/*
* Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009 Apple Inc. All rights reserved.
* Copyright (C) 2006 Alexey Proskuryakov (ap@webkit.org)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#ifndef JSImmediate_h
#define JSImmediate_h
#include <wtf/Platform.h>
#if !USE(JSVALUE32_64)
#include <wtf/Assertions.h>
#include <wtf/AlwaysInline.h>
#include <wtf/MathExtras.h>
#include <wtf/StdLibExtras.h>
#include "JSValue.h"
#include <limits>
#include <limits.h>
#include <stdarg.h>
#include <stdint.h>
#include <stdlib.h>
namespace JSC {
class ExecState;
class JSCell;
class JSFastMath;
class JSGlobalData;
class JSObject;
class UString;
#if USE(JSVALUE64)
inline intptr_t reinterpretDoubleToIntptr(double value)
{
return WTF::bitwise_cast<intptr_t>(value);
}
inline double reinterpretIntptrToDouble(intptr_t value)
{
return WTF::bitwise_cast<double>(value);
}
#endif
/*
* A JSValue* is either a pointer to a cell (a heap-allocated object) or an immediate (a type-tagged
* value masquerading as a pointer). The low two bits in a JSValue* are available for type tagging
* because allocator alignment guarantees they will be 00 in cell pointers.
*
* For example, on a 32 bit system:
*
* JSCell*: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 00
* [ high 30 bits: pointer address ] [ low 2 bits -- always 0 ]
* JSImmediate: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX TT
* [ high 30 bits: 'payload' ] [ low 2 bits -- tag ]
*
* Where the bottom two bits are non-zero they either indicate that the immediate is a 31 bit signed
* integer, or they mark the value as being an immediate of a type other than integer, with a secondary
* tag used to indicate the exact type.
*
* Where the lowest bit is set (TT is equal to 01 or 11) the high 31 bits form a 31 bit signed int value.
* Where TT is equal to 10 this indicates this is a type of immediate other than an integer, and the next
* two bits will form an extended tag.
*
* 31 bit signed int: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX X1
* [ high 30 bits of the value ] [ high bit part of value ]
* Other: YYYYYYYYYYYYYYYYYYYYYYYYYYYY ZZ 10
* [ extended 'payload' ] [ extended tag ] [ tag 'other' ]
*
* Where the first bit of the extended tag is set this flags the value as being a boolean, and the following
* bit would flag the value as undefined. If neither bits are set, the value is null.
*
* Other: YYYYYYYYYYYYYYYYYYYYYYYYYYYY UB 10
* [ extended 'payload' ] [ undefined | bool ] [ tag 'other' ]
*
* For boolean value the lowest bit in the payload holds the value of the bool, all remaining bits are zero.
* For undefined or null immediates the payload is zero.
*
* Boolean: 000000000000000000000000000V 01 10
* [ boolean value ] [ bool ] [ tag 'other' ]
* Undefined: 0000000000000000000000000000 10 10
* [ zero ] [ undefined ] [ tag 'other' ]
* Null: 0000000000000000000000000000 00 10
* [ zero ] [ zero ] [ tag 'other' ]
*/
/*
* On 64-bit platforms, we support an alternative encoding form for immediates, if
* USE(JSVALUE64) is defined. When this format is used, double precision
* floating point values may also be encoded as JSImmediates.
*
* The encoding makes use of unused NaN space in the IEEE754 representation. Any value
* with the top 13 bits set represents a QNaN (with the sign bit set). QNaN values
* can encode a 51-bit payload. Hardware produced and C-library payloads typically
* have a payload of zero. We assume that non-zero payloads are available to encode
* pointer and integer values. Since any 64-bit bit pattern where the top 15 bits are
* all set represents a NaN with a non-zero payload, we can use this space in the NaN
* ranges to encode other values (however there are also other ranges of NaN space that
* could have been selected). This range of NaN space is represented by 64-bit numbers
* begining with the 16-bit hex patterns 0xFFFE and 0xFFFF - we rely on the fact that no
* valid double-precision numbers will begin fall in these ranges.
*
* The scheme we have implemented encodes double precision values by adding 2^48 to the
* 64-bit integer representation of the number. After this manipulation, no encoded
* double-precision value will begin with the pattern 0x0000 or 0xFFFF.
