// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "bootstrapper.h"
#include "codegen-inl.h"
#include "compiler.h"
#include "debug.h"
#include "ic-inl.h"
#include "parser.h"
#include "regexp-macro-assembler.h"
#include "register-allocator-inl.h"
#include "scopes.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm_)
// -------------------------------------------------------------------------
// Platform-specific DeferredCode functions.
void DeferredCode::SaveRegisters() {
for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) {
int action = registers_[i];
if (action == kPush) {
__ push(RegisterAllocator::ToRegister(i));
} else if (action != kIgnore && (action & kSyncedFlag) == 0) {
__ movq(Operand(rbp, action), RegisterAllocator::ToRegister(i));
}
}
}
void DeferredCode::RestoreRegisters() {
// Restore registers in reverse order due to the stack.
for (int i = RegisterAllocator::kNumRegisters - 1; i >= 0; i--) {
int action = registers_[i];
if (action == kPush) {
__ pop(RegisterAllocator::ToRegister(i));
} else if (action != kIgnore) {
action &= ~kSyncedFlag;
__ movq(RegisterAllocator::ToRegister(i), Operand(rbp, action));
}
}
}
// -------------------------------------------------------------------------
// CodeGenState implementation.
CodeGenState::CodeGenState(CodeGenerator* owner)
: owner_(owner),
destination_(NULL),
previous_(NULL) {
owner_->set_state(this);
}
CodeGenState::CodeGenState(CodeGenerator* owner,
ControlDestination* destination)
: owner_(owner),
destination_(destination),
previous_(owner->state()) {
owner_->set_state(this);
}
CodeGenState::~CodeGenState() {
ASSERT(owner_->state() == this);
owner_->set_state(previous_);
}
// -------------------------------------------------------------------------
// Deferred code objects
//
// These subclasses of DeferredCode add pieces of code to the end of generated
// code. They are branched to from the generated code, and
// keep some slower code out of the main body of the generated code.
// Many of them call a code stub or a runtime function.
class DeferredInlineSmiAdd: public DeferredCode {
public:
DeferredInlineSmiAdd(Register dst,
Smi* value,
OverwriteMode overwrite_mode)
: dst_(dst), value_(value), overwrite_mode_(overwrite_mode) {
set_comment("[ DeferredInlineSmiAdd");
}
virtual void Generate();
private:
Register dst_;
Smi* value_;
OverwriteMode overwrite_mode_;
};
// The result of value + src is in dst. It either overflowed or was not
// smi tagged. Undo the speculative addition and call the appropriate
// specialized stub for add. The result is left in dst.
class DeferredInlineSmiAddReversed: public DeferredCode {
public:
DeferredInlineSmiAddReversed(Register dst,
Smi* value,
OverwriteMode overwrite_mode)
: dst_(dst), value_(value), overwrite_mode_(overwrite_mode) {
set_comment("[ DeferredInlineSmiAddReversed");
}
virtual void Generate();
private:
Register dst_;
Smi* value_;
OverwriteMode overwrite_mode_;
};
class DeferredInlineSmiSub: public DeferredCode {
public:
DeferredInlineSmiSub(Register dst,
Smi* value,
OverwriteMode overwrite_mode)
: dst_(dst), value_(value), overwrite_mode_(overwrite_mode) {
set_comment("[ DeferredInlineSmiSub");
}
virtual void Generate();
private:
Register dst_;
Smi* value_;
OverwriteMode overwrite_mode_;
};
// Call the appropriate binary operation stub to compute src op value
// and leave the result in dst.
class DeferredInlineSmiOperation: public DeferredCode {
public:
DeferredInlineSmiOperation(Token::Value op,
Register dst,
Register src,
Smi* value,
OverwriteMode overwrite_mode)
: op_(op),
dst_(dst),
src_(src),
value_(value),
overwrite_mode_(overwrite_mode) {
set_comment("[ DeferredInlineSmiOperation");
}
virtual void Generate();
private:
Token::Value op_;
Register dst_;
Register src_;
Smi* value_;
OverwriteMode overwrite_mode_;
};
class FloatingPointHelper : public AllStatic {
public:
// Code pattern for loading a floating point value. Input value must
// be either a smi or a heap number object (fp value). Requirements:
// operand on TOS+1. Returns operand as floating point number on FPU
// stack.
static void LoadFloatOperand(MacroAssembler* masm, Register scratch);
// Code pattern for loading a floating point value. Input value must
// be either a smi or a heap number object (fp value). Requirements:
// operand in src register. Returns operand as floating point number
// in XMM register
static void LoadFloatOperand(MacroAssembler* masm,
Register src,
XMMRegister dst);
// Code pattern for loading floating point values. Input values must
// be either smi or heap number objects (fp values). Requirements:
// operand_1 in rdx, operand_2 in rax; Returns operands as
// floating point numbers in XMM registers.
static void LoadFloatOperands(MacroAssembler* masm,
XMMRegister dst1,
XMMRegister dst2);
// Similar to LoadFloatOperands, assumes that the operands are smis.
static void LoadFloatOperandsFromSmis(MacroAssembler* masm,
XMMRegister dst1,
XMMRegister dst2);
// Code pattern for loading floating point values onto the fp stack.
// Input values must be either smi or heap number objects (fp values).
// Requirements:
// Register version: operands in registers lhs and rhs.
// Stack version: operands on TOS+1 and TOS+2.
// Returns operands as floating point numbers on fp stack.
static void LoadFloatOperands(MacroAssembler* masm,
Register lhs,
Register rhs);
// Test if operands are smi or number objects (fp). Requirements:
// operand_1 in rax, operand_2 in rdx; falls through on float or smi
// operands, jumps to the non_float label otherwise.
static void CheckNumberOperands(MacroAssembler* masm,
Label* non_float);
// Takes the operands in rdx and rax and loads them as integers in rax
// and rcx.
static void LoadAsIntegers(MacroAssembler* masm,
bool use_sse3,
Label* operand_conversion_failure);
};
// -----------------------------------------------------------------------------
// CodeGenerator implementation.
CodeGenerator::CodeGenerator(MacroAssembler* masm)
: deferred_(8),
masm_(masm),
info_(NULL),
frame_(NULL),
allocator_(NULL),
state_(NULL),
loop_nesting_(0),
function_return_is_shadowed_(false),
in_spilled_code_(false) {
}
Scope* CodeGenerator::scope() { return info_->function()->scope(); }
void CodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
// Call the runtime to declare the globals. The inevitable call
// will sync frame elements to memory anyway, so we do it eagerly to
// allow us to push the arguments directly into place.
frame_->SyncRange(0, frame_->element_count() - 1);
__ movq(kScratchRegister, pairs, RelocInfo::EMBEDDED_OBJECT);
frame_->EmitPush(rsi); // The context is the first argument.
frame_->EmitPush(kScratchRegister);
frame_->EmitPush(Smi::FromInt(is_eval() ? 1 : 0));
Result ignored = frame_->CallRuntime(Runtime::kDeclareGlobals, 3);
// Return value is ignored.
}
void CodeGenerator::Generate(CompilationInfo* info) {
// Record the position for debugging purposes.
CodeForFunctionPosition(info->function());
// Initialize state.
info_ = info;
ASSERT(allocator_ == NULL);
RegisterAllocator register_allocator(this);
allocator_ = ®ister_allocator;
ASSERT(frame_ == NULL);
frame_ = new VirtualFrame();
set_in_spilled_code(false);
// Adjust for function-level loop nesting.
loop_nesting_ += info->loop_nesting();
JumpTarget::set_compiling_deferred_code(false);
#ifdef DEBUG
if (strlen(FLAG_stop_at) > 0 &&
info->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) {
frame_->SpillAll();
__ int3();
}
#endif
// New scope to get automatic timing calculation.
{ // NOLINT
HistogramTimerScope codegen_timer(&Counters::code_generation);
CodeGenState state(this);
// Entry:
// Stack: receiver, arguments, return address.
// rbp: caller's frame pointer
// rsp: stack pointer
// rdi: called JS function
// rsi: callee's context
allocator_->Initialize();
if (info->mode() == CompilationInfo::PRIMARY) {
frame_->Enter();
// Allocate space for locals and initialize them.
frame_->AllocateStackSlots();
// Allocate the local context if needed.
int heap_slots = scope()->num_heap_slots();
if (heap_slots > 0) {
Comment cmnt(masm_, "[ allocate local context");
// Allocate local context.
// Get outer context and create a new context based on it.
frame_->PushFunction();
Result context;
if (heap_slots <= FastNewContextStub::kMaximumSlots) {
FastNewContextStub stub(heap_slots);
context = frame_->CallStub(&stub, 1);
} else {
context = frame_->CallRuntime(Runtime::kNewContext, 1);
}
// Update context local.
frame_->SaveContextRegister();
// Verify that the runtime call result and rsi agree.
if (FLAG_debug_code) {
__ cmpq(context.reg(), rsi);
__ Assert(equal, "Runtime::NewContext should end up in rsi");
}
}
// TODO(1241774): Improve this code:
// 1) only needed if we have a context
// 2) no need to recompute context ptr every single time
// 3) don't copy parameter operand code from SlotOperand!
{
Comment cmnt2(masm_, "[ copy context parameters into .context");
// Note that iteration order is relevant here! If we have the same
// parameter twice (e.g., function (x, y, x)), and that parameter
// needs to be copied into the context, it must be the last argument
// passed to the parameter that needs to be copied. This is a rare
// case so we don't check for it, instead we rely on the copying
// order: such a parameter is copied repeatedly into the same
// context location and thus the last value is what is seen inside
// the function.
for (int i = 0; i < scope()->num_parameters(); i++) {
Variable* par = scope()->parameter(i);
Slot* slot = par->slot();
if (slot != NULL && slot->type() == Slot::CONTEXT) {
// The use of SlotOperand below is safe in unspilled code
// because the slot is guaranteed to be a context slot.
//
// There are no parameters in the global scope.
ASSERT(!scope()->is_global_scope());
frame_->PushParameterAt(i);
Result value = frame_->Pop();
value.ToRegister();
// SlotOperand loads context.reg() with the context object
// stored to, used below in RecordWrite.
Result context = allocator_->Allocate();
ASSERT(context.is_valid());
__ movq(SlotOperand(slot, context.reg()), value.reg());
int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize;
Result scratch = allocator_->Allocate();
ASSERT(scratch.is_valid());
frame_->Spill(context.reg());
frame_->Spill(value.reg());
__ RecordWrite(context.reg(), offset, value.reg(), scratch.reg());
}
}
}
// Store the arguments object. This must happen after context
// initialization because the arguments object may be stored in
// the context.
if (ArgumentsMode() != NO_ARGUMENTS_ALLOCATION) {
StoreArgumentsObject(true);
}
// Initialize ThisFunction reference if present.
if (scope()->is_function_scope() && scope()->function() != NULL) {
frame_->Push(Factory::the_hole_value());
StoreToSlot(scope()->function()->slot(), NOT_CONST_INIT);
}
} else {
// When used as the secondary compiler for splitting, rbp, rsi,
// and rdi have been pushed on the stack. Adjust the virtual
// frame to match this state.
frame_->Adjust(3);
allocator_->Unuse(rdi);
// Bind all the bailout labels to the beginning of the function.
List<CompilationInfo::Bailout*>* bailouts = info->bailouts();
for (int i = 0; i < bailouts->length(); i++) {
__ bind(bailouts->at(i)->label());
}
}
// Initialize the function return target after the locals are set
// up, because it needs the expected frame height from the frame.
function_return_.set_direction(JumpTarget::BIDIRECTIONAL);
function_return_is_shadowed_ = false;
// Generate code to 'execute' declarations and initialize functions
// (source elements). In case of an illegal redeclaration we need to
// handle that instead of processing the declarations.
if (scope()->HasIllegalRedeclaration()) {
Comment cmnt(masm_, "[ illegal redeclarations");
scope()->VisitIllegalRedeclaration(this);
} else {
Comment cmnt(masm_, "[ declarations");
ProcessDeclarations(scope()->declarations());
// Bail out if a stack-overflow exception occurred when processing
// declarations.
if (HasStackOverflow()) return;
}
if (FLAG_trace) {
frame_->CallRuntime(Runtime::kTraceEnter, 0);
// Ignore the return value.
}
CheckStack();
// Compile the body of the function in a vanilla state. Don't
// bother compiling all the code if the scope has an illegal
// redeclaration.
if (!scope()->HasIllegalRedeclaration()) {
Comment cmnt(masm_, "[ function body");
#ifdef DEBUG
bool is_builtin = Bootstrapper::IsActive();
bool should_trace =
is_builtin ? FLAG_trace_builtin_calls : FLAG_trace_calls;
if (should_trace) {
frame_->CallRuntime(Runtime::kDebugTrace, 0);
// Ignore the return value.
}
#endif
VisitStatements(info->function()->body());
// Handle the return from the function.
if (has_valid_frame()) {
// If there is a valid frame, control flow can fall off the end of
// the body. In that case there is an implicit return statement.
ASSERT(!function_return_is_shadowed_);
CodeForReturnPosition(info->function());
frame_->PrepareForReturn();
Result undefined(Factory::undefined_value());
if (function_return_.is_bound()) {
function_return_.Jump(&undefined);
} else {
function_return_.Bind(&undefined);
GenerateReturnSequence(&undefined);
}
} else if (function_return_.is_linked()) {
// If the return target has dangling jumps to it, then we have not
// yet generated the return sequence. This can happen when (a)
// control does not flow off the end of the body so we did not
// compile an artificial return statement just above, and (b) there
// are return statements in the body but (c) they are all shadowed.
Result return_value;
function_return_.Bind(&return_value);
GenerateReturnSequence(&return_value);
}
}
}
// Adjust for function-level loop nesting.
loop_nesting_ -= info->loop_nesting();
// Code generation state must be reset.
ASSERT(state_ == NULL);
ASSERT(loop_nesting() == 0);
ASSERT(!function_return_is_shadowed_);
function_return_.Unuse();
DeleteFrame();
// Process any deferred code using the register allocator.
if (!HasStackOverflow()) {
HistogramTimerScope deferred_timer(&Counters::deferred_code_generation);
JumpTarget::set_compiling_deferred_code(true);
ProcessDeferred();
JumpTarget::set_compiling_deferred_code(false);
}
// There is no need to delete the register allocator, it is a
// stack-allocated local.
allocator_ = NULL;
}
void CodeGenerator::GenerateReturnSequence(Result* return_value) {
// The return value is a live (but not currently reference counted)
// reference to rax. This is safe because the current frame does not
// contain a reference to rax (it is prepared for the return by spilling
// all registers).
if (FLAG_trace) {
frame_->Push(return_value);
*return_value = frame_->CallRuntime(Runtime::kTraceExit, 1);
}
return_value->ToRegister(rax);
// Add a label for checking the size of the code used for returning.
#ifdef DEBUG
Label check_exit_codesize;
masm_->bind(&check_exit_codesize);
#endif
// Leave the frame and return popping the arguments and the
// receiver.
frame_->Exit();
masm_->ret((scope()->num_parameters() + 1) * kPointerSize);
#ifdef ENABLE_DEBUGGER_SUPPORT
// Add padding that will be overwritten by a debugger breakpoint.
// frame_->Exit() generates "movq rsp, rbp; pop rbp; ret k"
// with length 7 (3 + 1 + 3).
const int kPadding = Assembler::kJSReturnSequenceLength - 7;
for (int i = 0; i < kPadding; ++i) {
masm_->int3();
}
// Check that the size of the code used for returning matches what is
// expected by the debugger.
ASSERT_EQ(Assembler::kJSReturnSequenceLength,
masm_->SizeOfCodeGeneratedSince(&check_exit_codesize));
#endif
DeleteFrame();
}
#ifdef DEBUG
bool CodeGenerator::HasValidEntryRegisters() {
return (allocator()->count(rax) == (frame()->is_used(rax) ? 1 : 0))
&& (allocator()->count(rbx) == (frame()->is_used(rbx) ? 1 : 0))
&& (allocator()->count(rcx) == (frame()->is_used(rcx) ? 1 : 0))
&& (allocator()->count(rdx) == (frame()->is_used(rdx) ? 1 : 0))
&& (allocator()->count(rdi) == (frame()->is_used(rdi) ? 1 : 0))
&& (allocator()->count(r8) == (frame()->is_used(r8) ? 1 : 0))
&& (allocator()->count(r9) == (frame()->is_used(r9) ? 1 : 0))
&& (allocator()->count(r11) == (frame()->is_used(r11) ? 1 : 0))
&& (allocator()->count(r14) == (frame()->is_used(r14) ? 1 : 0))
&& (allocator()->count(r15) == (frame()->is_used(r15) ? 1 : 0))
&& (allocator()->count(r12) == (frame()->is_used(r12) ? 1 : 0));
}
#endif
class DeferredReferenceGetKeyedValue: public DeferredCode {
public:
explicit DeferredReferenceGetKeyedValue(Register dst,
Register receiver,
Register key,
bool is_global)
: dst_(dst), receiver_(receiver), key_(key), is_global_(is_global) {
set_comment("[ DeferredReferenceGetKeyedValue");
}
virtual void Generate();
Label* patch_site() { return &patch_site_; }
private:
Label patch_site_;
Register dst_;
Register receiver_;
Register key_;
bool is_global_;
};
void DeferredReferenceGetKeyedValue::Generate() {
__ push(receiver_); // First IC argument.
__ push(key_); // Second IC argument.
// Calculate the delta from the IC call instruction to the map check
// movq instruction in the inlined version. This delta is stored in
// a test(rax, delta) instruction after the call so that we can find
// it in the IC initialization code and patch the movq instruction.
