flags); if (getsockopt(sock, SOL_L2CAP, L2CAP_LM, &flags, &len) < 0) { ERROR_FAILED(err, "getsockopt(L2CAP_LM)", errno); return FALSE; } *(va_arg(args, gboolean *)) = (flags & L2CAP_LM_MASTER) ? TRUE : FALSE; break; case BT_IO_OPT_HANDLE: if (l2cap_get_info(sock, &handle, dev_class) < 0) { ERROR_FAILED(err, "L2CAP_CONNINFO", errno); return FALSE; } *(va_arg(args, uint16_t *)) = handle; break; case BT_IO_OPT_CLASS: if (l2cap_get_info(sock, &handle, dev_class) < 0) { ERROR_FAILED(err, "L2CAP_CONNINFO", errno); return FALSE; } memcpy(va_arg(args, uint8_t *), dev_class, 3); break; case BT_IO_OPT_MODE: *(va_arg(args, uint8_t *)) = l2o.mode; break; case BT_IO_OPT_FLUSHABLE: if (l2cap_get_flushable(sock, &flushable) < 0) { ERROR_FAILED(err, "get_flushable", errno); return FALSE; } *(va_arg(args, gboolean *)) = flushable; break; case BT_IO_OPT_POWER_ACTIVE: if (!get_force_active(sock, BT_IO_L2CAP, va_arg(args, uint8_t *), err)) return FALSE; break; default: g_set_error(err, BT_IO_ERROR, BT_IO_ERROR_INVALID_ARGS, "Unknown option %d", opt); return FALSE; } opt = va_arg(args, int); } return TRUE; } static int rfcomm_get_info(int sock, uint16_t *handle, uint8_t *dev_class) { struct rfcomm_conninfo info; socklen_t len; len = sizeof(info); if (getsockopt(sock, SOL_RFCOMM, RFCOMM_CONNINFO, &info, &len) < 0) return -errno; if (handle) *handle = info.hci_handle; if (dev_class) memcpy(dev_class, info.dev_class, 3); return 0; } static gboolean rfcomm_get(int sock, GError **err, BtIOOption opt1, va_list args) { BtIOOption opt = opt1; struct sockaddr_rc src, dst; int flags; socklen_t len; uint8_t dev_class[3]; uint16_t handle; if (!get_peers(sock, (struct sockaddr *) &src, (struct sockaddr *) &dst, sizeof(src), err)) return FALSE; while (opt != BT_IO_OPT_INVALID) { switch (opt) { case BT_IO_OPT_SOURCE: ba2str(&src.rc_bdaddr, va_arg(args, char *)); break; case BT_IO_OPT_SOURCE_BDADDR: bacpy(va_arg(args, bdaddr_t *), &src.rc_bdaddr); break; case BT_IO_OPT_DEST: ba2str(&dst.rc_bdaddr, va_arg(args, char *)); break; case BT_IO_OPT_DEST_BDADDR: bacpy(va_arg(args, bdaddr_t *), &dst.rc_bdaddr); break; case BT_IO_OPT_DEFER_TIMEOUT: len = sizeof(int); if (getsockopt(sock, SOL_BLUETOOTH, BT_DEFER_SETUP, va_arg(args, int *), &len) < 0) { ERROR_FAILED(err, "getsockopt(DEFER_SETUP)", errno); return FALSE; } break; case BT_IO_OPT_SEC_LEVEL: if (!get_sec_level(sock, BT_IO_RFCOMM, va_arg(args, int *), err)) return FALSE; break; case BT_IO_OPT_CHANNEL: *(va_arg(args, uint8_t *)) = src.rc_channel ? src.rc_channel : dst.rc_channel; break; case BT_IO_OPT_SOURCE_CHANNEL: *(va_arg(args, uint8_t *)) = src.rc_channel; break; case BT_IO_OPT_DEST_CHANNEL: *(va_arg(args, uint8_t *)) = dst.rc_channel; break; case BT_IO_OPT_MASTER: len = sizeof(flags); if (getsockopt(sock, SOL_RFCOMM, RFCOMM_LM, &flags, &len) < 0) { ERROR_FAILED(err, "getsockopt(RFCOMM_LM)", errno); return FALSE; } *(va_arg(args, gboolean *)) = (flags & RFCOMM_LM_MASTER) ? TRUE : FALSE; break; case BT_IO_OPT_HANDLE: if (rfcomm_get_info(sock, &handle, dev_class) < 0) { ERROR_FAILED(err, "RFCOMM_CONNINFO", errno); return FALSE; } *(va_arg(args, uint16_t *)) = handle; break; case BT_IO_OPT_CLASS: if (rfcomm_get_info(sock, &handle, dev_class) < 0) { ERROR_FAILED(err, "RFCOMM_CONNINFO", errno); return FALSE; } memcpy(va_arg(args, uint8_t *), dev_class, 3); break; case BT_IO_OPT_POWER_ACTIVE: if (!get_force_active(sock, BT_IO_RFCOMM, va_arg(args, uint8_t *), err)) return FALSE; break; default: g_set_error(err, BT_IO_ERROR, BT_IO_ERROR_INVALID_ARGS, "Unknown option %d", opt); return FALSE; } opt = va_arg(args, int); } return TRUE; } static int sco_get_info(int sock, uint16_t *handle, uint8_t *dev_class) { struct sco_conninfo info; socklen_t len; len = sizeof(info); if (getsockopt(sock, SOL_SCO, SCO_CONNINFO, &info, &len) < 0) return -errno; if (handle) *handle = info.hci_handle; if (dev_class) memcpy(dev_class, info.dev_class, 3); return 0; } static gboolean sco_get(int sock, GError **err, BtIOOption opt1, va_list args) { BtIOOption opt = opt1; struct sockaddr_sco src, dst; struct sco_options sco_opt; socklen_t len; uint8_t dev_class[3]; uint16_t handle; len = sizeof(sco_opt); memset(&sco_opt, 0, len); if (getsockopt(sock, SOL_SCO, SCO_OPTIONS, &sco_opt, &len) < 0) { ERROR_FAILED(err, "getsockopt(SCO_OPTIONS)", errno); return FALSE; } if (!get_peers(sock, (struct sockaddr *) &src, (struct sockaddr *) &dst, sizeof(src), err)) return FALSE; while (opt != BT_IO_OPT_INVALID) { switch (opt) { case BT_IO_OPT_SOURCE: ba2str(&src.sco_bdaddr, va_arg(args, char *)); break; case BT_IO_OPT_SOURCE_BDADDR: bacpy(va_arg(args, bdaddr_t *), &src.sco_bdaddr); break; case BT_IO_OPT_DEST: ba2str(&dst.sco_bdaddr, va_arg(args, char *)); break; case BT_IO_OPT_DEST_BDADDR: bacpy(va_arg(args, bdaddr_t *), &dst.sco_bdaddr); break; case BT_IO_OPT_MTU: case BT_IO_OPT_IMTU: case BT_IO_OPT_OMTU: *(va_arg(args, uint16_t *)) = sco_opt.mtu; break; case BT_IO_OPT_HANDLE: if (sco_get_info(sock, &handle, dev_class) < 0) { ERROR_FAILED(err, "SCO_CONNINFO", errno); return FALSE; } *(va_arg(args, uint16_t *)) = handle; break; case BT_IO_OPT_CLASS: if (sco_get_info(sock, &handle, dev_class) < 0) { ERROR_FAILED(err, "SCO_CONNINFO", errno); return FALSE; } memcpy(va_arg(args, uint8_t *), dev_class, 3); break; default: g_set_error(err, BT_IO_ERROR, BT_IO_ERROR_INVALID_ARGS, "Unknown option %d", opt); return FALSE; } opt = va_arg(args, int); } return TRUE; } static gboolean get_valist(GIOChannel *io, BtIOType type, GError **err, BtIOOption opt1, va_list args) { int sock; sock = g_io_channel_unix_get_fd(io); switch (type) { case BT_IO_L2RAW: case BT_IO_L2CAP: return l2cap_get(sock, err, opt1, args); case BT_IO_RFCOMM: return rfcomm_get(sock, err, opt1, args); case BT_IO_SCO: return sco_get(sock, err, opt1, args); } g_set_error(err, BT_IO_ERROR, BT_IO_ERROR_INVALID_ARGS, "Unknown BtIO type %d", type); return FALSE; } gboolean bt_io_accept(GIOChannel *io, BtIOConnect connect, gpointer user_data, GDestroyNotify destroy, GError **err) { int sock; char c; struct pollfd pfd; sock = g_io_channel_unix_get_fd(io); memset(&pfd, 0, sizeof(pfd)); pfd.fd = sock; pfd.events = POLLOUT; if (poll(&pfd, 1, 0) < 0) { ERROR_FAILED(err, "poll", errno); return FALSE; } if (!(pfd.revents & POLLOUT)) { if (read(sock, &c, 1) < 0) { ERROR_FAILED(err, "read", errno); return FALSE; } } accept_add(io, connect, user_data, destroy); return TRUE; } gboolean bt_io_set(GIOChannel *io, BtIOType type, GError **err, BtIOOption opt1, ...) { va_list args; gboolean ret; struct set_opts opts; int sock; va_start(args, opt1); ret = parse_set_opts(&opts, err, opt1, args); va_end(args); if (!ret) return ret; sock = g_io_channel_unix_get_fd(io); switch (type) { case BT_IO_L2RAW: case BT_IO_L2CAP: return l2cap_set(sock, opts.sec_level, opts.imtu, opts.omtu, opts.mode, opts.master, opts.flushable, opts.force_active, err); case BT_IO_RFCOMM: return rfcomm_set(sock, opts.sec_level, opts.master, opts.force_active, err); case BT_IO_SCO: return sco_set(sock, opts.mtu, err); } g_set_error(err, BT_IO_ERROR, BT_IO_ERROR_INVALID_ARGS, "Unknown BtIO type %d", type); return FALSE; } gboolean bt_io_get(GIOChannel *io, BtIOType type, GError **err, BtIOOption opt1, ...) { va_list args; gboolean ret; va_start(args, opt1); ret = get_valist(io, type, err, opt1, args); va_end(args); return ret; } static GIOChannel *create_io(BtIOType type, gboolean server, struct set_opts *opts, GError **err) { int sock; GIOChannel *io; switch (type) { case BT_IO_L2RAW: sock = socket(PF_BLUETOOTH, SOCK_RAW, BTPROTO_L2CAP); if (sock < 0) { ERROR_FAILED(err, "socket(RAW, L2CAP)", errno); return NULL; } if (l2cap_bind(sock, &opts->src, server ? opts->psm : 0, opts->cid, err) < 0) goto failed; if (!l2cap_set(sock, opts->sec_level, 0, 0, 0, -1, -1, opts->force_active, err)) goto failed; break; case BT_IO_L2CAP: sock = socket(PF_BLUETOOTH, SOCK_SEQPACKET, BTPROTO_L2CAP); if (sock < 0) { ERROR_FAILED(err, "socket(SEQPACKET, L2CAP)", errno); return NULL; } if (l2cap_bind(sock, &opts->src, server ? opts->psm : 0, opts->cid, err) < 0) goto failed; if (!l2cap_set(sock, opts->sec_level, opts->imtu, opts->omtu, opts->mode, opts->master, opts->flushable, opts->force_active, err)) goto failed; break; case BT_IO_RFCOMM: sock = socket(PF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM); if (sock < 0) { ERROR_FAILED(err, "socket(STREAM, RFCOMM)", errno); return NULL; } if (rfcomm_bind(sock, &opts->src, server ? opts->channel : 0, err) < 0) goto failed; if (!rfcomm_set(sock, opts->sec_level, opts->master, opts->force_active, err)) goto failed; break; case BT_IO_SCO: sock = socket(PF_BLUETOOTH, SOCK_SEQPACKET, BTPROTO_SCO); if (sock < 0) { ERROR_FAILED(err, "socket(SEQPACKET, SCO)", errno); return NULL; } if (sco_bind(sock, &opts->src, err) < 0) goto failed; if (!sco_set(sock, opts->mtu, err)) goto failed; break; default: g_set_error(err, BT_IO_ERROR, BT_IO_ERROR_INVALID_ARGS, "Unknown BtIO type %d", type); return NULL; } io = g_io_channel_unix_new(sock); g_io_channel_set_close_on_unref(io, TRUE); g_io_channel_set_flags(io, G_IO_FLAG_NONBLOCK, NULL); return io; failed: close(sock); return NULL; } GIOChannel *bt_io_connect(BtIOType type, BtIOConnect connect, gpointer user_data, GDestroyNotify destroy, GError **gerr, BtIOOption opt1, ...) { GIOChannel *io; va_list args; struct set_opts opts; int err, sock; gboolean ret; va_start(args, opt1); ret = parse_set_opts(&opts, gerr, opt1, args); va_end(args); if (ret == FALSE) return NULL; io = create_io(type, FALSE, &opts, gerr); if (io == NULL) return NULL; sock = g_io_channel_unix_get_fd(io); switch (type) { case BT_IO_L2RAW: err = l2cap_connect(sock, &opts.dst, 0, opts.cid); break; case BT_IO_L2CAP: err = l2cap_connect(sock, &opts.dst, opts.psm, opts.cid); break; case BT_IO_RFCOMM: err = rfcomm_connect(sock, &opts.dst, opts.channel); break; case BT_IO_SCO: err = sco_connect(sock, &opts.dst); break; default: g_set_error(gerr, BT_IO_ERROR, BT_IO_ERROR_INVALID_ARGS, "Unknown BtIO type %d", type); return NULL; } if (err < 0) { g_set_error(gerr, BT_IO_ERROR, BT_IO_ERROR_CONNECT_FAILED, "connect: %s (%d)", strerror(-err), -err); g_io_channel_unref(io); return NULL; } connect_add(io, connect, user_data, destroy); return io; } GIOChannel *bt_io_listen(BtIOType type, BtIOConnect connect, BtIOConfirm confirm, gpointer user_data, GDestroyNotify destroy, GError **err, BtIOOption opt1, ...) { GIOChannel *io; va_list args; struct set_opts opts; int sock; gboolean ret; if (type == BT_IO_L2RAW) { g_set_error(err, BT_IO_ERROR, BT_IO_ERROR_INVALID_ARGS, "Server L2CAP RAW sockets not supported"); return NULL; } va_start(args, opt1); ret = parse_set_opts(&opts, err, opt1, args); va_end(args); if (ret == FALSE) return NULL; io = create_io(type, TRUE, &opts, err); if (io == NULL) return NULL; sock = g_io_channel_unix_get_fd(io); if (confirm) setsockopt(sock, SOL_BLUETOOTH, BT_DEFER_SETUP, &opts.defer, sizeof(opts.defer)); if (listen(sock, 5) < 0) { ERROR_FAILED(err, "listen", errno); g_io_channel_unref(io); return NULL; } server_add(io, connect, confirm, user_data, destroy); return io; } GQuark bt_io_error_quark(void) { return g_quark_from_static_string("bt-io-error-quark"); }