*
* The top 16-bits denote the type of the encoded JSImmediate:
*
* Pointer: 0000:PPPP:PPPP:PPPP
* 0001:****:****:****
* Double:{ ...
* FFFE:****:****:****
* Integer: FFFF:0000:IIII:IIII
*
* 32-bit signed integers are marked with the 16-bit tag 0xFFFF. The tag 0x0000
* denotes a pointer, or another form of tagged immediate. Boolean, null and undefined
* values are encoded in the same manner as the default format.
*/
class JSImmediate {
private:
friend class JIT;
friend class JSValue;
friend class JSFastMath;
friend JSValue jsNumber(ExecState* exec, double d);
friend JSValue jsNumber(ExecState*, char i);
friend JSValue jsNumber(ExecState*, unsigned char i);
friend JSValue jsNumber(ExecState*, short i);
friend JSValue jsNumber(ExecState*, unsigned short i);
friend JSValue jsNumber(ExecState* exec, int i);
friend JSValue jsNumber(ExecState* exec, unsigned i);
friend JSValue jsNumber(ExecState* exec, long i);
friend JSValue jsNumber(ExecState* exec, unsigned long i);
friend JSValue jsNumber(ExecState* exec, long long i);
friend JSValue jsNumber(ExecState* exec, unsigned long long i);
friend JSValue jsNumber(JSGlobalData* globalData, double d);
friend JSValue jsNumber(JSGlobalData* globalData, short i);
friend JSValue jsNumber(JSGlobalData* globalData, unsigned short i);
friend JSValue jsNumber(JSGlobalData* globalData, int i);
friend JSValue jsNumber(JSGlobalData* globalData, unsigned i);
friend JSValue jsNumber(JSGlobalData* globalData, long i);
friend JSValue jsNumber(JSGlobalData* globalData, unsigned long i);
friend JSValue jsNumber(JSGlobalData* globalData, long long i);
friend JSValue jsNumber(JSGlobalData* globalData, unsigned long long i);
#if USE(JSVALUE64)
// If all bits in the mask are set, this indicates an integer number,
// if any but not all are set this value is a double precision number.
static const intptr_t TagTypeNumber = 0xffff000000000000ll;
// This value is 2^48, used to encode doubles such that the encoded value will begin
// with a 16-bit pattern within the range 0x0001..0xFFFE.
static const intptr_t DoubleEncodeOffset = 0x1000000000000ll;
#else
static const intptr_t TagTypeNumber = 0x1; // bottom bit set indicates integer, this dominates the following bit
#endif
static const intptr_t TagBitTypeOther = 0x2; // second bit set indicates immediate other than an integer
static const intptr_t TagMask = TagTypeNumber | TagBitTypeOther;
static const intptr_t ExtendedTagMask = 0xC; // extended tag holds a further two bits
static const intptr_t ExtendedTagBitBool = 0x4;
static const intptr_t ExtendedTagBitUndefined = 0x8;
static const intptr_t FullTagTypeMask = TagMask | ExtendedTagMask;
static const intptr_t FullTagTypeBool = TagBitTypeOther | ExtendedTagBitBool;
static const intptr_t FullTagTypeUndefined = TagBitTypeOther | ExtendedTagBitUndefined;
static const intptr_t FullTagTypeNull = TagBitTypeOther;
#if USE(JSVALUE64)
static const int32_t IntegerPayloadShift = 0;
#else
static const int32_t IntegerPayloadShift = 1;
#endif
static const int32_t ExtendedPayloadShift = 4;
static const intptr_t ExtendedPayloadBitBoolValue = 1 << ExtendedPayloadShift;
static const int32_t signBit = 0x80000000;
static ALWAYS_INLINE bool isImmediate(JSValue v)
{
return rawValue(v) & TagMask;
}
static ALWAYS_INLINE bool isNumber(JSValue v)
{
return rawValue(v) & TagTypeNumber;
}
static ALWAYS_INLINE bool isIntegerNumber(JSValue v)
{
#if USE(JSVALUE64)
return (rawValue(v) & TagTypeNumber) == TagTypeNumber;
#else
return isNumber(v);
#endif
}
#if USE(JSVALUE64)
static ALWAYS_INLINE bool isDouble(JSValue v)
{
return isNumber(v) && !isIntegerNumber(v);
}
#endif
static ALWAYS_INLINE bool isPositiveIntegerNumber(JSValue v)
{
// A single mask to check for the sign bit and the number tag all at once.