// This means that we cannot allow test instructions after calls to
// KeyedLoadIC stubs in other places.
Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize));
RelocInfo::Mode mode = is_global_
? RelocInfo::CODE_TARGET_CONTEXT
: RelocInfo::CODE_TARGET;
__ Call(ic, mode);
// The delta from the start of the map-compare instruction to the
// test instruction. We use masm_-> directly here instead of the __
// macro because the macro sometimes uses macro expansion to turn
// into something that can't return a value. This is encountered
// when doing generated code coverage tests.
int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site());
// Here we use masm_-> instead of the __ macro because this is the
// instruction that gets patched and coverage code gets in the way.
// TODO(X64): Consider whether it's worth switching the test to a
// 7-byte NOP with non-zero immediate (0f 1f 80 xxxxxxxx) which won't
// be generated normally.
masm_->testl(rax, Immediate(-delta_to_patch_site));
__ IncrementCounter(&Counters::keyed_load_inline_miss, 1);
if (!dst_.is(rax)) __ movq(dst_, rax);
__ pop(key_);
__ pop(receiver_);
}
class DeferredReferenceSetKeyedValue: public DeferredCode {
public:
DeferredReferenceSetKeyedValue(Register value,
Register key,
Register receiver)
: value_(value), key_(key), receiver_(receiver) {
set_comment("[ DeferredReferenceSetKeyedValue");
}
virtual void Generate();
Label* patch_site() { return &patch_site_; }
private:
Register value_;
Register key_;
Register receiver_;
Label patch_site_;
};
void DeferredReferenceSetKeyedValue::Generate() {
__ IncrementCounter(&Counters::keyed_store_inline_miss, 1);
// Push receiver and key arguments on the stack.
__ push(receiver_);
__ push(key_);
// Move value argument to eax as expected by the IC stub.
if (!value_.is(rax)) __ movq(rax, value_);
// Call the IC stub.
Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET);
// The delta from the start of the map-compare instructions (initial movq)
// to the test instruction. We use masm_-> directly here instead of the
// __ macro because the macro sometimes uses macro expansion to turn
// into something that can't return a value. This is encountered
// when doing generated code coverage tests.
int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site());
// Here we use masm_-> instead of the __ macro because this is the
// instruction that gets patched and coverage code gets in the way.
masm_->testl(rax, Immediate(-delta_to_patch_site));
// Restore value (returned from store IC), key and receiver
// registers.
if (!value_.is(rax)) __ movq(value_, rax);
__ pop(key_);
__ pop(receiver_);
}
void CodeGenerator::CallApplyLazy(Expression* applicand,
Expression* receiver,
VariableProxy* arguments,
int position) {
// An optimized implementation of expressions of the form
// x.apply(y, arguments).
// If the arguments object of the scope has not been allocated,
// and x.apply is Function.prototype.apply, this optimization
// just copies y and the arguments of the current function on the
// stack, as receiver and arguments, and calls x.
// In the implementation comments, we call x the applicand
// and y the receiver.
ASSERT(ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION);
ASSERT(arguments->IsArguments());
// Load applicand.apply onto the stack. This will usually
// give us a megamorphic load site. Not super, but it works.
Load(applicand);
Handle<String> name = Factory::LookupAsciiSymbol("apply");
frame()->Push(name);
Result answer = frame()->CallLoadIC(RelocInfo::CODE_TARGET);
__ nop();
frame()->Push(&answer);
// Load the receiver and the existing arguments object onto the
// expression stack. Avoid allocating the arguments object here.
Load(receiver);
LoadFromSlot(scope()->arguments()->var()->slot(), NOT_INSIDE_TYPEOF);
// Emit the source position information after having loaded the
// receiver and the arguments.
CodeForSourcePosition(position);
// Contents of frame at this point:
// Frame[0]: arguments object of the current function or the hole.
// Frame[1]: receiver
// Frame[2]: applicand.apply
// Frame[3]: applicand.
// Check if the arguments object has been lazily allocated
// already. If so, just use that instead of copying the arguments
// from the stack. This also deals with cases where a local variable
// named 'arguments' has been introduced.
frame_->Dup();
Result probe = frame_->Pop();
{ VirtualFrame::SpilledScope spilled_scope;
Label slow, done;
bool try_lazy = true;
if (probe.is_constant()) {
try_lazy = probe.handle()->IsTheHole();
} else {
__ CompareRoot(probe.reg(), Heap::kTheHoleValueRootIndex);
probe.Unuse();
__ j(not_equal, &slow);
}
if (try_lazy) {
Label build_args;
// Get rid of the arguments object probe.
frame_->Drop(); // Can be called on a spilled frame.
// Stack now has 3 elements on it.
// Contents of stack at this point:
// rsp[0]: receiver
// rsp[1]: applicand.apply
// rsp[2]: applicand.
// Check that the receiver really is a JavaScript object.
__ movq(rax, Operand(rsp, 0));
Condition is_smi = masm_->CheckSmi(rax);
__ j(is_smi, &build_args);
// We allow all JSObjects including JSFunctions. As long as
// JS_FUNCTION_TYPE is the last instance type and it is right
// after LAST_JS_OBJECT_TYPE, we do not have to check the upper
// bound.
ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
__ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx);
__ j(below, &build_args);
// Check that applicand.apply is Function.prototype.apply.
__ movq(rax, Operand(rsp, kPointerSize));
is_smi = masm_->CheckSmi(rax);
__ j(is_smi, &build_args);
__ CmpObjectType(rax, JS_FUNCTION_TYPE, rcx);
__ j(not_equal, &build_args);
__ movq(rax, FieldOperand(rax, JSFunction::kSharedFunctionInfoOffset));
Handle<Code> apply_code(Builtins::builtin(Builtins::FunctionApply));
__ Cmp(FieldOperand(rax, SharedFunctionInfo::kCodeOffset), apply_code);
__ j(not_equal, &build_args);
// Check that applicand is a function.
__ movq(rdi, Operand(rsp, 2 * kPointerSize));
is_smi = masm_->CheckSmi(rdi);
__ j(is_smi, &build_args);
__ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
__ j(not_equal, &build_args);
// Copy the arguments to this function possibly from the
// adaptor frame below it.
Label invoke, adapted;
__ movq(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
__ SmiCompare(Operand(rdx, StandardFrameConstants::kContextOffset),
Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
__ j(equal, &adapted);
// No arguments adaptor frame. Copy fixed number of arguments.
__ movq(rax, Immediate(scope()->num_parameters()));
for (int i = 0; i < scope()->num_parameters(); i++) {
__ push(frame_->ParameterAt(i));
}
__ jmp(&invoke);
// Arguments adaptor frame present. Copy arguments from there, but
// avoid copying too many arguments to avoid stack overflows.
__ bind(&adapted);
static const uint32_t kArgumentsLimit = 1 * KB;
__ movq(rax, Operand(rdx, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ SmiToInteger32(rax, rax);
__ movq(rcx, rax);
__ cmpq(rax, Immediate(kArgumentsLimit));
__ j(above, &build_args);
// Loop through the arguments pushing them onto the execution
// stack. We don't inform the virtual frame of the push, so we don't
// have to worry about getting rid of the elements from the virtual
// frame.
Label loop;
// rcx is a small non-negative integer, due to the test above.
__ testl(rcx, rcx);
__ j(zero, &invoke);
__ bind(&loop);
__ push(Operand(rdx, rcx, times_pointer_size, 1 * kPointerSize));
__ decl(rcx);
__ j(not_zero, &loop);
// Invoke the function.
__ bind(&invoke);
ParameterCount actual(rax);
__ InvokeFunction(rdi, actual, CALL_FUNCTION);
// Drop applicand.apply and applicand from the stack, and push
// the result of the function call, but leave the spilled frame
// unchanged, with 3 elements, so it is correct when we compile the
// slow-case code.
__ addq(rsp, Immediate(2 * kPointerSize));
__ push(rax);
// Stack now has 1 element:
// rsp[0]: result
__ jmp(&done);
// Slow-case: Allocate the arguments object since we know it isn't
// there, and fall-through to the slow-case where we call
// applicand.apply.
__ bind(&build_args);
// Stack now has 3 elements, because we have jumped from where:
// rsp[0]: receiver
// rsp[1]: applicand.apply
// rsp[2]: applicand.
// StoreArgumentsObject requires a correct frame, and may modify it.
Result arguments_object = StoreArgumentsObject(false);
frame_->SpillAll();
arguments_object.ToRegister();
frame_->EmitPush(arguments_object.reg());
arguments_object.Unuse();
// Stack and frame now have 4 elements.
__ bind(&slow);
}
// Generic computation of x.apply(y, args) with no special optimization.
// Flip applicand.apply and applicand on the stack, so
// applicand looks like the receiver of the applicand.apply call.
// Then process it as a normal function call.
__ movq(rax, Operand(rsp, 3 * kPointerSize));
__ movq(rbx, Operand(rsp, 2 * kPointerSize));
__ movq(Operand(rsp, 2 * kPointerSize), rax);
__ movq(Operand(rsp, 3 * kPointerSize), rbx);
CallFunctionStub call_function(2, NOT_IN_LOOP, NO_CALL_FUNCTION_FLAGS);
Result res = frame_->CallStub(&call_function, 3);
// The function and its two arguments have been dropped.
frame_->Drop(1); // Drop the receiver as well.
res.ToRegister();
frame_->EmitPush(res.reg());
// Stack now has 1 element:
// rsp[0]: result
if (try_lazy) __ bind(&done);
} // End of spilled scope.
// Restore the context register after a call.
frame_->RestoreContextRegister();
}
class DeferredStackCheck: public DeferredCode {
public:
DeferredStackCheck() {
set_comment("[ DeferredStackCheck");
}
virtual void Generate();
};
void DeferredStackCheck::Generate() {
StackCheckStub stub;
__ CallStub(&stub);
}
void CodeGenerator::CheckStack() {
DeferredStackCheck* deferred = new DeferredStackCheck;
__ CompareRoot(rsp, Heap::kStackLimitRootIndex);
deferred->Branch(below);
deferred->BindExit();
}
void CodeGenerator::VisitAndSpill(Statement* statement) {
// TODO(X64): No architecture specific code. Move to shared location.
ASSERT(in_spilled_code());
set_in_spilled_code(false);
Visit(statement);
if (frame_ != NULL) {
frame_->SpillAll();
}
set_in_spilled_code(true);
}
void CodeGenerator::VisitStatementsAndSpill(ZoneList<Statement*>* statements) {
ASSERT(in_spilled_code());
set_in_spilled_code(false);
VisitStatements(statements);
if (frame_ != NULL) {
frame_->SpillAll();
}
set_in_spilled_code(true);
}
void CodeGenerator::VisitStatements(ZoneList<Statement*>* statements) {
ASSERT(!in_spilled_code());
for (int i = 0; has_valid_frame() && i < statements->length(); i++) {
Visit(statements->at(i));
}
}
void CodeGenerator::VisitBlock(Block* node) {
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "[ Block");
CodeForStatementPosition(node);
node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
VisitStatements(node->statements());
if (node->break_target()->is_linked()) {
node->break_target()->Bind();
}
node->break_target()->Unuse();
}
void CodeGenerator::VisitDeclaration(Declaration* node) {
Comment cmnt(masm_, "[ Declaration");
Variable* var = node->proxy()->var();
ASSERT(var != NULL); // must have been resolved
Slot* slot = var->slot();
// If it was not possible to allocate the variable at compile time,
// we need to "declare" it at runtime to make sure it actually
// exists in the local context.
if (slot != NULL && slot->type() == Slot::LOOKUP) {
// Variables with a "LOOKUP" slot were introduced as non-locals
// during variable resolution and must have mode DYNAMIC.
ASSERT(var->is_dynamic());
// For now, just do a runtime call. Sync the virtual frame eagerly
// so we can simply push the arguments into place.
frame_->SyncRange(0, frame_->element_count() - 1);
frame_->EmitPush(rsi);
__ movq(kScratchRegister, var->name(), RelocInfo::EMBEDDED_OBJECT);
frame_->EmitPush(kScratchRegister);
// Declaration nodes are always introduced in one of two modes.
ASSERT(node->mode() == Variable::VAR || node->mode() == Variable::CONST);
PropertyAttributes attr = node->mode() == Variable::VAR ? NONE : READ_ONLY;
frame_->EmitPush(Smi::FromInt(attr));
// Push initial value, if any.
// Note: For variables we must not push an initial value (such as
// 'undefined') because we may have a (legal) redeclaration and we
// must not destroy the current value.
if (node->mode() == Variable::CONST) {
frame_->EmitPush(Heap::kTheHoleValueRootIndex);
} else if (node->fun() != NULL) {
Load(node->fun());
} else {
frame_->EmitPush(Smi::FromInt(0)); // no initial value!
}
Result ignored = frame_->CallRuntime(Runtime::kDeclareContextSlot, 4);
// Ignore the return value (declarations are statements).
return;
}
ASSERT(!var->is_global());
// If we have a function or a constant, we need to initialize the variable.
Expression* val = NULL;
if (node->mode() == Variable::CONST) {
val = new Literal(Factory::the_hole_value());
} else {
val = node->fun(); // NULL if we don't have a function
}
if (val != NULL) {
{
// Set the initial value.
Reference target(this, node->proxy());
Load(val);
target.SetValue(NOT_CONST_INIT);
// The reference is removed from the stack (preserving TOS) when
// it goes out of scope.
}
// Get rid of the assigned value (declarations are statements).
frame_->Drop();
}
}
void CodeGenerator::VisitExpressionStatement(ExpressionStatement* node) {
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "[ ExpressionStatement");
CodeForStatementPosition(node);
Expression* expression = node->expression();
expression->MarkAsStatement();
Load(expression);
// Remove the lingering expression result from the top of stack.
frame_->Drop();
}
void CodeGenerator::VisitEmptyStatement(EmptyStatement* node) {
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "// EmptyStatement");
CodeForStatementPosition(node);
// nothing to do
}
void CodeGenerator::VisitIfStatement(IfStatement* node) {
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "[ IfStatement");
// Generate different code depending on which parts of the if statement
// are present or not.
bool has_then_stm = node->HasThenStatement();
bool has_else_stm = node->HasElseStatement();
CodeForStatementPosition(node);
JumpTarget exit;
if (has_then_stm && has_else_stm) {
JumpTarget then;
JumpTarget else_;
ControlDestination dest(&then, &else_, true);
LoadCondition(node->condition(), &dest, true);
if (dest.false_was_fall_through()) {
// The else target was bound, so we compile the else part first.
Visit(node->else_statement());
// We may have dangling jumps to the then part.
if (then.is_linked()) {
if (has_valid_frame()) exit.Jump();
then.Bind();
Visit(node->then_statement());
}
} else {
// The then target was bound, so we compile the then part first.
Visit(node->then_statement());
if (else_.is_linked()) {
if (has_valid_frame()) exit.Jump();
else_.Bind();
Visit(node->else_statement());
}
}
} else if (has_then_stm) {
ASSERT(!has_else_stm);
JumpTarget then;
ControlDestination dest(&then, &exit, true);
LoadCondition(node->condition(), &dest, true);
if (dest.false_was_fall_through()) {
// The exit label was bound. We may have dangling jumps to the
// then part.
if (then.is_linked()) {
exit.Unuse();
exit.Jump();
then.Bind();
Visit(node->then_statement());
}
} else {
// The then label was bound.
Visit(node->then_statement());
}
} else if (has_else_stm) {
ASSERT(!has_then_stm);
JumpTarget else_;
ControlDestination dest(&exit, &else_, false);
LoadCondition(node->condition(), &dest, true);
if (dest.true_was_fall_through()) {
// The exit label was bound. We may have dangling jumps to the
// else part.
if (else_.is_linked()) {
exit.Unuse();
exit.Jump();
else_.Bind();
Visit(node->else_statement());
}
} else {
// The else label was bound.
