/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "ObjLoader.h" #include <rsFileA3D.h> #include <sstream> ObjLoader::ObjLoader() : mPositionsStride(3), mNormalsStride(3), mTextureCoordsStride(2) { } bool isWhitespace(char c) { const char whiteSpace[] = { ' ', '\n', '\t', '\f', '\r' }; const uint32_t numWhiteSpaceChars = 5; for (uint32_t i = 0; i < numWhiteSpaceChars; i ++) { if (whiteSpace[i] == c) { return true; } } return false; } void eatWhitespace(std::istream &is) { while(is.good() && isWhitespace(is.peek())) { is.get(); } } bool getToken(std::istream &is, std::string &token) { eatWhitespace(is); token.clear(); char c; while(is.good() && !isWhitespace(is.peek())) { c = is.get(); if (is.good()){ token += c; } } return token.size() > 0; } void appendDataFromStream(std::vector<float> &dataVec, uint32_t numFloats, std::istream &is) { std::string token; for (uint32_t i = 0; i < numFloats; i ++){ bool valid = getToken(is, token); if (valid) { dataVec.push_back((float)atof(token.c_str())); } else { fprintf(stderr, "Encountered error reading geometry data"); dataVec.push_back(0.0f); } } } bool checkNegativeIndex(int idx) { if(idx < 0) { fprintf(stderr, "Negative indices are not supported. Skipping face\n"); return false; } return true; } void ObjLoader::parseRawFaces(){ // We need at least a triangle if (mRawFaces.size() < 3) { return; } const char slash = '/'; mParsedFaces.resize(mRawFaces.size()); for (uint32_t i = 0; i < mRawFaces.size(); i ++) { size_t firstSeparator = mRawFaces[i].find_first_of(slash); size_t nextSeparator = mRawFaces[i].find_last_of(slash); // Use the string as a temp buffer to parse the index // Insert 0 instead of the slash to avoid substrings if (firstSeparator != std::string::npos) { mRawFaces[i][firstSeparator] = 0; } // Simple case, only one index int32_t vIdx = atoi(mRawFaces[i].c_str()); // We do not support negative indices if (!checkNegativeIndex(vIdx)) { return; } // obj indices things beginning 1 mParsedFaces[i].vertIdx = (uint32_t)vIdx - 1; if (nextSeparator != std::string::npos && nextSeparator != firstSeparator) { mRawFaces[i][nextSeparator] = 0; uint32_t nIdx = atoi(mRawFaces[i].c_str() + nextSeparator + 1); if (!checkNegativeIndex(nIdx)) { return; } // obj indexes things beginning 1 mParsedFaces[i].normIdx = (uint32_t)nIdx - 1; } // second case is where we have vertex and texture indices if (nextSeparator != std::string::npos && (nextSeparator > firstSeparator + 1 || nextSeparator == firstSeparator)) { uint32_t tIdx = atoi(mRawFaces[i].c_str() + firstSeparator + 1); if (!checkNegativeIndex(tIdx)) { return; } // obj indexes things beginning 1 mParsedFaces[i].texIdx = (uint32_t)tIdx - 1; } } // Make sure a face list exists before we go adding to it if (mMeshes.back().mUnfilteredFaces.size() == 0) { mMeshes.back().appendUnfilteredFaces(mLastMtl); } // Now we have our parsed face, that we need to triangulate as necessary // Treat more complex polygons as fans. // This approach will only work only for convex polygons // but concave polygons need to be addressed elsewhere anyway for (uint32_t next = 1; next < mParsedFaces.size() - 1; next ++) { // push it to our current mesh mMeshes.back().mUnfilteredFaces.back().push_back(mParsedFaces[0]); mMeshes.back().mUnfilteredFaces.back().push_back(mParsedFaces[next]); mMeshes.back().mUnfilteredFaces.back().push_back(mParsedFaces[next + 1]); } } void ObjLoader::checkNewMeshCreation(std::string &newGroup) { // start a new mesh if we have some faces // accumulated on the current mesh. // It's possible to have multiple group statements // but we only care to actually start a new mesh // once we can have something we can draw on the previous one if (mMeshes.back().mUnfilteredFaces.size()) { mMeshes.push_back(ObjMesh()); } mMeshes.back().mName = newGroup; printf("Converting vertex group: %s\n", newGroup.c_str()); } void ObjLoader::handleObjLine(char *line) { const char* vtxToken = "v"; const char* normToken = "vn"; const char* texToken = "vt"; const char* groupToken = "g"; const char* mtlToken = "usemtl"; const char* faceToken = "f"; std::istringstream lineStream(line, std::istringstream::in); std::string token; bool valid = getToken(lineStream, token); if (!valid) { return; } if (token == vtxToken) { appendDataFromStream(mObjPositions, 3, lineStream); } else if (token == normToken) { appendDataFromStream(mObjNormals, 