return (rawValue(v) & (signBit | TagTypeNumber)) == TagTypeNumber;
}
static ALWAYS_INLINE bool isBoolean(JSValue v)
{
return (rawValue(v) & FullTagTypeMask) == FullTagTypeBool;
}
static ALWAYS_INLINE bool isUndefinedOrNull(JSValue v)
{
// Undefined and null share the same value, bar the 'undefined' bit in the extended tag.
return (rawValue(v) & ~ExtendedTagBitUndefined) == FullTagTypeNull;
}
static JSValue from(char);
static JSValue from(signed char);
static JSValue from(unsigned char);
static JSValue from(short);
static JSValue from(unsigned short);
static JSValue from(int);
static JSValue from(unsigned);
static JSValue from(long);
static JSValue from(unsigned long);
static JSValue from(long long);
static JSValue from(unsigned long long);
static JSValue from(double);
static ALWAYS_INLINE bool isEitherImmediate(JSValue v1, JSValue v2)
{
return (rawValue(v1) | rawValue(v2)) & TagMask;
}
static ALWAYS_INLINE bool areBothImmediate(JSValue v1, JSValue v2)
{
return isImmediate(v1) & isImmediate(v2);
}
static ALWAYS_INLINE bool areBothImmediateIntegerNumbers(JSValue v1, JSValue v2)
{
#if USE(JSVALUE64)
return (rawValue(v1) & rawValue(v2) & TagTypeNumber) == TagTypeNumber;
#else
return rawValue(v1) & rawValue(v2) & TagTypeNumber;
#endif
}
static double toDouble(JSValue);
static bool toBoolean(JSValue);
static bool getUInt32(JSValue, uint32_t&);
static bool getTruncatedInt32(JSValue, int32_t&);
static bool getTruncatedUInt32(JSValue, uint32_t&);
static int32_t getTruncatedInt32(JSValue);
static uint32_t getTruncatedUInt32(JSValue);
static JSValue trueImmediate();
static JSValue falseImmediate();
static JSValue undefinedImmediate();
static JSValue nullImmediate();
static JSValue zeroImmediate();
static JSValue oneImmediate();
private:
#if USE(JSVALUE64)
static const int minImmediateInt = ((-INT_MAX) - 1);
static const int maxImmediateInt = INT_MAX;
#else
static const int minImmediateInt = ((-INT_MAX) - 1) >> IntegerPayloadShift;
static const int maxImmediateInt = INT_MAX >> IntegerPayloadShift;
#endif
static const unsigned maxImmediateUInt = maxImmediateInt;
static ALWAYS_INLINE JSValue makeValue(intptr_t integer)
{
return JSValue::makeImmediate(integer);
}
// With USE(JSVALUE64) we want the argument to be zero extended, so the
// integer doesn't interfere with the tag bits in the upper word. In the default encoding,
// if intptr_t id larger then int32_t we sign extend the value through the upper word.