Visit(node->else_statement());
}
} else {
ASSERT(!has_then_stm && !has_else_stm);
// We only care about the condition's side effects (not its value
// or control flow effect). LoadCondition is called without
// forcing control flow.
ControlDestination dest(&exit, &exit, true);
LoadCondition(node->condition(), &dest, false);
if (!dest.is_used()) {
// We got a value on the frame rather than (or in addition to)
// control flow.
frame_->Drop();
}
}
if (exit.is_linked()) {
exit.Bind();
}
}
void CodeGenerator::VisitContinueStatement(ContinueStatement* node) {
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "[ ContinueStatement");
CodeForStatementPosition(node);
node->target()->continue_target()->Jump();
}
void CodeGenerator::VisitBreakStatement(BreakStatement* node) {
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "[ BreakStatement");
CodeForStatementPosition(node);
node->target()->break_target()->Jump();
}
void CodeGenerator::VisitReturnStatement(ReturnStatement* node) {
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "[ ReturnStatement");
CodeForStatementPosition(node);
Load(node->expression());
Result return_value = frame_->Pop();
if (function_return_is_shadowed_) {
function_return_.Jump(&return_value);
} else {
frame_->PrepareForReturn();
if (function_return_.is_bound()) {
// If the function return label is already bound we reuse the
// code by jumping to the return site.
function_return_.Jump(&return_value);
} else {
function_return_.Bind(&return_value);
GenerateReturnSequence(&return_value);
}
}
}
void CodeGenerator::VisitWithEnterStatement(WithEnterStatement* node) {
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "[ WithEnterStatement");
CodeForStatementPosition(node);
Load(node->expression());
Result context;
if (node->is_catch_block()) {
context = frame_->CallRuntime(Runtime::kPushCatchContext, 1);
} else {
context = frame_->CallRuntime(Runtime::kPushContext, 1);
}
// Update context local.
frame_->SaveContextRegister();
// Verify that the runtime call result and rsi agree.
if (FLAG_debug_code) {
__ cmpq(context.reg(), rsi);
__ Assert(equal, "Runtime::NewContext should end up in rsi");
}
}
void CodeGenerator::VisitWithExitStatement(WithExitStatement* node) {
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "[ WithExitStatement");
CodeForStatementPosition(node);
// Pop context.
__ movq(rsi, ContextOperand(rsi, Context::PREVIOUS_INDEX));
// Update context local.
frame_->SaveContextRegister();
}
void CodeGenerator::VisitSwitchStatement(SwitchStatement* node) {
// TODO(X64): This code is completely generic and should be moved somewhere
// where it can be shared between architectures.
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "[ SwitchStatement");
CodeForStatementPosition(node);
node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
// Compile the switch value.
Load(node->tag());
ZoneList<CaseClause*>* cases = node->cases();
int length = cases->length();
CaseClause* default_clause = NULL;
JumpTarget next_test;
// Compile the case label expressions and comparisons. Exit early
// if a comparison is unconditionally true. The target next_test is
// bound before the loop in order to indicate control flow to the
// first comparison.
next_test.Bind();
for (int i = 0; i < length && !next_test.is_unused(); i++) {
CaseClause* clause = cases->at(i);
// The default is not a test, but remember it for later.
if (clause->is_default()) {
default_clause = clause;
continue;
}
Comment cmnt(masm_, "[ Case comparison");
// We recycle the same target next_test for each test. Bind it if
// the previous test has not done so and then unuse it for the
// loop.
if (next_test.is_linked()) {
next_test.Bind();
}
next_test.Unuse();
// Duplicate the switch value.
frame_->Dup();
// Compile the label expression.
Load(clause->label());
// Compare and branch to the body if true or the next test if
// false. Prefer the next test as a fall through.
ControlDestination dest(clause->body_target(), &next_test, false);
Comparison(node, equal, true, &dest);
// If the comparison fell through to the true target, jump to the
// actual body.
if (dest.true_was_fall_through()) {
clause->body_target()->Unuse();
clause->body_target()->Jump();
}
}
// If there was control flow to a next test from the last one
// compiled, compile a jump to the default or break target.
if (!next_test.is_unused()) {
if (next_test.is_linked()) {
next_test.Bind();
}
// Drop the switch value.
frame_->Drop();
if (default_clause != NULL) {
default_clause->body_target()->Jump();
} else {
node->break_target()->Jump();
}
}
// The last instruction emitted was a jump, either to the default
// clause or the break target, or else to a case body from the loop
// that compiles the tests.
ASSERT(!has_valid_frame());
// Compile case bodies as needed.
for (int i = 0; i < length; i++) {
CaseClause* clause = cases->at(i);
// There are two ways to reach the body: from the corresponding
// test or as the fall through of the previous body.
if (clause->body_target()->is_linked() || has_valid_frame()) {
if (clause->body_target()->is_linked()) {
if (has_valid_frame()) {
// If we have both a jump to the test and a fall through, put
// a jump on the fall through path to avoid the dropping of
// the switch value on the test path. The exception is the
// default which has already had the switch value dropped.
if (clause->is_default()) {
clause->body_target()->Bind();
} else {
JumpTarget body;
body.Jump();
clause->body_target()->Bind();
frame_->Drop();
body.Bind();
}
} else {
// No fall through to worry about.
clause->body_target()->Bind();
if (!clause->is_default()) {
frame_->Drop();
}
}
} else {
// Otherwise, we have only fall through.
ASSERT(has_valid_frame());
}
// We are now prepared to compile the body.
Comment cmnt(masm_, "[ Case body");
VisitStatements(clause->statements());
}
clause->body_target()->Unuse();
}
// We may not have a valid frame here so bind the break target only
// if needed.
if (node->break_target()->is_linked()) {
node->break_target()->Bind();
}
node->break_target()->Unuse();
}
void CodeGenerator::VisitDoWhileStatement(DoWhileStatement* node) {
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "[ DoWhileStatement");
CodeForStatementPosition(node);
node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
JumpTarget body(JumpTarget::BIDIRECTIONAL);
IncrementLoopNesting();
ConditionAnalysis info = AnalyzeCondition(node->cond());
// Label the top of the loop for the backward jump if necessary.
switch (info) {
case ALWAYS_TRUE:
// Use the continue target.
node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
node->continue_target()->Bind();
break;
case ALWAYS_FALSE:
// No need to label it.
node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
break;
case DONT_KNOW:
// Continue is the test, so use the backward body target.
node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
body.Bind();
break;
}
CheckStack(); // TODO(1222600): ignore if body contains calls.
Visit(node->body());
// Compile the test.
switch (info) {
case ALWAYS_TRUE:
// If control flow can fall off the end of the body, jump back
// to the top and bind the break target at the exit.
if (has_valid_frame()) {
node->continue_target()->Jump();
}
if (node->break_target()->is_linked()) {
node->break_target()->Bind();
}
break;
case ALWAYS_FALSE:
// We may have had continues or breaks in the body.
if (node->continue_target()->is_linked()) {
node->continue_target()->Bind();
}
if (node->break_target()->is_linked()) {
node->break_target()->Bind();
}
break;
case DONT_KNOW:
// We have to compile the test expression if it can be reached by
// control flow falling out of the body or via continue.
if (node->continue_target()->is_linked()) {
node->continue_target()->Bind();
}
if (has_valid_frame()) {
Comment cmnt(masm_, "[ DoWhileCondition");
CodeForDoWhileConditionPosition(node);
ControlDestination dest(&body, node->break_target(), false);
LoadCondition(node->cond(), &dest, true);
}
if (node->break_target()->is_linked()) {
node->break_target()->Bind();
}
break;
}
DecrementLoopNesting();
node->continue_target()->Unuse();
node->break_target()->Unuse();
}
void CodeGenerator::VisitWhileStatement(WhileStatement* node) {
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "[ WhileStatement");
CodeForStatementPosition(node);
// If the condition is always false and has no side effects, we do not
// need to compile anything.
ConditionAnalysis info = AnalyzeCondition(node->cond());
if (info == ALWAYS_FALSE) return;
// Do not duplicate conditions that may have function literal
// subexpressions. This can cause us to compile the function literal
// twice.
bool test_at_bottom = !node->may_have_function_literal();
node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
IncrementLoopNesting();
JumpTarget body;
if (test_at_bottom) {
body.set_direction(JumpTarget::BIDIRECTIONAL);
}
// Based on the condition analysis, compile the test as necessary.
switch (info) {
case ALWAYS_TRUE:
// We will not compile the test expression. Label the top of the
// loop with the continue target.
node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
node->continue_target()->Bind();
break;
case DONT_KNOW: {
if (test_at_bottom) {
// Continue is the test at the bottom, no need to label the test
// at the top. The body is a backward target.
node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
} else {
// Label the test at the top as the continue target. The body
// is a forward-only target.
node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
node->continue_target()->Bind();
}
// Compile the test with the body as the true target and preferred
// fall-through and with the break target as the false target.
ControlDestination dest(&body, node->break_target(), true);
LoadCondition(node->cond(), &dest, true);
if (dest.false_was_fall_through()) {
// If we got the break target as fall-through, the test may have
// been unconditionally false (if there are no jumps to the
// body).
if (!body.is_linked()) {
DecrementLoopNesting();
return;
}
// Otherwise, jump around the body on the fall through and then
// bind the body target.
node->break_target()->Unuse();
node->break_target()->Jump();
body.Bind();
}
break;
}
case ALWAYS_FALSE:
UNREACHABLE();
break;
}
CheckStack(); // TODO(1222600): ignore if body contains calls.
Visit(node->body());
// Based on the condition analysis, compile the backward jump as
// necessary.
switch (info) {
case ALWAYS_TRUE:
// The loop body has been labeled with the continue target.
if (has_valid_frame()) {
node->continue_target()->Jump();
}
break;
case DONT_KNOW:
if (test_at_bottom) {
// If we have chosen to recompile the test at the bottom,
// then it is the continue target.
if (node->continue_target()->is_linked()) {
node->continue_target()->Bind();
}
if (has_valid_frame()) {
// The break target is the fall-through (body is a backward
// jump from here and thus an invalid fall-through).
ControlDestination dest(&body, node->break_target(), false);
LoadCondition(node->cond(), &dest, true);
}
} else {
// If we have chosen not to recompile the test at the
// bottom, jump back to the one at the top.
if (has_valid_frame()) {
node->continue_target()->Jump();
}
}
break;
case ALWAYS_FALSE:
UNREACHABLE();
break;
}
// The break target may be already bound (by the condition), or there
// may not be a valid frame. Bind it only if needed.
if (node->break_target()->is_linked()) {
node->break_target()->Bind();
}
DecrementLoopNesting();
}
void CodeGenerator::VisitForStatement(ForStatement* node) {
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "[ ForStatement");
CodeForStatementPosition(node);
// Compile the init expression if present.
if (node->init() != NULL) {
Visit(node->init());
}
// If the condition is always false and has no side effects, we do not
// need to compile anything else.
ConditionAnalysis info = AnalyzeCondition(node->cond());
if (info == ALWAYS_FALSE) return;
// Do not duplicate conditions that may have function literal
// subexpressions. This can cause us to compile the function literal
// twice.
bool test_at_bottom = !node->may_have_function_literal();
node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
IncrementLoopNesting();
// Target for backward edge if no test at the bottom, otherwise
// unused.
JumpTarget loop(JumpTarget::BIDIRECTIONAL);
// Target for backward edge if there is a test at the bottom,
// otherwise used as target for test at the top.
JumpTarget body;
if (test_at_bottom) {
body.set_direction(JumpTarget::BIDIRECTIONAL);
}
// Based on the condition analysis, compile the test as necessary.
switch (info) {
case ALWAYS_TRUE:
// We will not compile the test expression. Label the top of the
// loop.
if (node->next() == NULL) {
// Use the continue target if there is no update expression.
node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
node->continue_target()->Bind();
} else {
// Otherwise use the backward loop target.
node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
loop.Bind();
}
break;
case DONT_KNOW: {
if (test_at_bottom) {
// Continue is either the update expression or the test at the
// bottom, no need to label the test at the top.
node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
} else if (node->next() == NULL) {
// We are not recompiling the test at the bottom and there is no
// update expression.
node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL);
node->continue_target()->Bind();
} else {
// We are not recompiling the test at the bottom and there is an
// update expression.
node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
loop.Bind();
}
// Compile the test with the body as the true target and preferred
// fall-through and with the break target as the false target.
ControlDestination dest(&body, node->break_target(), true);
LoadCondition(node->cond(), &dest, true);
if (dest.false_was_fall_through()) {
// If we got the break target as fall-through, the test may have
// been unconditionally false (if there are no jumps to the
// body).
if (!body.is_linked()) {
DecrementLoopNesting();
return;
}
// Otherwise, jump around the body on the fall through and then
// bind the body target.
node->break_target()->Unuse();
node->break_target()->Jump();
body.Bind();
}
break;
}
case ALWAYS_FALSE:
UNREACHABLE();
break;
}
CheckStack(); // TODO(1222600): ignore if body contains calls.
Visit(node->body());
// If there is an update expression, compile it if necessary.
if (node->next() != NULL) {
if (node->continue_target()->is_linked()) {
node->continue_target()->Bind();
}
// Control can reach the update by falling out of the body or by a
// continue.
if (has_valid_frame()) {
// Record the source position of the statement as this code which
// is after the code for the body actually belongs to the loop
// statement and not the body.
CodeForStatementPosition(node);
Visit(node->next());
}
}
// Based on the condition analysis, compile the backward jump as
// necessary.
switch (info) {
case ALWAYS_TRUE:
if (has_valid_frame()) {
if (node->next() == NULL) {
node->continue_target()->Jump();
} else {
loop.Jump();
}
}
break;
case DONT_KNOW:
if (test_at_bottom) {
if (node->continue_target()->is_linked()) {
// We can have dangling jumps to the continue target if there
// was no update expression.
node->continue_target()->Bind();
}
// Control can reach the test at the bottom by falling out of
// the body, by a continue in the body, or from the update
// expression.
if (has_valid_frame()) {
// The break target is the fall-through (body is a backward
// jump from here).
ControlDestination dest(&body, node->break_target(), false);
LoadCondition(node->cond(), &dest, true);
}
} else {
// Otherwise, jump back to the test at the top.
if (has_valid_frame()) {
if (node->next() == NULL) {
node->continue_target()->Jump();
} else {
loop.Jump();
}
}
}
break;
case ALWAYS_FALSE:
UNREACHABLE();
break;
}
// The break target may be already bound (by the condition), or there
// may not be a valid frame. Bind it only if needed.
if (node->break_target()->is_linked()) {
node->break_target()->Bind();
}
DecrementLoopNesting();
}
void CodeGenerator::VisitForInStatement(ForInStatement* node) {
ASSERT(!in_spilled_code());
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ ForInStatement");
CodeForStatementPosition(node);
JumpTarget primitive;
JumpTarget jsobject;
JumpTarget fixed_array;
JumpTarget entry(JumpTarget::BIDIRECTIONAL);
JumpTarget end_del_check;
JumpTarget exit;
// Get the object to enumerate over (converted to JSObject).
LoadAndSpill(node->enumerable());
// Both SpiderMonkey and kjs ignore null and undefined in contrast
// to the specification. 12.6.4 mandates a call to ToObject.
frame_->EmitPop(rax);
// rax: value to be iterated over
__ CompareRoot(rax, Heap::kUndefinedValueRootIndex);
exit.Branch(equal);
__ CompareRoot(rax, Heap::kNullValueRootIndex);
exit.Branch(equal);
// Stack layout in body:
// [iteration counter (smi)] <- slot 0
// [length of array] <- slot 1
// [FixedArray] <- slot 2
// [Map or 0] <- slot 3
// [Object] <- slot 4
// Check if enumerable is already a JSObject
// rax: value to be iterated over
Condition is_smi = masm_->CheckSmi(rax);
primitive.Branch(is_smi);
__ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx);
jsobject.Branch(above_equal);
primitive.Bind();
frame_->EmitPush(rax);
frame_->InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION, 1);
// function call returns the value in rax, which is where we want it below
jsobject.Bind();
// Get the set of properties (as a FixedArray or Map).
// rax: value to be iterated over
frame_->EmitPush(rax); // Push the object being iterated over.
// Check cache validity in generated code. This is a fast case for
// the JSObject::IsSimpleEnum cache validity checks. If we cannot
// guarantee cache validity, call the runtime system to check cache
// validity or get the property names in a fixed array.
JumpTarget call_runtime;
JumpTarget loop(JumpTarget::BIDIRECTIONAL);
JumpTarget check_prototype;
JumpTarget use_cache;
__ movq(rcx, rax);
loop.Bind();
// Check that there are no elements.
__ movq(rdx, FieldOperand(rcx, JSObject::kElementsOffset));
__ CompareRoot(rdx, Heap::kEmptyFixedArrayRootIndex);
call_runtime.Branch(not_equal);
// Check that instance descriptors are not empty so that we can
// check for an enum cache. Leave the map in ebx for the subsequent
// prototype load.