3, lineStream); } else if (token == texToken) { appendDataFromStream(mObjTextureCoords, 2, lineStream); } else if (token == groupToken) { valid = getToken(lineStream, token); checkNewMeshCreation(token); } else if (token == faceToken) { mRawFaces.clear(); while(getToken(lineStream, token)) { mRawFaces.push_back(token); } parseRawFaces(); } // Ignore materials for now else if (token == mtlToken) { valid = getToken(lineStream, token); mLastMtl = token; mMeshes.back().appendUnfilteredFaces(token); } } bool ObjLoader::init(const char *fileName) { std::ifstream ifs(fileName , std::ifstream::in); if (!ifs.good()) { fprintf(stderr, "Failed to read file %s.\n", fileName); return false; } mMeshes.clear(); const uint32_t maxBufferSize = 2048; char *buffer = new char[maxBufferSize]; mMeshes.push_back(ObjMesh()); std::string token; bool isDone = false; while(!isDone) { ifs.getline(buffer, maxBufferSize); if (ifs.good() && ifs.gcount() > 0) { handleObjLine(buffer); } else { isDone = true; } } ifs.close(); delete buffer; reIndexGeometry(); return true; } void ObjLoader::reIndexGeometry() { // We want to know where each vertex lands mVertexRemap.resize(mObjPositions.size() / mPositionsStride); for (uint32_t m = 0; m < mMeshes.size(); m ++) { // clear the remap vector of old data for (uint32_t r = 0; r < mVertexRemap.size(); r ++) { mVertexRemap[r].clear(); } for (uint32_t i = 0; i < mMeshes[m].mUnfilteredFaces.size(); i ++) { mMeshes[m].mTriangleLists[i].reserve(mMeshes[m].mUnfilteredFaces[i].size() * 2); for (uint32_t fI = 0; fI < mMeshes[m].mUnfilteredFaces[i].size(); fI ++) { uint32_t newIndex = reIndexGeometryPrim(mMeshes[m], mMeshes[m].mUnfilteredFaces[i][fI]); mMeshes[m].mTriangleLists[i].push_back(newIndex); } } } } uint32_t ObjLoader::reIndexGeometryPrim(ObjMesh &mesh, PrimitiveVtx &prim) { std::vector<float> &mPositions = mesh.mChannels[0].mData; std::vector<float> &mNormals = mesh.mChannels[1].mData; std::vector<float> &mTextureCoords = mesh.mChannels[2].mData; float posX = mObjPositions[prim.vertIdx * mPositionsStride + 0]; float posY = mObjPositions[prim.vertIdx * mPositionsStride + 1]; float posZ = mObjPositions[prim.vertIdx * mPositionsStride + 2]; float normX = 0.0f; float normY = 0.0f; float normZ = 0.0f; if (prim.normIdx != MAX_INDEX) { normX = mObjNormals[prim.normIdx * mNormalsStride + 0]; normY = mObjNormals[prim.normIdx * mNormalsStride + 1]; normZ = mObjNormals[prim.normIdx * mNormalsStride + 2]; } float texCoordX = 0.0f; float texCoordY = 0.0f; if (prim.texIdx != MAX_INDEX) { texCoordX = mObjTextureCoords[prim.texIdx * mTextureCoordsStride + 0]; texCoordY = mObjTextureCoords[prim.texIdx * mTextureCoordsStride + 1]; } std::vector<unsigned int> &ithRemapList = mVertexRemap[prim.vertIdx]; // We may have some potential vertices we can reuse // loop over all the potential candidates and see if any match our guy for (unsigned int i = 0; i < ithRemapList.size(); i ++) { int ithRemap = ithRemapList[i]; // compare existing vertex with the new one if (mPositions[ithRemap * mPositionsStride + 0] != posX || mPositions[ithRemap * mPositionsStride + 1] != posY || mPositions[ithRemap * mPositionsStride + 2] != posZ) { continue; } // Now go over normals if (prim.normIdx != MAX_INDEX) { if (mNormals[ithRemap * mNormalsStride + 0] != normX || mNormals[ithRemap * mNormalsStride + 1] != normY || mNormals[ithRemap * mNormalsStride + 2] != normZ) { continue; } } // And texcoords if (prim.texIdx != MAX_INDEX) { if (mTextureCoords[ithRemap * mTextureCoordsStride + 0] != texCoordX || mTextureCoords[ithRemap * mTextureCoordsStride + 1] != texCoordY) { continue; } } // If we got here the new vertex is identical to the one that we already stored return ithRemap; } // We did not encounter this vertex yet, store it and return its index mPositions.push_back(posX); mPositions.push_back(posY); mPositions.push_back(posZ); if (prim.normIdx != MAX_INDEX) { mNormals.push_back(normX); mNormals.push_back(normY); mNormals.push_back(normZ); } if (prim.texIdx != MAX_INDEX) { mTextureCoords.push_back(texCoordX); mTextureCoords.push_back(texCoordY); } // We need to remember this mapping. Since we are storing floats, not vec3's, need to // divide by position size to get the right index int currentVertexIndex = (mPositions.size()/mPositionsStride) - 1; ithRemapList.push_back(currentVertexIndex); return currentVertexIndex; }