#if USE(JSVALUE64)
static ALWAYS_INLINE JSValue makeInt(uint32_t value)
#else
static ALWAYS_INLINE JSValue makeInt(int32_t value)
#endif
{
return makeValue((static_cast<intptr_t>(value) << IntegerPayloadShift) | TagTypeNumber);
}
#if USE(JSVALUE64)
static ALWAYS_INLINE JSValue makeDouble(double value)
{
return makeValue(reinterpretDoubleToIntptr(value) + DoubleEncodeOffset);
}
#endif
static ALWAYS_INLINE JSValue makeBool(bool b)
{
return makeValue((static_cast<intptr_t>(b) << ExtendedPayloadShift) | FullTagTypeBool);
}
static ALWAYS_INLINE JSValue makeUndefined()
{
return makeValue(FullTagTypeUndefined);
}
static ALWAYS_INLINE JSValue makeNull()
{
return makeValue(FullTagTypeNull);
}
template<typename T>
static JSValue fromNumberOutsideIntegerRange(T);
#if USE(JSVALUE64)
static ALWAYS_INLINE double doubleValue(JSValue v)
{
return reinterpretIntptrToDouble(rawValue(v) - DoubleEncodeOffset);
}
#endif
static ALWAYS_INLINE int32_t intValue(JSValue v)
{
return static_cast<int32_t>(rawValue(v) >> IntegerPayloadShift);
}
static ALWAYS_INLINE uint32_t uintValue(JSValue v)
{
return static_cast<uint32_t>(rawValue(v) >> IntegerPayloadShift);
}
static ALWAYS_INLINE bool boolValue(JSValue v)
{
return rawValue(v) & ExtendedPayloadBitBoolValue;
}
static ALWAYS_INLINE intptr_t rawValue(JSValue v)
{
return v.immediateValue();
}
};
ALWAYS_INLINE JSValue JSImmediate::trueImmediate() { return makeBool(true); }
ALWAYS_INLINE JSValue JSImmediate::falseImmediate() { return makeBool(false); }
ALWAYS_INLINE JSValue JSImmediate::undefinedImmediate() { return makeUndefined(); }
ALWAYS_INLINE JSValue JSImmediate::nullImmediate() { return makeNull(); }
ALWAYS_INLINE JSValue JSImmediate::zeroImmediate() { return makeInt(0); }
ALWAYS_INLINE JSValue JSImmediate::oneImmediate() { return makeInt(1); }
#if USE(JSVALUE64)
inline bool doubleToBoolean(double value)
{
return value < 0.0 || value > 0.0;
}
ALWAYS_INLINE bool JSImmediate::toBoolean(JSValue v)
{
ASSERT(isImmediate(v));
return isNumber(v) ? isIntegerNumber(v) ? v != zeroImmediate()
: doubleToBoolean(doubleValue(v)) : v == trueImmediate();
}
#else
ALWAYS_INLINE bool JSImmediate::toBoolean(JSValue v)
{
ASSERT(isImmediate(v));
return isIntegerNumber(v) ? v != zeroImmediate() : v == trueImmediate();
}
#endif
ALWAYS_INLINE uint32_t JSImmediate::getTruncatedUInt32(JSValue v)
{
// FIXME: should probably be asserting isPositiveIntegerNumber here.
ASSERT(isIntegerNumber(v));
return intValue(v);
}
#if USE(JSVALUE64)
template<typename T>
inline JSValue JSImmediate::fromNumberOutsideIntegerRange(T value)
{
return makeDouble(static_cast<double>(value));
}
#else
template<typename T>
inline JSValue JSImmediate::fromNumberOutsideIntegerRange(T)
{
return JSValue();
}
#endif
ALWAYS_INLINE JSValue JSImmediate::from(char i)
{
return makeInt(i);
}
ALWAYS_INLINE JSValue JSImmediate::from(signed char i)
{
return makeInt(i);
}
ALWAYS_INLINE JSValue JSImmediate::from(unsigned char i)
{
return makeInt(i);
}
ALWAYS_INLINE JSValue JSImmediate::from(short i)
{
return makeInt(i);
}
ALWAYS_INLINE JSValue JSImmediate::from(unsigned short i)
{
return makeInt(i);
}
ALWAYS_INLINE JSValue JSImmediate::from(int i)
{
#if !USE(JSVALUE64)
if ((i < minImmediateInt) | (i > maxImmediateInt))
return fromNumberOutsideIntegerRange(i);
#endif
return makeInt(i);
}
ALWAYS_INLINE JSValue JSImmediate::from(unsigned i)
{
if (i > maxImmediateUInt)
return fromNumberOutsideIntegerRange(i);
return makeInt(i);
}
ALWAYS_INLINE JSValue JSImmediate::from(long i)
{
if ((i < minImmediateInt) | (i > maxImmediateInt))
return fromNumberOutsideIntegerRange(i);
return makeInt(i);
}
ALWAYS_INLINE JSValue JSImmediate::from(unsigned long i)
{
if (i > maxImmediateUInt)
return fromNumberOutsideIntegerRange(i);
return makeInt(i);
}
ALWAYS_INLINE JSValue JSImmediate::from(long long i)
{
if ((i < minImmediateInt) | (i > maxImmediateInt))
return JSValue();
return makeInt(static_cast<intptr_t>(i));
}
ALWAYS_INLINE JSValue JSImmediate::from(unsigned long long i)
{
if (i > maxImmediateUInt)
return fromNumberOutsideIntegerRange(i);
return makeInt(static_cast<intptr_t>(i));
}
ALWAYS_INLINE JSValue JSImmediate::from(double d)
{
const int intVal = static_cast<int>(d);
// Check for data loss from conversion to int.