__ movq(rbx, FieldOperand(rcx, HeapObject::kMapOffset));
__ movq(rdx, FieldOperand(rbx, Map::kInstanceDescriptorsOffset));
__ CompareRoot(rdx, Heap::kEmptyDescriptorArrayRootIndex);
call_runtime.Branch(equal);
// Check that there in an enum cache in the non-empty instance
// descriptors. This is the case if the next enumeration index
// field does not contain a smi.
__ movq(rdx, FieldOperand(rdx, DescriptorArray::kEnumerationIndexOffset));
is_smi = masm_->CheckSmi(rdx);
call_runtime.Branch(is_smi);
// For all objects but the receiver, check that the cache is empty.
__ cmpq(rcx, rax);
check_prototype.Branch(equal);
__ movq(rdx, FieldOperand(rdx, DescriptorArray::kEnumCacheBridgeCacheOffset));
__ CompareRoot(rdx, Heap::kEmptyFixedArrayRootIndex);
call_runtime.Branch(not_equal);
check_prototype.Bind();
// Load the prototype from the map and loop if non-null.
__ movq(rcx, FieldOperand(rbx, Map::kPrototypeOffset));
__ CompareRoot(rcx, Heap::kNullValueRootIndex);
loop.Branch(not_equal);
// The enum cache is valid. Load the map of the object being
// iterated over and use the cache for the iteration.
__ movq(rax, FieldOperand(rax, HeapObject::kMapOffset));
use_cache.Jump();
call_runtime.Bind();
// Call the runtime to get the property names for the object.
frame_->EmitPush(rax); // push the Object (slot 4) for the runtime call
frame_->CallRuntime(Runtime::kGetPropertyNamesFast, 1);
// If we got a Map, we can do a fast modification check.
// Otherwise, we got a FixedArray, and we have to do a slow check.
// rax: map or fixed array (result from call to
// Runtime::kGetPropertyNamesFast)
__ movq(rdx, rax);
__ movq(rcx, FieldOperand(rdx, HeapObject::kMapOffset));
__ CompareRoot(rcx, Heap::kMetaMapRootIndex);
fixed_array.Branch(not_equal);
use_cache.Bind();
// Get enum cache
// rax: map (either the result from a call to
// Runtime::kGetPropertyNamesFast or has been fetched directly from
// the object)
__ movq(rcx, rax);
__ movq(rcx, FieldOperand(rcx, Map::kInstanceDescriptorsOffset));
// Get the bridge array held in the enumeration index field.
__ movq(rcx, FieldOperand(rcx, DescriptorArray::kEnumerationIndexOffset));
// Get the cache from the bridge array.
__ movq(rdx, FieldOperand(rcx, DescriptorArray::kEnumCacheBridgeCacheOffset));
frame_->EmitPush(rax); // <- slot 3
frame_->EmitPush(rdx); // <- slot 2
__ movl(rax, FieldOperand(rdx, FixedArray::kLengthOffset));
__ Integer32ToSmi(rax, rax);
frame_->EmitPush(rax); // <- slot 1
frame_->EmitPush(Smi::FromInt(0)); // <- slot 0
entry.Jump();
fixed_array.Bind();
// rax: fixed array (result from call to Runtime::kGetPropertyNamesFast)
frame_->EmitPush(Smi::FromInt(0)); // <- slot 3
frame_->EmitPush(rax); // <- slot 2
// Push the length of the array and the initial index onto the stack.
__ movl(rax, FieldOperand(rax, FixedArray::kLengthOffset));
__ Integer32ToSmi(rax, rax);
frame_->EmitPush(rax); // <- slot 1
frame_->EmitPush(Smi::FromInt(0)); // <- slot 0
// Condition.
entry.Bind();
// Grab the current frame's height for the break and continue
// targets only after all the state is pushed on the frame.
node->break_target()->set_direction(JumpTarget::FORWARD_ONLY);
node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY);
__ movq(rax, frame_->ElementAt(0)); // load the current count
__ SmiCompare(frame_->ElementAt(1), rax); // compare to the array length
node->break_target()->Branch(below_equal);
// Get the i'th entry of the array.
__ movq(rdx, frame_->ElementAt(2));
SmiIndex index = masm_->SmiToIndex(rbx, rax, kPointerSizeLog2);
__ movq(rbx,
FieldOperand(rdx, index.reg, index.scale, FixedArray::kHeaderSize));
// Get the expected map from the stack or a zero map in the
// permanent slow case rax: current iteration count rbx: i'th entry
// of the enum cache
__ movq(rdx, frame_->ElementAt(3));
// Check if the expected map still matches that of the enumerable.
// If not, we have to filter the key.
// rax: current iteration count
// rbx: i'th entry of the enum cache
// rdx: expected map value
__ movq(rcx, frame_->ElementAt(4));
__ movq(rcx, FieldOperand(rcx, HeapObject::kMapOffset));
__ cmpq(rcx, rdx);
end_del_check.Branch(equal);
// Convert the entry to a string (or null if it isn't a property anymore).
frame_->EmitPush(frame_->ElementAt(4)); // push enumerable
frame_->EmitPush(rbx); // push entry
frame_->InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION, 2);
__ movq(rbx, rax);
// If the property has been removed while iterating, we just skip it.
__ CompareRoot(rbx, Heap::kNullValueRootIndex);
node->continue_target()->Branch(equal);
end_del_check.Bind();
// Store the entry in the 'each' expression and take another spin in the
// loop. rdx: i'th entry of the enum cache (or string there of)
frame_->EmitPush(rbx);
{ Reference each(this, node->each());
// Loading a reference may leave the frame in an unspilled state.
frame_->SpillAll();
if (!each.is_illegal()) {
if (each.size() > 0) {
frame_->EmitPush(frame_->ElementAt(each.size()));
each.SetValue(NOT_CONST_INIT);
frame_->Drop(2); // Drop the original and the copy of the element.
} else {
// If the reference has size zero then we can use the value below
// the reference as if it were above the reference, instead of pushing
// a new copy of it above the reference.
each.SetValue(NOT_CONST_INIT);
frame_->Drop(); // Drop the original of the element.
}
}
}
// Unloading a reference may leave the frame in an unspilled state.
frame_->SpillAll();
// Body.
CheckStack(); // TODO(1222600): ignore if body contains calls.
VisitAndSpill(node->body());
// Next. Reestablish a spilled frame in case we are coming here via
// a continue in the body.
node->continue_target()->Bind();
frame_->SpillAll();
frame_->EmitPop(rax);
__ SmiAddConstant(rax, rax, Smi::FromInt(1));
frame_->EmitPush(rax);
entry.Jump();
// Cleanup. No need to spill because VirtualFrame::Drop is safe for
// any frame.
node->break_target()->Bind();
frame_->Drop(5);
// Exit.
exit.Bind();
node->continue_target()->Unuse();
node->break_target()->Unuse();
}
void CodeGenerator::VisitTryCatchStatement(TryCatchStatement* node) {
ASSERT(!in_spilled_code());
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ TryCatchStatement");
CodeForStatementPosition(node);
JumpTarget try_block;
JumpTarget exit;
try_block.Call();
// --- Catch block ---
frame_->EmitPush(rax);
// Store the caught exception in the catch variable.
Variable* catch_var = node->catch_var()->var();
ASSERT(catch_var != NULL && catch_var->slot() != NULL);
StoreToSlot(catch_var->slot(), NOT_CONST_INIT);
// Remove the exception from the stack.
frame_->Drop();
VisitStatementsAndSpill(node->catch_block()->statements());
if (has_valid_frame()) {
exit.Jump();
}
// --- Try block ---
try_block.Bind();
frame_->PushTryHandler(TRY_CATCH_HANDLER);
int handler_height = frame_->height();
// Shadow the jump targets for all escapes from the try block, including
// returns. During shadowing, the original target is hidden as the
// ShadowTarget and operations on the original actually affect the
// shadowing target.
//
// We should probably try to unify the escaping targets and the return
// target.
int nof_escapes = node->escaping_targets()->length();
List<ShadowTarget*> shadows(1 + nof_escapes);
// Add the shadow target for the function return.
static const int kReturnShadowIndex = 0;
shadows.Add(new ShadowTarget(&function_return_));
bool function_return_was_shadowed = function_return_is_shadowed_;
function_return_is_shadowed_ = true;
ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_);
// Add the remaining shadow targets.
for (int i = 0; i < nof_escapes; i++) {
shadows.Add(new ShadowTarget(node->escaping_targets()->at(i)));
}
// Generate code for the statements in the try block.
VisitStatementsAndSpill(node->try_block()->statements());
// Stop the introduced shadowing and count the number of required unlinks.
// After shadowing stops, the original targets are unshadowed and the
// ShadowTargets represent the formerly shadowing targets.
bool has_unlinks = false;
for (int i = 0; i < shadows.length(); i++) {
shadows[i]->StopShadowing();
has_unlinks = has_unlinks || shadows[i]->is_linked();
}
function_return_is_shadowed_ = function_return_was_shadowed;
// Get an external reference to the handler address.
ExternalReference handler_address(Top::k_handler_address);
// Make sure that there's nothing left on the stack above the
// handler structure.
if (FLAG_debug_code) {
__ movq(kScratchRegister, handler_address);
__ cmpq(rsp, Operand(kScratchRegister, 0));
__ Assert(equal, "stack pointer should point to top handler");
}
// If we can fall off the end of the try block, unlink from try chain.
if (has_valid_frame()) {
// The next handler address is on top of the frame. Unlink from
// the handler list and drop the rest of this handler from the
// frame.
ASSERT(StackHandlerConstants::kNextOffset == 0);
__ movq(kScratchRegister, handler_address);
frame_->EmitPop(Operand(kScratchRegister, 0));
frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
if (has_unlinks) {
exit.Jump();
}
}
// Generate unlink code for the (formerly) shadowing targets that
// have been jumped to. Deallocate each shadow target.
Result return_value;
for (int i = 0; i < shadows.length(); i++) {
if (shadows[i]->is_linked()) {
// Unlink from try chain; be careful not to destroy the TOS if
// there is one.
if (i == kReturnShadowIndex) {
shadows[i]->Bind(&return_value);
return_value.ToRegister(rax);
} else {
shadows[i]->Bind();
}
// Because we can be jumping here (to spilled code) from
// unspilled code, we need to reestablish a spilled frame at
// this block.
frame_->SpillAll();
// Reload sp from the top handler, because some statements that we
// break from (eg, for...in) may have left stuff on the stack.
__ movq(kScratchRegister, handler_address);
__ movq(rsp, Operand(kScratchRegister, 0));
frame_->Forget(frame_->height() - handler_height);
ASSERT(StackHandlerConstants::kNextOffset == 0);
__ movq(kScratchRegister, handler_address);
frame_->EmitPop(Operand(kScratchRegister, 0));
frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
if (i == kReturnShadowIndex) {
if (!function_return_is_shadowed_) frame_->PrepareForReturn();
shadows[i]->other_target()->Jump(&return_value);
} else {
shadows[i]->other_target()->Jump();
}
}
}
exit.Bind();
}
void CodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* node) {
ASSERT(!in_spilled_code());
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ TryFinallyStatement");
CodeForStatementPosition(node);
// State: Used to keep track of reason for entering the finally
// block. Should probably be extended to hold information for
// break/continue from within the try block.
enum { FALLING, THROWING, JUMPING };
JumpTarget try_block;
JumpTarget finally_block;
try_block.Call();
frame_->EmitPush(rax);
// In case of thrown exceptions, this is where we continue.
__ Move(rcx, Smi::FromInt(THROWING));
finally_block.Jump();
// --- Try block ---
try_block.Bind();
frame_->PushTryHandler(TRY_FINALLY_HANDLER);
int handler_height = frame_->height();
// Shadow the jump targets for all escapes from the try block, including
// returns. During shadowing, the original target is hidden as the
// ShadowTarget and operations on the original actually affect the
// shadowing target.
//
// We should probably try to unify the escaping targets and the return
// target.
int nof_escapes = node->escaping_targets()->length();
List<ShadowTarget*> shadows(1 + nof_escapes);
// Add the shadow target for the function return.
static const int kReturnShadowIndex = 0;
shadows.Add(new ShadowTarget(&function_return_));
bool function_return_was_shadowed = function_return_is_shadowed_;
function_return_is_shadowed_ = true;
ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_);
// Add the remaining shadow targets.
for (int i = 0; i < nof_escapes; i++) {
shadows.Add(new ShadowTarget(node->escaping_targets()->at(i)));
}
// Generate code for the statements in the try block.
VisitStatementsAndSpill(node->try_block()->statements());
// Stop the introduced shadowing and count the number of required unlinks.
// After shadowing stops, the original targets are unshadowed and the
// ShadowTargets represent the formerly shadowing targets.
int nof_unlinks = 0;
for (int i = 0; i < shadows.length(); i++) {
shadows[i]->StopShadowing();
if (shadows[i]->is_linked()) nof_unlinks++;
}
function_return_is_shadowed_ = function_return_was_shadowed;
// Get an external reference to the handler address.
ExternalReference handler_address(Top::k_handler_address);
// If we can fall off the end of the try block, unlink from the try
// chain and set the state on the frame to FALLING.
if (has_valid_frame()) {
// The next handler address is on top of the frame.
ASSERT(StackHandlerConstants::kNextOffset == 0);
__ movq(kScratchRegister, handler_address);
frame_->EmitPop(Operand(kScratchRegister, 0));
frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
// Fake a top of stack value (unneeded when FALLING) and set the
// state in ecx, then jump around the unlink blocks if any.
frame_->EmitPush(Heap::kUndefinedValueRootIndex);
__ Move(rcx, Smi::FromInt(FALLING));
if (nof_unlinks > 0) {
finally_block.Jump();
}
}
// Generate code to unlink and set the state for the (formerly)
// shadowing targets that have been jumped to.
for (int i = 0; i < shadows.length(); i++) {
if (shadows[i]->is_linked()) {
// If we have come from the shadowed return, the return value is
// on the virtual frame. We must preserve it until it is
// pushed.
if (i == kReturnShadowIndex) {
Result return_value;
shadows[i]->Bind(&return_value);
return_value.ToRegister(rax);
} else {
shadows[i]->Bind();
}
// Because we can be jumping here (to spilled code) from
// unspilled code, we need to reestablish a spilled frame at
// this block.
frame_->SpillAll();
// Reload sp from the top handler, because some statements that
// we break from (eg, for...in) may have left stuff on the
// stack.
__ movq(kScratchRegister, handler_address);
__ movq(rsp, Operand(kScratchRegister, 0));
frame_->Forget(frame_->height() - handler_height);
// Unlink this handler and drop it from the frame.
ASSERT(StackHandlerConstants::kNextOffset == 0);
__ movq(kScratchRegister, handler_address);
frame_->EmitPop(Operand(kScratchRegister, 0));
frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
if (i == kReturnShadowIndex) {
// If this target shadowed the function return, materialize
// the return value on the stack.
frame_->EmitPush(rax);
} else {
// Fake TOS for targets that shadowed breaks and continues.
frame_->EmitPush(Heap::kUndefinedValueRootIndex);
}
__ Move(rcx, Smi::FromInt(JUMPING + i));
if (--nof_unlinks > 0) {
// If this is not the last unlink block, jump around the next.
finally_block.Jump();
}
}
}
// --- Finally block ---
finally_block.Bind();
// Push the state on the stack.
frame_->EmitPush(rcx);
// We keep two elements on the stack - the (possibly faked) result
// and the state - while evaluating the finally block.
//
// Generate code for the statements in the finally block.
VisitStatementsAndSpill(node->finally_block()->statements());
if (has_valid_frame()) {
// Restore state and return value or faked TOS.
frame_->EmitPop(rcx);
frame_->EmitPop(rax);
}
// Generate code to jump to the right destination for all used
// formerly shadowing targets. Deallocate each shadow target.
for (int i = 0; i < shadows.length(); i++) {
if (has_valid_frame() && shadows[i]->is_bound()) {
BreakTarget* original = shadows[i]->other_target();
__ SmiCompare(rcx, Smi::FromInt(JUMPING + i));
if (i == kReturnShadowIndex) {
// The return value is (already) in rax.
Result return_value = allocator_->Allocate(rax);
ASSERT(return_value.is_valid());
if (function_return_is_shadowed_) {
original->Branch(equal, &return_value);
} else {
// Branch around the preparation for return which may emit
// code.
JumpTarget skip;
skip.Branch(not_equal);
frame_->PrepareForReturn();
original->Jump(&return_value);
skip.Bind();
}
} else {
original->Branch(equal);
}
}
}
if (has_valid_frame()) {
// Check if we need to rethrow the exception.
JumpTarget exit;
__ SmiCompare(rcx, Smi::FromInt(THROWING));
exit.Branch(not_equal);
// Rethrow exception.
frame_->EmitPush(rax); // undo pop from above
frame_->CallRuntime(Runtime::kReThrow, 1);
// Done.
exit.Bind();
}
}
void CodeGenerator::VisitDebuggerStatement(DebuggerStatement* node) {
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "[ DebuggerStatement");
CodeForStatementPosition(node);
#ifdef ENABLE_DEBUGGER_SUPPORT
// Spill everything, even constants, to the frame.
frame_->SpillAll();
frame_->DebugBreak();
// Ignore the return value.
#endif
}
void CodeGenerator::InstantiateBoilerplate(Handle<JSFunction> boilerplate) {
ASSERT(boilerplate->IsBoilerplate());
// The inevitable call will sync frame elements to memory anyway, so
// we do it eagerly to allow us to push the arguments directly into
// place.
frame_->SyncRange(0, frame_->element_count() - 1);
// Use the fast case closure allocation code that allocates in new
// space for nested functions that don't need literals cloning.
if (scope()->is_function_scope() && boilerplate->NumberOfLiterals() == 0) {
FastNewClosureStub stub;
frame_->Push(boilerplate);
Result answer = frame_->CallStub(&stub, 1);
frame_->Push(&answer);
} else {
// Call the runtime to instantiate the function boilerplate
// object.
frame_->EmitPush(rsi);
frame_->EmitPush(boilerplate);
Result result = frame_->CallRuntime(Runtime::kNewClosure, 2);
frame_->Push(&result);
}
}
void CodeGenerator::VisitFunctionLiteral(FunctionLiteral* node) {
Comment cmnt(masm_, "[ FunctionLiteral");
// Build the function boilerplate and instantiate it.
Handle<JSFunction> boilerplate =
Compiler::BuildBoilerplate(node, script(), this);
// Check for stack-overflow exception.
if (HasStackOverflow()) return;
InstantiateBoilerplate(boilerplate);
}
void CodeGenerator::VisitFunctionBoilerplateLiteral(
FunctionBoilerplateLiteral* node) {
Comment cmnt(masm_, "[ FunctionBoilerplateLiteral");
InstantiateBoilerplate(node->boilerplate());
}
void CodeGenerator::VisitConditional(Conditional* node) {
Comment cmnt(masm_, "[ Conditional");
JumpTarget then;
JumpTarget else_;
JumpTarget exit;
ControlDestination dest(&then, &else_, true);
LoadCondition(node->condition(), &dest, true);
if (dest.false_was_fall_through()) {
// The else target was bound, so we compile the else part first.
Load(node->else_expression());
if (then.is_linked()) {
exit.Jump();
then.Bind();
Load(node->then_expression());
}
} else {
// The then target was bound, so we compile the then part first.
Load(node->then_expression());
if (else_.is_linked()) {
exit.Jump();
else_.Bind();
Load(node->else_expression());
}
}
exit.Bind();
}
void CodeGenerator::VisitSlot(Slot* node) {
Comment cmnt(masm_, "[ Slot");
LoadFromSlotCheckForArguments(node, NOT_INSIDE_TYPEOF);
}
void CodeGenerator::VisitVariableProxy(VariableProxy* node) {
Comment cmnt(masm_, "[ VariableProxy");
Variable* var = node->var();
Expression* expr = var->rewrite();
if (expr != NULL) {
Visit(expr);
} else {
ASSERT(var->is_global());
Reference ref(this, node);
ref.GetValue();
}
}
void CodeGenerator::VisitLiteral(Literal* node) {
Comment cmnt(masm_, "[ Literal");
frame_->Push(node->handle());
}
// Materialize the regexp literal 'node' in the literals array
// 'literals' of the function. Leave the regexp boilerplate in
// 'boilerplate'.
class DeferredRegExpLiteral: public DeferredCode {
public:
DeferredRegExpLiteral(Register boilerplate,
Register literals,
RegExpLiteral* node)
: boilerplate_(boilerplate), literals_(literals), node_(node) {
set_comment("[ DeferredRegExpLiteral");
}
void Generate();
private:
Register boilerplate_;
Register literals_;
RegExpLiteral* node_;
};
void DeferredRegExpLiteral::Generate() {
// Since the entry is undefined we call the runtime system to
// compute the literal.
// Literal array (0).
__ push(literals_);
// Literal index (1).
__ Push(Smi::FromInt(node_->literal_index()));
// RegExp pattern (2).
__ Push(node_->pattern());
// RegExp flags (3).
__ Push(node_->flags());
__ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
if (!boilerplate_.is(rax)) __ movq(boilerplate_, rax);
}
void CodeGenerator::VisitRegExpLiteral(RegExpLiteral* node) {
Comment cmnt(masm_, "[ RegExp Literal");
// Retrieve the literals array and check the allocated entry. Begin
// with a writable copy of the function of this activation in a
// register.
frame_->PushFunction();
Result literals = frame_->Pop();
literals.ToRegister();
frame_->Spill(literals.reg());
// Load the literals array of the function.
__ movq(literals.reg(),
FieldOperand(literals.reg(), JSFunction::kLiteralsOffset));
// Load the literal at the ast saved index.
Result boilerplate = allocator_->Allocate();
ASSERT(boilerplate.is_valid());
int literal_offset =
FixedArray::kHeaderSize + node->literal_index() * kPointerSize;
__ movq(boilerplate.reg(), FieldOperand(literals.reg(), literal_offset));
// Check whether we need to materialize the RegExp object. If so,
// jump to the deferred code passing the literals array.
DeferredRegExpLiteral* deferred =
new DeferredRegExpLiteral(boilerplate.reg(), literals.reg(), node);
__ CompareRoot(boilerplate.reg(), Heap::kUndefinedValueRootIndex);
deferred->Branch(equal);
deferred->BindExit();
literals.Unuse();
// Push the boilerplate object.
frame_->Push(&boilerplate);
}
void CodeGenerator::VisitObjectLiteral(ObjectLiteral* node) {
Comment cmnt(masm_, "[ ObjectLiteral");
// Load a writable copy of the function of this activation in a
// register.
frame_->PushFunction();
Result literals = frame_->Pop();
literals.ToRegister();
frame_->Spill(literals.reg());
// Load the literals array of the function.
__ movq(literals.reg(),
FieldOperand(literals.reg(), JSFunction::kLiteralsOffset));
// Literal array.
frame_->Push(&literals);
// Literal index.
frame_->Push(Smi::FromInt(node->literal_index()));
// Constant properties.
frame_->Push(node->constant_properties());
Result clone;
if (node->depth() > 1) {
clone = frame_->CallRuntime(Runtime::kCreateObjectLiteral, 3);
} else {
clone = frame_->CallRuntime(Runtime::kCreateObjectLiteralShallow, 3);
}
frame_->Push(&clone);
for (int i = 0; i < node->properties()->length(); i++) {
ObjectLiteral::Property* property = node->properties()->at(i);
switch (property->kind()) {
case ObjectLiteral::Property::CONSTANT:
break;
case ObjectLiteral::Property::MATERIALIZED_LITERAL:
if (CompileTimeValue::IsCompileTimeValue(property->value())) break;
// else fall through.
case ObjectLiteral::Property::COMPUTED: {
Handle<Object> key(property->key()->handle());
if (key->IsSymbol()) {
// Duplicate the object as the IC receiver.
frame_->Dup();
Load(property->value());
frame_->Push(key);
Result ignored = frame_->CallStoreIC();
break;
}
// Fall through
}
case ObjectLiteral::Property::PROTOTYPE: {
// Duplicate the object as an argument to the runtime call.
frame_->Dup();
Load(property->key());
Load(property->value());
Result ignored = frame_->CallRuntime(Runtime::kSetProperty, 3);
// Ignore the result.
break;
}
case ObjectLiteral::Property::SETTER: {
// Duplicate the object as an argument to the runtime call.
frame_->Dup();
Load(property->key());
frame_->Push(Smi::FromInt(1));
Load(property->value());
Result ignored = frame_->CallRuntime(Runtime::kDefineAccessor, 4);
// Ignore the result.
break;
}
case ObjectLiteral::Property::GETTER: {
// Duplicate the object as an argument to the runtime call.
frame_->Dup();
Load(property->key());
frame_->Push(Smi::FromInt(0));
Load(property->value());
Result ignored = frame_->CallRuntime(Runtime::kDefineAccessor, 4);
// Ignore the result.
break;
}
default: UNREACHABLE();
}
}
}
void CodeGenerator::VisitArrayLiteral(ArrayLiteral* node) {
Comment cmnt(masm_, "[ ArrayLiteral");
// Load a writable copy of the function of this activation in a
// register.
frame_->PushFunction();
Result literals = frame_->Pop();
literals.ToRegister();
frame_->Spill(literals.reg());
// Load the literals array of the function.
__ movq(literals.reg(),
FieldOperand(literals.reg(), JSFunction::kLiteralsOffset));
frame_->Push(&literals);
frame_->Push(Smi::FromInt(node->literal_index()));
frame_->Push(node->constant_elements());
int length = node->values()->length();
Result clone;
if (node->depth() > 1) {
clone = frame_->CallRuntime(Runtime::kCreateArrayLiteral, 3);
} else if (length > FastCloneShallowArrayStub::kMaximumLength) {
clone = frame_->CallRuntime(Runtime::kCreateArrayLiteralShallow, 3);
} else {
FastCloneShallowArrayStub stub(length);
clone = frame_->CallStub(&stub, 3);
}
frame_->Push(&clone);
// Generate code to set the elements in the array that are not
// literals.
for (int i = 0; i < node->values()->length(); i++) {
Expression* value = node->values()->at(i);
// If value is a literal the property value is already set in the
// boilerplate object.
if (value->AsLiteral() != NULL) continue;
// If value is a materialized literal the property value is already set
// in the boilerplate object if it is simple.
if (CompileTimeValue::IsCompileTimeValue(value)) continue;
// The property must be set by generated code.
Load(value);
// Get the property value off the stack.
Result prop_value = frame_->Pop();
prop_value.ToRegister();
// Fetch the array literal while leaving a copy on the stack and
// use it to get the elements array.
frame_->Dup();
Result elements = frame_->Pop();
elements.ToRegister();
frame_->Spill(elements.reg());
// Get the elements FixedArray.
__ movq(elements.reg(),
FieldOperand(elements.reg(), JSObject::kElementsOffset));
// Write to the indexed properties array.
int offset = i * kPointerSize + FixedArray::kHeaderSize;
__ movq(FieldOperand(elements.reg(), offset), prop_value.reg());
// Update the write barrier for the array address.
frame_->Spill(prop_value.reg()); // Overwritten by the write barrier.
Result scratch = allocator_->Allocate();
ASSERT(scratch.is_valid());
__ RecordWrite(elements.reg(), offset, prop_value.reg(), scratch.reg());
}
}
void CodeGenerator::VisitCatchExtensionObject(CatchExtensionObject* node) {
ASSERT(!in_spilled_code());
// Call runtime routine to allocate the catch extension object and
// assign the exception value to the catch variable.
Comment cmnt(masm_, "[ CatchExtensionObject");
Load(node->key());
Load(node->value());
Result result =
frame_->CallRuntime(Runtime::kCreateCatchExtensionObject, 2);
frame_->Push(&result);
}
void CodeGenerator::VisitAssignment(Assignment* node) {
Comment cmnt(masm_, "[ Assignment");
{ Reference target(this, node->target(), node->is_compound());
if (target.is_illegal()) {
// Fool the virtual frame into thinking that we left the assignment's
// value on the frame.
frame_->Push(Smi::FromInt(0));
return;
}
Variable* var = node->target()->AsVariableProxy()->AsVariable();
if (node->starts_initialization_block()) {
ASSERT(target.type() == Reference::NAMED ||
target.type() == Reference::KEYED);
// Change to slow case in the beginning of an initialization
// block to avoid the quadratic behavior of repeatedly adding
// fast properties.
// The receiver is the argument to the runtime call. It is the
// first value pushed when the reference was loaded to the
// frame.
frame_->PushElementAt(target.size() - 1);
Result ignored = frame_->CallRuntime(Runtime::kToSlowProperties, 1);
}
if (node->ends_initialization_block()) {
// Add an extra copy of the receiver to the frame, so that it can be
// converted back to fast case after the assignment.
ASSERT(target.type() == Reference::NAMED ||
target.type() == Reference::KEYED);
if (target.type() == Reference::NAMED) {
frame_->Dup();
// Dup target receiver on stack.
} else {
ASSERT(target.type() == Reference::KEYED);
Result temp = frame_->Pop();
frame_->Dup();
frame_->Push(&temp);
}
}
if (node->op() == Token::ASSIGN ||
node->op() == Token::INIT_VAR ||
node->op() == Token::INIT_CONST) {
Load(node->value());
} else { // Assignment is a compound assignment.
Literal* literal = node->value()->AsLiteral();
bool overwrite_value =
(node->value()->AsBinaryOperation() != NULL &&
node->value()->AsBinaryOperation()->ResultOverwriteAllowed());
Variable* right_var = node->value()->AsVariableProxy()->AsVariable();
// There are two cases where the target is not read in the right hand
// side, that are easy to test for: the right hand side is a literal,
// or the right hand side is a different variable. TakeValue invalidates
// the target, with an implicit promise that it will be written to again
// before it is read.
if (literal != NULL || (right_var != NULL && right_var != var)) {
target.TakeValue();
} else {
target.GetValue();
}
Load(node->value());
GenericBinaryOperation(node->binary_op(),
node->type(),
overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE);
}
if (var != NULL &&
var->mode() == Variable::CONST &&
node->op() != Token::INIT_VAR && node->op() != Token::INIT_CONST) {
// Assignment ignored - leave the value on the stack.
UnloadReference(&target);
} else {
CodeForSourcePosition(node->position());
if (node->op() == Token::INIT_CONST) {
// Dynamic constant initializations must use the function context
// and initialize the actual constant declared. Dynamic variable
// initializations are simply assignments and use SetValue.
target.SetValue(CONST_INIT);
} else {
target.SetValue(NOT_CONST_INIT);
}
if (node->ends_initialization_block()) {
ASSERT(target.type() == Reference::UNLOADED);
// End of initialization block. Revert to fast case. The
// argument to the runtime call is the extra copy of the receiver,
// which is below the value of the assignment.
// Swap the receiver and the value of the assignment expression.
Result lhs = frame_->Pop();
Result receiver = frame_->Pop();
frame_->Push(&lhs);
frame_->Push(&receiver);
Result ignored = frame_->CallRuntime(Runtime::kToFastProperties, 1);
}
}
}
}
void CodeGenerator::VisitThrow(Throw* node) {
Comment cmnt(masm_, "[ Throw");
Load(node->exception());
Result result = frame_->CallRuntime(Runtime::kThrow, 1);
frame_->Push(&result);
}
void CodeGenerator::VisitProperty(Property* node) {
Comment cmnt(masm_, "[ Property");
Reference property(this, node);
property.GetValue();
}
void CodeGenerator::VisitCall(Call* node) {
Comment cmnt(masm_, "[ Call");
ZoneList<Expression*>* args = node->arguments();
// Check if the function is a variable or a property.
Expression* function = node->expression();
Variable* var = function->AsVariableProxy()->AsVariable();
Property* property = function->AsProperty();
// ------------------------------------------------------------------------
// Fast-case: Use inline caching.
// ---
// According to ECMA-262, section 11.2.3, page 44, the function to call
// must be resolved after the arguments have been evaluated. The IC code
// automatically handles this by loading the arguments before the function
// is resolved in cache misses (this also holds for megamorphic calls).
// ------------------------------------------------------------------------
if (var != NULL && var->is_possibly_eval()) {
// ----------------------------------
// JavaScript example: 'eval(arg)' // eval is not known to be shadowed
// ----------------------------------
// In a call to eval, we first call %ResolvePossiblyDirectEval to
// resolve the function we need to call and the receiver of the
// call. Then we call the resolved function using the given
// arguments.
// Prepare the stack for the call to the resolved function.
Load(function);
// Allocate a frame slot for the receiver.
frame_->Push(Factory::undefined_value());
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
Load(args->at(i));
}
// Prepare the stack for the call to ResolvePossiblyDirectEval.
frame_->PushElementAt(arg_count + 1);
if (arg_count > 0) {
frame_->PushElementAt(arg_count);
} else {
frame_->Push(Factory::undefined_value());
}
// Push the receiver.
frame_->PushParameterAt(-1);
// Resolve the call.
Result result =
frame_->CallRuntime(Runtime::kResolvePossiblyDirectEval, 3);
// The runtime call returns a pair of values in rax (function) and
// rdx (receiver). Touch up the stack with the right values.
Result receiver = allocator_->Allocate(rdx);
frame_->SetElementAt(arg_count + 1, &result);
frame_->SetElementAt(arg_count, &receiver);
receiver.Unuse();
// Call the function.