if (intVal != d || (!intVal && signbit(d)))
return fromNumberOutsideIntegerRange(d);
return from(intVal);
}
ALWAYS_INLINE int32_t JSImmediate::getTruncatedInt32(JSValue v)
{
ASSERT(isIntegerNumber(v));
return intValue(v);
}
ALWAYS_INLINE double JSImmediate::toDouble(JSValue v)
{
ASSERT(isImmediate(v));
if (isIntegerNumber(v))
return intValue(v);
#if USE(JSVALUE64)
if (isNumber(v)) {
ASSERT(isDouble(v));
return doubleValue(v);
}
#else
ASSERT(!isNumber(v));
#endif
if (rawValue(v) == FullTagTypeUndefined)
return nonInlineNaN();
ASSERT(JSImmediate::isBoolean(v) || (v == JSImmediate::nullImmediate()));
return rawValue(v) >> ExtendedPayloadShift;
}
ALWAYS_INLINE bool JSImmediate::getUInt32(JSValue v, uint32_t& i)
{
i = uintValue(v);
return isPositiveIntegerNumber(v);
}
ALWAYS_INLINE bool JSImmediate::getTruncatedInt32(JSValue v, int32_t& i)
{
i = intValue(v);
return isIntegerNumber(v);
}
ALWAYS_INLINE bool JSImmediate::getTruncatedUInt32(JSValue v, uint32_t& i)
{
return getUInt32(v, i);
}
inline JSValue::JSValue(JSNullTag)
{
*this = JSImmediate::nullImmediate();
}
inline JSValue::JSValue(JSUndefinedTag)
{
*this = JSImmediate::undefinedImmediate();
}
inline JSValue::JSValue(JSTrueTag)
{
*this = JSImmediate::trueImmediate();
}
inline JSValue::JSValue(JSFalseTag)
{
*this = JSImmediate::falseImmediate();
}
inline bool JSValue::isUndefinedOrNull() const
{
return JSImmediate::isUndefinedOrNull(asValue());
}
inline bool JSValue::isBoolean() const
{
return JSImmediate::isBoolean(asValue());
}
inline bool JSValue::isTrue() const
{
return asValue() == JSImmediate::trueImmediate();
}
inline bool JSValue::isFalse() const
{
return asValue() == JSImmediate::falseImmediate();
}
inline bool JSValue::getBoolean(bool& v) const
{
if (JSImmediate::isBoolean(asValue())) {
v = JSImmediate::toBoolean(asValue());
return true;
}
return false;
}
inline bool JSValue::getBoolean() const
{
return asValue() == jsBoolean(true);
}
inline bool JSValue::isCell() const
{
return !JSImmediate::isImmediate(asValue());
}
inline bool JSValue::isInt32() const
{
return JSImmediate::isIntegerNumber(asValue());
}
inline int32_t JSValue::asInt32() const
{
ASSERT(isInt32());
return JSImmediate::getTruncatedInt32(asValue());
}
inline bool JSValue::isUInt32() const
{
return JSImmediate::isPositiveIntegerNumber(asValue());
}
inline uint32_t JSValue::asUInt32() const
{
ASSERT(isUInt32());
return JSImmediate::getTruncatedUInt32(asValue());
}
class JSFastMath {
public:
static ALWAYS_INLINE bool canDoFastBitwiseOperations(JSValue v1, JSValue v2)
{
return JSImmediate::areBothImmediateIntegerNumbers(v1, v2);
}
static ALWAYS_INLINE JSValue equal(JSValue v1, JSValue v2)
{
ASSERT(canDoFastBitwiseOperations(v1, v2));
return jsBoolean(v1 == v2);
}
static ALWAYS_INLINE JSValue notEqual(JSValue v1, JSValue v2)
{
ASSERT(canDoFastBitwiseOperations(v1, v2));
return jsBoolean(v1 != v2);
}
static ALWAYS_INLINE JSValue andImmediateNumbers(JSValue v1, JSValue v2)
{
ASSERT(canDoFastBitwiseOperations(v1, v2));
return JSImmediate::makeValue(JSImmediate::rawValue(v1) & JSImmediate::rawValue(v2));