CodeForSourcePosition(node->position());
InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP;
CallFunctionStub call_function(arg_count, in_loop, RECEIVER_MIGHT_BE_VALUE);
result = frame_->CallStub(&call_function, arg_count + 1);
// Restore the context and overwrite the function on the stack with
// the result.
frame_->RestoreContextRegister();
frame_->SetElementAt(0, &result);
} else if (var != NULL && !var->is_this() && var->is_global()) {
// ----------------------------------
// JavaScript example: 'foo(1, 2, 3)' // foo is global
// ----------------------------------
// Pass the global object as the receiver and let the IC stub
// patch the stack to use the global proxy as 'this' in the
// invoked function.
LoadGlobal();
// Load the arguments.
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
Load(args->at(i));
}
// Push the name of the function on the frame.
frame_->Push(var->name());
// Call the IC initialization code.
CodeForSourcePosition(node->position());
Result result = frame_->CallCallIC(RelocInfo::CODE_TARGET_CONTEXT,
arg_count,
loop_nesting());
frame_->RestoreContextRegister();
// Replace the function on the stack with the result.
frame_->Push(&result);
} else if (var != NULL && var->slot() != NULL &&
var->slot()->type() == Slot::LOOKUP) {
// ----------------------------------
// JavaScript example: 'with (obj) foo(1, 2, 3)' // foo is in obj
// ----------------------------------
// Load the function from the context. Sync the frame so we can
// push the arguments directly into place.
frame_->SyncRange(0, frame_->element_count() - 1);
frame_->EmitPush(rsi);
frame_->EmitPush(var->name());
frame_->CallRuntime(Runtime::kLoadContextSlot, 2);
// The runtime call returns a pair of values in rax and rdx. The
// looked-up function is in rax and the receiver is in rdx. These
// register references are not ref counted here. We spill them
// eagerly since they are arguments to an inevitable call (and are
// not sharable by the arguments).
ASSERT(!allocator()->is_used(rax));
frame_->EmitPush(rax);
// Load the receiver.
ASSERT(!allocator()->is_used(rdx));
frame_->EmitPush(rdx);
// Call the function.
CallWithArguments(args, NO_CALL_FUNCTION_FLAGS, node->position());
} else if (property != NULL) {
// Check if the key is a literal string.
Literal* literal = property->key()->AsLiteral();
if (literal != NULL && literal->handle()->IsSymbol()) {
// ------------------------------------------------------------------
// JavaScript example: 'object.foo(1, 2, 3)' or 'map["key"](1, 2, 3)'
// ------------------------------------------------------------------
Handle<String> name = Handle<String>::cast(literal->handle());
if (ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION &&
name->IsEqualTo(CStrVector("apply")) &&
args->length() == 2 &&
args->at(1)->AsVariableProxy() != NULL &&
args->at(1)->AsVariableProxy()->IsArguments()) {
// Use the optimized Function.prototype.apply that avoids
// allocating lazily allocated arguments objects.
CallApplyLazy(property->obj(),
args->at(0),
args->at(1)->AsVariableProxy(),
node->position());
} else {
// Push the receiver onto the frame.
Load(property->obj());
// Load the arguments.
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
Load(args->at(i));
}
// Push the name of the function onto the frame.
frame_->Push(name);
// Call the IC initialization code.
CodeForSourcePosition(node->position());
Result result = frame_->CallCallIC(RelocInfo::CODE_TARGET,
arg_count,
loop_nesting());
frame_->RestoreContextRegister();
frame_->Push(&result);
}
} else {
// -------------------------------------------
// JavaScript example: 'array[index](1, 2, 3)'
// -------------------------------------------
// Load the function to call from the property through a reference.
if (property->is_synthetic()) {
Reference ref(this, property, false);
ref.GetValue();
// Use global object as receiver.
LoadGlobalReceiver();
} else {
Reference ref(this, property, false);
ASSERT(ref.size() == 2);
Result key = frame_->Pop();
frame_->Dup(); // Duplicate the receiver.
frame_->Push(&key);
ref.GetValue();
// Top of frame contains function to call, with duplicate copy of
// receiver below it. Swap them.
Result function = frame_->Pop();
Result receiver = frame_->Pop();
frame_->Push(&function);
frame_->Push(&receiver);
}
// Call the function.
CallWithArguments(args, RECEIVER_MIGHT_BE_VALUE, node->position());
}
} else {
// ----------------------------------
// JavaScript example: 'foo(1, 2, 3)' // foo is not global
// ----------------------------------
// Load the function.
Load(function);
// Pass the global proxy as the receiver.
LoadGlobalReceiver();
// Call the function.
CallWithArguments(args, NO_CALL_FUNCTION_FLAGS, node->position());
}
}
void CodeGenerator::VisitCallNew(CallNew* node) {
Comment cmnt(masm_, "[ CallNew");
// According to ECMA-262, section 11.2.2, page 44, the function
// expression in new calls must be evaluated before the
// arguments. This is different from ordinary calls, where the
// actual function to call is resolved after the arguments have been
// evaluated.
// Compute function to call and use the global object as the
// receiver. There is no need to use the global proxy here because
// it will always be replaced with a newly allocated object.
Load(node->expression());
LoadGlobal();
// Push the arguments ("left-to-right") on the stack.
ZoneList<Expression*>* args = node->arguments();
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
Load(args->at(i));
}
// Call the construct call builtin that handles allocation and
// constructor invocation.
CodeForSourcePosition(node->position());
Result result = frame_->CallConstructor(arg_count);
// Replace the function on the stack with the result.
frame_->SetElementAt(0, &result);
}
void CodeGenerator::VisitCallRuntime(CallRuntime* node) {
if (CheckForInlineRuntimeCall(node)) {
return;
}
ZoneList<Expression*>* args = node->arguments();
Comment cmnt(masm_, "[ CallRuntime");
Runtime::Function* function = node->function();
if (function == NULL) {
// Push the builtins object found in the current global object.
Result temp = allocator()->Allocate();
ASSERT(temp.is_valid());
__ movq(temp.reg(), GlobalObject());
__ movq(temp.reg(),
FieldOperand(temp.reg(), GlobalObject::kBuiltinsOffset));
frame_->Push(&temp);
}
// Push the arguments ("left-to-right").
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
Load(args->at(i));
}
if (function == NULL) {
// Call the JS runtime function.
frame_->Push(node->name());
Result answer = frame_->CallCallIC(RelocInfo::CODE_TARGET,
arg_count,
loop_nesting_);
frame_->RestoreContextRegister();
frame_->Push(&answer);
} else {
// Call the C runtime function.
Result answer = frame_->CallRuntime(function, arg_count);
frame_->Push(&answer);
}
}
void CodeGenerator::VisitUnaryOperation(UnaryOperation* node) {
Comment cmnt(masm_, "[ UnaryOperation");
Token::Value op = node->op();
if (op == Token::NOT) {
// Swap the true and false targets but keep the same actual label
// as the fall through.
destination()->Invert();
LoadCondition(node->expression(), destination(), true);
// Swap the labels back.
destination()->Invert();
} else if (op == Token::DELETE) {
Property* property = node->expression()->AsProperty();
if (property != NULL) {
Load(property->obj());
Load(property->key());
Result answer = frame_->InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, 2);
frame_->Push(&answer);
return;
}
Variable* variable = node->expression()->AsVariableProxy()->AsVariable();
if (variable != NULL) {
Slot* slot = variable->slot();
if (variable->is_global()) {
LoadGlobal();
frame_->Push(variable->name());
Result answer = frame_->InvokeBuiltin(Builtins::DELETE,
CALL_FUNCTION, 2);
frame_->Push(&answer);
return;
} else if (slot != NULL && slot->type() == Slot::LOOKUP) {
// Call the runtime to look up the context holding the named
// variable. Sync the virtual frame eagerly so we can push the
// arguments directly into place.
frame_->SyncRange(0, frame_->element_count() - 1);
frame_->EmitPush(rsi);
frame_->EmitPush(variable->name());
Result context = frame_->CallRuntime(Runtime::kLookupContext, 2);
ASSERT(context.is_register());
frame_->EmitPush(context.reg());
context.Unuse();
frame_->EmitPush(variable->name());
Result answer = frame_->InvokeBuiltin(Builtins::DELETE,
CALL_FUNCTION, 2);
frame_->Push(&answer);
return;
}
// Default: Result of deleting non-global, not dynamically
// introduced variables is false.
frame_->Push(Factory::false_value());
} else {
// Default: Result of deleting expressions is true.
Load(node->expression()); // may have side-effects
frame_->SetElementAt(0, Factory::true_value());
}
} else if (op == Token::TYPEOF) {
// Special case for loading the typeof expression; see comment on
// LoadTypeofExpression().
LoadTypeofExpression(node->expression());
Result answer = frame_->CallRuntime(Runtime::kTypeof, 1);
frame_->Push(&answer);
} else if (op == Token::VOID) {
Expression* expression = node->expression();
if (expression && expression->AsLiteral() && (
expression->AsLiteral()->IsTrue() ||
expression->AsLiteral()->IsFalse() ||
expression->AsLiteral()->handle()->IsNumber() ||
expression->AsLiteral()->handle()->IsString() ||
expression->AsLiteral()->handle()->IsJSRegExp() ||
expression->AsLiteral()->IsNull())) {
// Omit evaluating the value of the primitive literal.
// It will be discarded anyway, and can have no side effect.
frame_->Push(Factory::undefined_value());
} else {
Load(node->expression());
frame_->SetElementAt(0, Factory::undefined_value());
}
} else {
bool overwrite =
(node->expression()->AsBinaryOperation() != NULL &&
node->expression()->AsBinaryOperation()->ResultOverwriteAllowed());
Load(node->expression());
switch (op) {
case Token::NOT:
case Token::DELETE:
case Token::TYPEOF:
UNREACHABLE(); // handled above
break;
case Token::SUB: {
GenericUnaryOpStub stub(Token::SUB, overwrite);
Result operand = frame_->Pop();
Result answer = frame_->CallStub(&stub, &operand);
frame_->Push(&answer);
break;
}
case Token::BIT_NOT: {
// Smi check.
JumpTarget smi_label;
JumpTarget continue_label;
Result operand = frame_->Pop();
operand.ToRegister();
Condition is_smi = masm_->CheckSmi(operand.reg());
smi_label.Branch(is_smi, &operand);
GenericUnaryOpStub stub(Token::BIT_NOT, overwrite);
Result answer = frame_->CallStub(&stub, &operand);
continue_label.Jump(&answer);
smi_label.Bind(&answer);
answer.ToRegister();
frame_->Spill(answer.reg());
__ SmiNot(answer.reg(), answer.reg());
continue_label.Bind(&answer);
frame_->Push(&answer);
break;
}
case Token::ADD: {
// Smi check.
JumpTarget continue_label;
Result operand = frame_->Pop();
operand.ToRegister();
Condition is_smi = masm_->CheckSmi(operand.reg());
continue_label.Branch(is_smi, &operand);
frame_->Push(&operand);
Result answer = frame_->InvokeBuiltin(Builtins::TO_NUMBER,
CALL_FUNCTION, 1);
continue_label.Bind(&answer);
frame_->Push(&answer);
break;
}
default:
UNREACHABLE();
}
}
}
// The value in dst was optimistically incremented or decremented. The
// result overflowed or was not smi tagged. Undo the operation, call
// into the runtime to convert the argument to a number, and call the
// specialized add or subtract stub. The result is left in dst.
class DeferredPrefixCountOperation: public DeferredCode {
public:
DeferredPrefixCountOperation(Register dst, bool is_increment)
: dst_(dst), is_increment_(is_increment) {
set_comment("[ DeferredCountOperation");
}
virtual void Generate();
private:
Register dst_;
bool is_increment_;
};
void DeferredPrefixCountOperation::Generate() {
__ push(dst_);
__ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION);
__ push(rax);
__ Push(Smi::FromInt(1));
if (is_increment_) {
__ CallRuntime(Runtime::kNumberAdd, 2);
} else {
__ CallRuntime(Runtime::kNumberSub, 2);
}
if (!dst_.is(rax)) __ movq(dst_, rax);
}
// The value in dst was optimistically incremented or decremented. The
// result overflowed or was not smi tagged. Undo the operation and call
// into the runtime to convert the argument to a number. Update the
// original value in old. Call the specialized add or subtract stub.
// The result is left in dst.
class DeferredPostfixCountOperation: public DeferredCode {
public:
DeferredPostfixCountOperation(Register dst, Register old, bool is_increment)
: dst_(dst), old_(old), is_increment_(is_increment) {
set_comment("[ DeferredCountOperation");
}
virtual void Generate();
private:
Register dst_;
Register old_;
bool is_increment_;
};
void DeferredPostfixCountOperation::Generate() {
__ push(dst_);
__ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION);
// Save the result of ToNumber to use as the old value.
__ push(rax);
// Call the runtime for the addition or subtraction.
__ push(rax);
__ Push(Smi::FromInt(1));
if (is_increment_) {
__ CallRuntime(Runtime::kNumberAdd, 2);
} else {
__ CallRuntime(Runtime::kNumberSub, 2);
}
if (!dst_.is(rax)) __ movq(dst_, rax);
__ pop(old_);
}
void CodeGenerator::VisitCountOperation(CountOperation* node) {
Comment cmnt(masm_, "[ CountOperation");
bool is_postfix = node->is_postfix();
bool is_increment = node->op() == Token::INC;
Variable* var = node->expression()->AsVariableProxy()->AsVariable();
bool is_const = (var != NULL && var->mode() == Variable::CONST);
// Postfix operations need a stack slot under the reference to hold
// the old value while the new value is being stored. This is so that
// in the case that storing the new value requires a call, the old
// value will be in the frame to be spilled.
if (is_postfix) frame_->Push(Smi::FromInt(0));
// A constant reference is not saved to, so the reference is not a
// compound assignment reference.
{ Reference target(this, node->expression(), !is_const);
if (target.is_illegal()) {
// Spoof the virtual frame to have the expected height (one higher
// than on entry).
if (!is_postfix) frame_->Push(Smi::FromInt(0));
return;
}
target.TakeValue();
Result new_value = frame_->Pop();
new_value.ToRegister();
Result old_value; // Only allocated in the postfix case.
if (is_postfix) {
// Allocate a temporary to preserve the old value.
old_value = allocator_->Allocate();
ASSERT(old_value.is_valid());
__ movq(old_value.reg(), new_value.reg());
}
// Ensure the new value is writable.
frame_->Spill(new_value.reg());
DeferredCode* deferred = NULL;
if (is_postfix) {
deferred = new DeferredPostfixCountOperation(new_value.reg(),
old_value.reg(),
is_increment);
} else {
deferred = new DeferredPrefixCountOperation(new_value.reg(),
is_increment);
}
__ JumpIfNotSmi(new_value.reg(), deferred->entry_label());
if (is_increment) {
__ SmiAddConstant(kScratchRegister,
new_value.reg(),
Smi::FromInt(1),
deferred->entry_label());
} else {
__ SmiSubConstant(kScratchRegister,
new_value.reg(),
Smi::FromInt(1),
deferred->entry_label());
}
__ movq(new_value.reg(), kScratchRegister);
deferred->BindExit();
// Postfix: store the old value in the allocated slot under the
// reference.
if (is_postfix) frame_->SetElementAt(target.size(), &old_value);
frame_->Push(&new_value);
// Non-constant: update the reference.
if (!is_const) target.SetValue(NOT_CONST_INIT);
}
// Postfix: drop the new value and use the old.
if (is_postfix) frame_->Drop();
}
void CodeGenerator::VisitBinaryOperation(BinaryOperation* node) {
// TODO(X64): This code was copied verbatim from codegen-ia32.
// Either find a reason to change it or move it to a shared location.
Comment cmnt(masm_, "[ BinaryOperation");
Token::Value op = node->op();
// According to ECMA-262 section 11.11, page 58, the binary logical
// operators must yield the result of one of the two expressions
// before any ToBoolean() conversions. This means that the value
// produced by a && or || operator is not necessarily a boolean.
// NOTE: If the left hand side produces a materialized value (not
// control flow), we force the right hand side to do the same. This
// is necessary because we assume that if we get control flow on the
// last path out of an expression we got it on all paths.
if (op == Token::AND) {
JumpTarget is_true;
ControlDestination dest(&is_true, destination()->false_target(), true);
LoadCondition(node->left(), &dest, false);
if (dest.false_was_fall_through()) {
// The current false target was used as the fall-through. If
// there are no dangling jumps to is_true then the left
// subexpression was unconditionally false. Otherwise we have
// paths where we do have to evaluate the right subexpression.
if (is_true.is_linked()) {
// We need to compile the right subexpression. If the jump to
// the current false target was a forward jump then we have a
// valid frame, we have just bound the false target, and we
// have to jump around the code for the right subexpression.
if (has_valid_frame()) {
destination()->false_target()->Unuse();
destination()->false_target()->Jump();
}
is_true.Bind();
// The left subexpression compiled to control flow, so the
// right one is free to do so as well.