}
static ALWAYS_INLINE JSValue xorImmediateNumbers(JSValue v1, JSValue v2)
{
ASSERT(canDoFastBitwiseOperations(v1, v2));
return JSImmediate::makeValue((JSImmediate::rawValue(v1) ^ JSImmediate::rawValue(v2)) | JSImmediate::TagTypeNumber);
}
static ALWAYS_INLINE JSValue orImmediateNumbers(JSValue v1, JSValue v2)
{
ASSERT(canDoFastBitwiseOperations(v1, v2));
return JSImmediate::makeValue(JSImmediate::rawValue(v1) | JSImmediate::rawValue(v2));
}
static ALWAYS_INLINE bool canDoFastRshift(JSValue v1, JSValue v2)
{
return JSImmediate::areBothImmediateIntegerNumbers(v1, v2);
}
static ALWAYS_INLINE bool canDoFastUrshift(JSValue v1, JSValue v2)
{
return JSImmediate::areBothImmediateIntegerNumbers(v1, v2) && !(JSImmediate::rawValue(v1) & JSImmediate::signBit);
}
static ALWAYS_INLINE JSValue rightShiftImmediateNumbers(JSValue val, JSValue shift)
{
ASSERT(canDoFastRshift(val, shift) || canDoFastUrshift(val, shift));
#if USE(JSVALUE64)
return JSImmediate::makeValue(static_cast<intptr_t>(static_cast<uint32_t>(static_cast<int32_t>(JSImmediate::rawValue(val)) >> ((JSImmediate::rawValue(shift) >> JSImmediate::IntegerPayloadShift) & 0x1f))) | JSImmediate::TagTypeNumber);
#else
return JSImmediate::makeValue((JSImmediate::rawValue(val) >> ((JSImmediate::rawValue(shift) >> JSImmediate::IntegerPayloadShift) & 0x1f)) | JSImmediate::TagTypeNumber);
#endif
}
static ALWAYS_INLINE bool canDoFastAdditiveOperations(JSValue v)
{
// Number is non-negative and an operation involving two of these can't overflow.
// Checking for allowed negative numbers takes more time than it's worth on SunSpider.
return (JSImmediate::rawValue(v) & (JSImmediate::TagTypeNumber + (JSImmediate::signBit | (JSImmediate::signBit >> 1)))) == JSImmediate::TagTypeNumber;
}
static ALWAYS_INLINE bool canDoFastAdditiveOperations(JSValue v1, JSValue v2)
{
// Number is non-negative and an operation involving two of these can't overflow.
// Checking for allowed negative numbers takes more time than it's worth on SunSpider.
return canDoFastAdditiveOperations(v1) && canDoFastAdditiveOperations(v2);
}
static ALWAYS_INLINE JSValue addImmediateNumbers(JSValue v1, JSValue v2)
{
ASSERT(canDoFastAdditiveOperations(v1, v2));
return JSImmediate::makeValue(JSImmediate::rawValue(v1) + JSImmediate::rawValue(v2) - JSImmediate::TagTypeNumber);
}
static ALWAYS_INLINE JSValue subImmediateNumbers(JSValue v1, JSValue v2)
{
ASSERT(canDoFastAdditiveOperations(v1, v2));
return JSImmediate::makeValue(JSImmediate::rawValue(v1) - JSImmediate::rawValue(v2) + JSImmediate::TagTypeNumber);
}
static ALWAYS_INLINE JSValue incImmediateNumber(JSValue v)
{
ASSERT(canDoFastAdditiveOperations(v));
return JSImmediate::makeValue(JSImmediate::rawValue(v) + (1 << JSImmediate::IntegerPayloadShift));
}
static ALWAYS_INLINE JSValue decImmediateNumber(JSValue v)
{
ASSERT(canDoFastAdditiveOperations(v));
return JSImmediate::makeValue(JSImmediate::rawValue(v) - (1 << JSImmediate::IntegerPayloadShift));
}
};
} // namespace JSC
#endif // !USE(JSVALUE32_64)
#endif // JSImmediate_h