LoadCondition(node->right(), destination(), false);
} else {
// We have actually just jumped to or bound the current false
// target but the current control destination is not marked as
// used.
destination()->Use(false);
}
} else if (dest.is_used()) {
// The left subexpression compiled to control flow (and is_true
// was just bound), so the right is free to do so as well.
LoadCondition(node->right(), destination(), false);
} else {
// We have a materialized value on the frame, so we exit with
// one on all paths. There are possibly also jumps to is_true
// from nested subexpressions.
JumpTarget pop_and_continue;
JumpTarget exit;
// Avoid popping the result if it converts to 'false' using the
// standard ToBoolean() conversion as described in ECMA-262,
// section 9.2, page 30.
//
// Duplicate the TOS value. The duplicate will be popped by
// ToBoolean.
frame_->Dup();
ControlDestination dest(&pop_and_continue, &exit, true);
ToBoolean(&dest);
// Pop the result of evaluating the first part.
frame_->Drop();
// Compile right side expression.
is_true.Bind();
Load(node->right());
// Exit (always with a materialized value).
exit.Bind();
}
} else if (op == Token::OR) {
JumpTarget is_false;
ControlDestination dest(destination()->true_target(), &is_false, false);
LoadCondition(node->left(), &dest, false);
if (dest.true_was_fall_through()) {
// The current true target was used as the fall-through. If
// there are no dangling jumps to is_false then the left
// subexpression was unconditionally true. Otherwise we have
// paths where we do have to evaluate the right subexpression.
if (is_false.is_linked()) {
// We need to compile the right subexpression. If the jump to
// the current true target was a forward jump then we have a
// valid frame, we have just bound the true target, and we
// have to jump around the code for the right subexpression.
if (has_valid_frame()) {
destination()->true_target()->Unuse();
destination()->true_target()->Jump();
}
is_false.Bind();
// The left subexpression compiled to control flow, so the
// right one is free to do so as well.
LoadCondition(node->right(), destination(), false);
} else {
// We have just jumped to or bound the current true target but
// the current control destination is not marked as used.
destination()->Use(true);
}
} else if (dest.is_used()) {
// The left subexpression compiled to control flow (and is_false
// was just bound), so the right is free to do so as well.
LoadCondition(node->right(), destination(), false);
} else {
// We have a materialized value on the frame, so we exit with
// one on all paths. There are possibly also jumps to is_false
// from nested subexpressions.
JumpTarget pop_and_continue;
JumpTarget exit;
// Avoid popping the result if it converts to 'true' using the
// standard ToBoolean() conversion as described in ECMA-262,
// section 9.2, page 30.
//
// Duplicate the TOS value. The duplicate will be popped by
// ToBoolean.
frame_->Dup();
ControlDestination dest(&exit, &pop_and_continue, false);
ToBoolean(&dest);
// Pop the result of evaluating the first part.
frame_->Drop();
// Compile right side expression.
is_false.Bind();
Load(node->right());
// Exit (always with a materialized value).
exit.Bind();
}
} else {
// NOTE: The code below assumes that the slow cases (calls to runtime)
// never return a constant/immutable object.
OverwriteMode overwrite_mode = NO_OVERWRITE;
if (node->left()->AsBinaryOperation() != NULL &&
node->left()->AsBinaryOperation()->ResultOverwriteAllowed()) {
overwrite_mode = OVERWRITE_LEFT;
} else if (node->right()->AsBinaryOperation() != NULL &&
node->right()->AsBinaryOperation()->ResultOverwriteAllowed()) {
overwrite_mode = OVERWRITE_RIGHT;
}
Load(node->left());
Load(node->right());
GenericBinaryOperation(node->op(), node->type(), overwrite_mode);
}
}
void CodeGenerator::VisitCompareOperation(CompareOperation* node) {
Comment cmnt(masm_, "[ CompareOperation");
// Get the expressions from the node.
Expression* left = node->left();
Expression* right = node->right();
Token::Value op = node->op();
// To make typeof testing for natives implemented in JavaScript really
// efficient, we generate special code for expressions of the form:
// 'typeof <expression> == <string>'.
UnaryOperation* operation = left->AsUnaryOperation();
if ((op == Token::EQ || op == Token::EQ_STRICT) &&
(operation != NULL && operation->op() == Token::TYPEOF) &&
(right->AsLiteral() != NULL &&
right->AsLiteral()->handle()->IsString())) {
Handle<String> check(Handle<String>::cast(right->AsLiteral()->handle()));
// Load the operand and move it to a register.
LoadTypeofExpression(operation->expression());
Result answer = frame_->Pop();
answer.ToRegister();
if (check->Equals(Heap::number_symbol())) {
Condition is_smi = masm_->CheckSmi(answer.reg());
destination()->true_target()->Branch(is_smi);
frame_->Spill(answer.reg());
__ movq(answer.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset));
__ CompareRoot(answer.reg(), Heap::kHeapNumberMapRootIndex);
answer.Unuse();
destination()->Split(equal);
} else if (check->Equals(Heap::string_symbol())) {
Condition is_smi = masm_->CheckSmi(answer.reg());
destination()->false_target()->Branch(is_smi);
// It can be an undetectable string object.
__ movq(kScratchRegister,
FieldOperand(answer.reg(), HeapObject::kMapOffset));
__ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
destination()->false_target()->Branch(not_zero);
__ CmpInstanceType(kScratchRegister, FIRST_NONSTRING_TYPE);
answer.Unuse();
destination()->Split(below); // Unsigned byte comparison needed.
} else if (check->Equals(Heap::boolean_symbol())) {
__ CompareRoot(answer.reg(), Heap::kTrueValueRootIndex);
destination()->true_target()->Branch(equal);
__ CompareRoot(answer.reg(), Heap::kFalseValueRootIndex);
answer.Unuse();
destination()->Split(equal);
} else if (check->Equals(Heap::undefined_symbol())) {
__ CompareRoot(answer.reg(), Heap::kUndefinedValueRootIndex);
destination()->true_target()->Branch(equal);
Condition is_smi = masm_->CheckSmi(answer.reg());
destination()->false_target()->Branch(is_smi);
// It can be an undetectable object.
__ movq(kScratchRegister,
FieldOperand(answer.reg(), HeapObject::kMapOffset));
__ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
answer.Unuse();
destination()->Split(not_zero);
} else if (check->Equals(Heap::function_symbol())) {
Condition is_smi = masm_->CheckSmi(answer.reg());
destination()->false_target()->Branch(is_smi);
frame_->Spill(answer.reg());
__ CmpObjectType(answer.reg(), JS_FUNCTION_TYPE, answer.reg());
destination()->true_target()->Branch(equal);
// Regular expressions are callable so typeof == 'function'.
__ CmpInstanceType(answer.reg(), JS_REGEXP_TYPE);
answer.Unuse();
destination()->Split(equal);
} else if (check->Equals(Heap::object_symbol())) {
Condition is_smi = masm_->CheckSmi(answer.reg());
destination()->false_target()->Branch(is_smi);
__ CompareRoot(answer.reg(), Heap::kNullValueRootIndex);
destination()->true_target()->Branch(equal);
// Regular expressions are typeof == 'function', not 'object'.
__ CmpObjectType(answer.reg(), JS_REGEXP_TYPE, kScratchRegister);
destination()->false_target()->Branch(equal);
// It can be an undetectable object.
__ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
destination()->false_target()->Branch(not_zero);
__ CmpInstanceType(kScratchRegister, FIRST_JS_OBJECT_TYPE);
destination()->false_target()->Branch(below);
__ CmpInstanceType(kScratchRegister, LAST_JS_OBJECT_TYPE);
answer.Unuse();
destination()->Split(below_equal);
} else {
// Uncommon case: typeof testing against a string literal that is
// never returned from the typeof operator.
answer.Unuse();
destination()->Goto(false);
}
return;
}
Condition cc = no_condition;
bool strict = false;
switch (op) {
case Token::EQ_STRICT:
strict = true;
// Fall through
case Token::EQ:
cc = equal;
break;
case Token::LT:
cc = less;
break;
case Token::GT:
cc = greater;
break;
case Token::LTE:
cc = less_equal;
break;
case Token::GTE:
cc = greater_equal;
break;
case Token::IN: {
Load(left);
Load(right);
Result answer = frame_->InvokeBuiltin(Builtins::IN, CALL_FUNCTION, 2);
frame_->Push(&answer); // push the result
return;
}
case Token::INSTANCEOF: {
Load(left);
Load(right);
InstanceofStub stub;
Result answer = frame_->CallStub(&stub, 2);
answer.ToRegister();
__ testq(answer.reg(), answer.reg());
answer.Unuse();
destination()->Split(zero);
return;
}
default:
UNREACHABLE();
}
Load(left);
Load(right);
Comparison(node, cc, strict, destination());
}
void CodeGenerator::VisitThisFunction(ThisFunction* node) {
frame_->PushFunction();
}
void CodeGenerator::GenerateArgumentsAccess(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
// ArgumentsAccessStub expects the key in rdx and the formal
// parameter count in rax.
Load(args->at(0));
Result key = frame_->Pop();
// Explicitly create a constant result.
Result count(Handle<Smi>(Smi::FromInt(scope()->num_parameters())));
// Call the shared stub to get to arguments[key].
ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT);
Result result = frame_->CallStub(&stub, &key, &count);
frame_->Push(&result);
}
void CodeGenerator::GenerateIsArray(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
Load(args->at(0));
Result value = frame_->Pop();
value.ToRegister();
ASSERT(value.is_valid());
Condition is_smi = masm_->CheckSmi(value.reg());
destination()->false_target()->Branch(is_smi);
// It is a heap object - get map.
// Check if the object is a JS array or not.
__ CmpObjectType(value.reg(), JS_ARRAY_TYPE, kScratchRegister);
value.Unuse();
destination()->Split(equal);
}
void CodeGenerator::GenerateIsRegExp(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
Load(args->at(0));
Result value = frame_->Pop();
value.ToRegister();
ASSERT(value.is_valid());
Condition is_smi = masm_->CheckSmi(value.reg());
destination()->false_target()->Branch(is_smi);
// It is a heap object - get map.
// Check if the object is a regexp.
__ CmpObjectType(value.reg(), JS_REGEXP_TYPE, kScratchRegister);
value.Unuse();
destination()->Split(equal);
}
void CodeGenerator::GenerateIsObject(ZoneList<Expression*>* args) {
// This generates a fast version of:
// (typeof(arg) === 'object' || %_ClassOf(arg) == 'RegExp')
ASSERT(args->length() == 1);
Load(args->at(0));
Result obj = frame_->Pop();
obj.ToRegister();
Condition is_smi = masm_->CheckSmi(obj.reg());
destination()->false_target()->Branch(is_smi);
__ Move(kScratchRegister, Factory::null_value());
__ cmpq(obj.reg(), kScratchRegister);
destination()->true_target()->Branch(equal);
__ movq(kScratchRegister, FieldOperand(obj.reg(), HeapObject::kMapOffset));
// Undetectable objects behave like undefined when tested with typeof.
__ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
destination()->false_target()->Branch(not_zero);
__ CmpInstanceType(kScratchRegister, FIRST_JS_OBJECT_TYPE);
destination()->false_target()->Branch(less);
__ CmpInstanceType(kScratchRegister, LAST_JS_OBJECT_TYPE);
obj.Unuse();
destination()->Split(less_equal);
}
void CodeGenerator::GenerateIsFunction(ZoneList<Expression*>* args) {
// This generates a fast version of:
// (%_ClassOf(arg) === 'Function')
ASSERT(args->length() == 1);
Load(args->at(0));
Result obj = frame_->Pop();
obj.ToRegister();
Condition is_smi = masm_->CheckSmi(obj.reg());
destination()->false_target()->Branch(is_smi);
__ CmpObjectType(obj.reg(), JS_FUNCTION_TYPE, kScratchRegister);
obj.Unuse();
destination()->Split(equal);
}
void CodeGenerator::GenerateIsUndetectableObject(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
Load(args->at(0));
Result obj = frame_->Pop();
obj.ToRegister();
Condition is_smi = masm_->CheckSmi(obj.reg());
destination()->false_target()->Branch(is_smi);
__ movq(kScratchRegister, FieldOperand(obj.reg(), HeapObject::kMapOffset));
__ movzxbl(kScratchRegister,
FieldOperand(kScratchRegister, Map::kBitFieldOffset));
__ testl(kScratchRegister, Immediate(1 << Map::kIsUndetectable));
obj.Unuse();
destination()->Split(not_zero);
}
void CodeGenerator::GenerateIsConstructCall(ZoneList<Expression*>* args) {
ASSERT(args->length() == 0);
// Get the frame pointer for the calling frame.
Result fp = allocator()->Allocate();
__ movq(fp.reg(), Operand(rbp, StandardFrameConstants::kCallerFPOffset));
// Skip the arguments adaptor frame if it exists.
Label check_frame_marker;
__ SmiCompare(Operand(fp.reg(), StandardFrameConstants::kContextOffset),
Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
__ j(not_equal, &check_frame_marker);
__ movq(fp.reg(), Operand(fp.reg(), StandardFrameConstants::kCallerFPOffset));
// Check the marker in the calling frame.
__ bind(&check_frame_marker);
__ SmiCompare(Operand(fp.reg(), StandardFrameConstants::kMarkerOffset),
Smi::FromInt(StackFrame::CONSTRUCT));
fp.Unuse();
destination()->Split(equal);
}
void CodeGenerator::GenerateArgumentsLength(ZoneList<Expression*>* args) {
ASSERT(args->length() == 0);
// ArgumentsAccessStub takes the parameter count as an input argument
// in register eax. Create a constant result for it.
Result count(Handle<Smi>(Smi::FromInt(scope()->num_parameters())));
// Call the shared stub to get to the arguments.length.
ArgumentsAccessStub stub(ArgumentsAccessStub::READ_LENGTH);
Result result = frame_->CallStub(&stub, &count);
frame_->Push(&result);
}
void CodeGenerator::GenerateFastCharCodeAt(ZoneList<Expression*>* args) {
Comment(masm_, "[ GenerateFastCharCodeAt");
ASSERT(args->length() == 2);
Label slow_case;
Label end;
Label not_a_flat_string;
Label try_again_with_new_string;
Label ascii_string;
Label got_char_code;
Load(args->at(0));
Load(args->at(1));
Result index = frame_->Pop();
Result object = frame_->Pop();
// Get register rcx to use as shift amount later.
Result shift_amount;
if (object.is_register() && object.reg().is(rcx)) {
Result fresh = allocator_->Allocate();
shift_amount = object;
object = fresh;
__ movq(object.reg(), rcx);
}
if (index.is_register() && index.reg().is(rcx)) {
Result fresh = allocator_->Allocate();
shift_amount = index;
index = fresh;
__ movq(index.reg(), rcx);
}
// There could be references to ecx in the frame. Allocating will
// spill them, otherwise spill explicitly.
if (shift_amount.is_valid()) {
frame_->Spill(rcx);
} else {
shift_amount = allocator()->Allocate(rcx);
}
ASSERT(shift_amount.is_register());
ASSERT(shift_amount.reg().is(rcx));
ASSERT(allocator_->count(rcx) == 1);
// We will mutate the index register and possibly the object register.
// The case where they are somehow the same register is handled
// because we only mutate them in the case where the receiver is a
// heap object and the index is not.
object.ToRegister();
index.ToRegister();
frame_->Spill(object.reg());
frame_->Spill(index.reg());
// We need a single extra temporary register.
Result temp = allocator()->Allocate();
ASSERT(temp.is_valid());
// There is no virtual frame effect from here up to the final result
// push.
// If the receiver is a smi trigger the slow case.
__ JumpIfSmi(object.reg(), &slow_case);
// If the index is negative or non-smi trigger the slow case.
__ JumpIfNotPositiveSmi(index.reg(), &slow_case);
// Untag the index.
__ SmiToInteger32(index.reg(), index.reg());
__ bind(&try_again_with_new_string);
// Fetch the instance type of the receiver into rcx.
__ movq(rcx, FieldOperand(object.reg(), HeapObject::kMapOffset));
__ movzxbl(rcx, FieldOperand(rcx, Map::kInstanceTypeOffset));
// If the receiver is not a string trigger the slow case.
__ testb(rcx, Immediate(kIsNotStringMask));
__ j(not_zero, &slow_case);
// Check for index out of range.
__ cmpl(index.reg(), FieldOperand(object.reg(), String::kLengthOffset));
__ j(greater_equal, &slow_case);
// Reload the instance type (into the temp register this time)..
__ movq(temp.reg(), FieldOperand(object.reg(), HeapObject::kMapOffset));
__ movzxbl(temp.reg(), FieldOperand(temp.reg(), Map::kInstanceTypeOffset));
// We need special handling for non-flat strings.
ASSERT_EQ(0, kSeqStringTag);
__ testb(temp.reg(), Immediate(kStringRepresentationMask));
__ j(not_zero, ¬_a_flat_string);
// Check for 1-byte or 2-byte string.
ASSERT_EQ(0, kTwoByteStringTag);
__ testb(temp.reg(), Immediate(kStringEncodingMask));
__ j(not_zero, &ascii_string);
// 2-byte string.
// Load the 2-byte character code into the temp register.
__ movzxwl(temp.reg(), FieldOperand(object.reg(),
index.reg(),
times_2,
SeqTwoByteString::kHeaderSize));
__ jmp(&got_char_code);
// ASCII string.
__ bind(&ascii_string);
// Load the byte into the temp register.
__ movzxbl(temp.reg(), FieldOperand(object.reg(),
index.reg(),
times_1,
SeqAsciiString::kHeaderSize));
__ bind(&got_char_code);
__ Integer32ToSmi(temp.reg(), temp.reg());
__ jmp(&end);
// Handle non-flat strings.
__ bind(¬_a_flat_string);
__ and_(temp.reg(), Immediate(kStringRepresentationMask));
__ cmpb(temp.reg(), Immediate(kConsStringTag));
__ j(not_equal, &slow_case);
// ConsString.
// Check that the right hand side is the empty string (ie if this is really a
// flat string in a cons string). If that is not the case we would rather go
// to the runtime system now, to flatten the string.
__ movq(temp.reg(), FieldOperand(object.reg(), ConsString::kSecondOffset));
__ CompareRoot(temp.reg(), Heap::kEmptyStringRootIndex);
__ j(not_equal, &slow_case);
// Get the first of the two strings.
__ movq(object.reg(), FieldOperand(object.reg(), ConsString::kFirstOffset));
__ jmp(&try_again_with_new_string);
__ bind(&slow_case);
// Move the undefined value into the result register, which will
// trigger the slow case.
__ LoadRoot(temp.reg(), Heap::kUndefinedValueRootIndex);
__ bind(&end);
frame_->Push(&temp);
}
void CodeGenerator::GenerateIsNonNegativeSmi(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
Load(args->at(0));
Result value = frame_->Pop();
value.ToRegister();
ASSERT(value.is_valid());
Condition positive_smi = masm_->CheckPositiveSmi(value.reg());
value.Unuse();
destination()->Split(positive_smi);
}
void CodeGenerator::GenerateIsSmi(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
Load(args->at(0));
Result value = frame_->Pop();
value.ToRegister();
ASSERT(value.is_valid());
Condition is_smi = masm_->CheckSmi(value.reg());
value.Unuse();
destination()->Split(is_smi);
}
void CodeGenerator::GenerateLog(ZoneList<Expression*>* args) {
// Conditionally generate a log call.
// Args:
// 0 (literal string): The type of logging (corresponds to the flags).
// This is used to determine whether or not to generate the log call.
// 1 (string): Format string. Access the string at argument index 2
// with '%2s' (see Logger::LogRuntime for all the formats).
// 2 (array): Arguments to the format string.
ASSERT_EQ(args->length(), 3);
#ifdef ENABLE_LOGGING_AND_PROFILING
if (ShouldGenerateLog(args->at(0))) {
Load(args->at(1));
Load(args->at(2));
frame_->CallRuntime(Runtime::kLog, 2);
}
#endif
// Finally, we're expected to leave a value on the top of the stack.
frame_->Push(Factory::undefined_value());
}
void CodeGenerator::GenerateObjectEquals(ZoneList<Expression*>* args) {
ASSERT(args->length() == 2);
// Load the two objects into registers and perform the comparison.
Load(args->at(0));
Load(args->at(1));
Result right = frame_->Pop();
Result left = frame_->Pop();
right.ToRegister();
left.ToRegister();
__ cmpq(right.reg(), left.reg());
right.Unuse();
left.Unuse();
destination()->Split(equal);
}
void CodeGenerator::GenerateGetFramePointer(ZoneList<Expression*>* args) {
ASSERT(args->length() == 0);
// RBP value is aligned, so it should be tagged as a smi (without necesarily
// being padded as a smi, so it should not be treated as a smi.).
ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
Result rbp_as_smi = allocator_->Allocate();
ASSERT(rbp_as_smi.is_valid());
__ movq(rbp_as_smi.reg(), rbp);
frame_->Push(&rbp_as_smi);
}
void CodeGenerator::GenerateRandomPositiveSmi(ZoneList<Expression*>* args) {
ASSERT(args->length() == 0);
frame_->SpillAll();
__ push(rsi);
// Make sure the frame is aligned like the OS expects.
static const int kFrameAlignment = OS::ActivationFrameAlignment();
if (kFrameAlignment > 0) {
ASSERT(IsPowerOf2(kFrameAlignment));
__ movq(rbx, rsp); // Save in AMD-64 abi callee-saved register.
__ and_(rsp, Immediate(-kFrameAlignment));
}
// Call V8::RandomPositiveSmi().
__ Call(FUNCTION_ADDR(V8::RandomPositiveSmi), RelocInfo::RUNTIME_ENTRY);
// Restore stack pointer from callee-saved register.
if (kFrameAlignment > 0) {
__ movq(rsp, rbx);
}
__ pop(rsi);
Result result = allocator_->Allocate(rax);
frame_->Push(&result);
}
void CodeGenerator::GenerateRegExpExec(ZoneList<Expression*>* args) {
ASSERT_EQ(args->length(), 4);
// Load the arguments on the stack and call the runtime system.
Load(args->at(0));
Load(args->at(1));
Load(args->at(2));
Load(args->at(3));
RegExpExecStub stub;
Result result = frame_->CallStub(&stub, 4);
frame_->Push(&result);
}
void CodeGenerator::GenerateNumberToString(ZoneList<Expression*>* args) {
ASSERT_EQ(args->length(), 1);
// Load the argument on the stack and jump to the runtime.
Load(args->at(0));
Result answer = frame_->CallRuntime(Runtime::kNumberToString, 1);
frame_->Push(&answer);
}
void CodeGenerator::GenerateMathSin(ZoneList<Expression*>* args) {
ASSERT_EQ(args->length(), 1);
// Load the argument on the stack and jump to the runtime.
Load(args->at(0));
Result answer = frame_->CallRuntime(Runtime::kMath_sin, 1);
frame_->Push(&answer);
}
void CodeGenerator::GenerateMathCos(ZoneList<Expression*>* args) {
ASSERT_EQ(args->length(), 1);
// Load the argument on the stack and jump to the runtime.
Load(args->at(0));
Result answer = frame_->CallRuntime(Runtime::kMath_cos, 1);
frame_->Push(&answer);
}
void CodeGenerator::GenerateStringAdd(ZoneList<Expression*>* args) {
ASSERT_EQ(2, args->length());
Load(args->at(0));
Load(args->at(1));
StringAddStub stub(NO_STRING_ADD_FLAGS);
Result answer = frame_->CallStub(&stub, 2);
frame_->Push(&answer);
}
void CodeGenerator::GenerateSubString(ZoneList<Expression*>* args) {
ASSERT_EQ(3, args->length());
Load(args->at(0));
Load(args->at(1));
Load(args->at(2));
SubStringStub stub;
Result answer = frame_->CallStub(&stub, 3);
frame_->Push(&answer);
}
void CodeGenerator::GenerateStringCompare(ZoneList<Expression*>* args) {
ASSERT_EQ(2, args->length());
Load(args->at(0));
Load(args->at(1));
StringCompareStub stub;
Result answer = frame_->CallStub(&stub, 2);
frame_->Push(&answer);
}
void CodeGenerator::GenerateClassOf(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
JumpTarget leave, null, function, non_function_constructor;
Load(args->at(0)); // Load the object.
Result obj = frame_->Pop();
obj.ToRegister();
frame_->Spill(obj.reg());
// If the object is a smi, we return null.
Condition is_smi = masm_->CheckSmi(obj.reg());
null.Branch(is_smi);
// Check that the object is a JS object but take special care of JS
// functions to make sure they have 'Function' as their class.
__ CmpObjectType(obj.reg(), FIRST_JS_OBJECT_TYPE, obj.reg());
null.Branch(below);
// As long as JS_FUNCTION_TYPE is the last instance type and it is
// right after LAST_JS_OBJECT_TYPE, we can avoid checking for
// LAST_JS_OBJECT_TYPE.
ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
__ CmpInstanceType(obj.reg(), JS_FUNCTION_TYPE);
function.Branch(equal);
// Check if the constructor in the map is a function.
__ movq(obj.reg(), FieldOperand(obj.reg(), Map::kConstructorOffset));
__ CmpObjectType(obj.reg(), JS_FUNCTION_TYPE, kScratchRegister);
non_function_constructor.Branch(not_equal);
// The obj register now contains the constructor function. Grab the
// instance class name from there.
__ movq(obj.reg(),
FieldOperand(obj.reg(), JSFunction::kSharedFunctionInfoOffset));
__ movq(obj.reg(),
FieldOperand(obj.reg(),
SharedFunctionInfo::kInstanceClassNameOffset));
frame_->Push(&obj);
leave.Jump();
// Functions have class 'Function'.
function.Bind();
frame_->Push(Factory::function_class_symbol());
leave.Jump();
// Objects with a non-function constructor have class 'Object'.
non_function_constructor.Bind();
frame_->Push(Factory::Object_symbol());
leave.Jump();
// Non-JS objects have class null.
null.Bind();
frame_->Push(Factory::null_value());
// All done.
leave.Bind();
}
void CodeGenerator::GenerateSetValueOf(ZoneList<Expression*>* args) {
ASSERT(args->length() == 2);
JumpTarget leave;
Load(args->at(0)); // Load the object.
Load(args->at(1)); // Load the value.
Result value = frame_->Pop();
Result object = frame_->Pop();
value.ToRegister();
object.ToRegister();
// if (object->IsSmi()) return value.
Condition is_smi = masm_->CheckSmi(object.reg());
leave.Branch(is_smi, &value);
// It is a heap object - get its map.
Result scratch = allocator_->Allocate();
ASSERT(scratch.is_valid());
// if (!object->IsJSValue()) return value.
__ CmpObjectType(object.reg(), JS_VALUE_TYPE, scratch.reg());
leave.Branch(not_equal, &value);
// Store the value.
__ movq(FieldOperand(object.reg(), JSValue::kValueOffset), value.reg());
// Update the write barrier. Save the value as it will be
// overwritten by the write barrier code and is needed afterward.
Result duplicate_value = allocator_->Allocate();
ASSERT(duplicate_value.is_valid());
__ movq(duplicate_value.reg(), value.reg());
// The object register is also overwritten by the write barrier and
// possibly aliased in the frame.
frame_->Spill(object.reg());
__ RecordWrite(object.reg(), JSValue::kValueOffset, duplicate_value.reg(),
scratch.reg());
object.Unuse();
scratch.Unuse();
duplicate_value.Unuse();
// Leave.
leave.Bind(&value);
frame_->Push(&value);
}
void CodeGenerator::GenerateValueOf(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
JumpTarget leave;
Load(args->at(0)); // Load the object.
frame_->Dup();
Result object = frame_->Pop();
object.ToRegister();
ASSERT(object.is_valid());
// if (object->IsSmi()) return object.
Condition is_smi = masm_->CheckSmi(object.reg());
leave.Branch(is_smi);
// It is a heap object - get map.
Result temp = allocator()->Allocate();
ASSERT(temp.is_valid());
// if (!object->IsJSValue()) return object.
__ CmpObjectType(object.reg(), JS_VALUE_TYPE, temp.reg());
leave.Branch(not_equal);
__ movq(temp.reg(), FieldOperand(object.reg(), JSValue::kValueOffset));
object.Unuse();
frame_->SetElementAt(0, &temp);
leave.Bind();
}
// -----------------------------------------------------------------------------
// CodeGenerator implementation of Expressions
void CodeGenerator::LoadAndSpill(Expression* expression) {
// TODO(x64): No architecture specific code. Move to shared location.
ASSERT(in_spilled_code());
set_in_spilled_code(false);
Load(expression);
frame_->SpillAll();
set_in_spilled_code(true);
}
void CodeGenerator::Load(Expression* expr) {
#ifdef DEBUG
int original_height = frame_->height();
#endif
ASSERT(!in_spilled_code());
JumpTarget true_target;
JumpTarget false_target;
ControlDestination dest(&true_target, &false_target, true);
LoadCondition(expr, &dest, false);
if (dest.false_was_fall_through()) {
// The false target was just bound.
JumpTarget loaded;
frame_->Push(Factory::false_value());
// There may be dangling jumps to the true target.
if (true_target.is_linked()) {
loaded.Jump();
true_target.Bind();
frame_->Push(Factory::true_value());
loaded.Bind();
}
} else if (dest.is_used()) {
// There is true, and possibly false, control flow (with true as
// the fall through).
JumpTarget loaded;
frame_->Push(Factory::true_value());
if (false_target.is_linked()) {
loaded.Jump();
false_target.Bind();
frame_->Push(Factory::false_value());
loaded.Bind();
}
} else {
// We have a valid value on top of the frame, but we still may
// have dangling jumps to the true and false targets from nested
// subexpressions (eg, the left subexpressions of the
// short-circuited boolean operators).
ASSERT(has_valid_frame());
if (true_target.is_linked() || false_target.is_linked()) {
JumpTarget loaded;
loaded.Jump(); // Don't lose the current TOS.
if (true_target.is_linked()) {
true_target.Bind();
frame_->Push(Factory::true_value());
if (false_target.is_linked()) {
loaded.Jump();
}
}
if (false_target.is_linked()) {
false_target.Bind();
frame_->Push(Factory::false_value());
}
loaded.Bind();
}
}
ASSERT(has_valid_frame());
ASSERT(frame_->height() == original_height + 1);
}
// Emit code to load the value of an expression to the top of the
// frame. If the expression is boolean-valued it may be compiled (or
// partially compiled) into control flow to the control destination.
// If force_control is true, control flow is forced.
void CodeGenerator::LoadCondition(Expression* x,
ControlDestination* dest,
bool force_control) {
ASSERT(!in_spilled_code());
int original_height = frame_->height();
{ CodeGenState new_state(this, dest);
Visit(x);
// If we hit a stack overflow, we may not have actually visited
// the expression. In that case, we ensure that we have a
// valid-looking frame state because we will continue to generate
// code as we unwind the C++ stack.
//
// It's possible to have both a stack overflow and a valid frame
// state (eg, a subexpression overflowed, visiting it returned
// with a dummied frame state, and visiting this expression
// returned with a normal-looking state).
if (HasStackOverflow() &&
!dest->is_used() &&
frame_->height() == original_height) {
dest->Goto(true);
}
}
if (force_control && !dest->is_used()) {
// Convert the TOS value into flow to the control destination.
// TODO(X64): Make control flow to control destinations work.
ToBoolean(dest);
}
ASSERT(!(force_control && !dest->is_used()));
ASSERT(dest->is_used() || frame_->height() == original_height + 1);
}
// ECMA-262, section 9.2, page 30: ToBoolean(). Pop the top of stack and
// convert it to a boolean in the condition code register or jump to
// 'false_target'/'true_target' as appropriate.
void CodeGenerator::ToBoolean(ControlDestination* dest) {
Comment cmnt(masm_, "[ ToBoolean");
// The value to convert should be popped from the frame.
Result value = frame_->Pop();
value.ToRegister();
if (value.is_number()) {
Comment cmnt(masm_, "ONLY_NUMBER");
// Fast case if NumberInfo indicates only numbers.
if (FLAG_debug_code) {
__ AbortIfNotNumber(value.reg(), "ToBoolean operand is not a number.");
}
// Smi => false iff zero.
__ SmiCompare(value.reg(), Smi::FromInt(0));
dest->false_target()->Branch(equal);
Condition is_smi = masm_->CheckSmi(value.reg());
dest->true_target()->Branch(is_smi);
__ fldz();
__ fld_d(FieldOperand(value.reg(), HeapNumber::kValueOffset));
__ FCmp();
value.Unuse();
dest->Split(not_zero);
} else {
// Fast case checks.
// 'false' => false.
__ CompareRoot(value.reg(), Heap::kFalseValueRootIndex);
dest->false_target()->Branch(equal);
// 'true' => true.
__ CompareRoot(value.reg(), Heap::kTrueValueRootIndex);
dest->true_target()->Branch(equal);
// 'undefined' => false.
__ CompareRoot(value.reg(), Heap::kUndefinedValueRootIndex);
dest->false_target()->Branch(equal);
// Smi => false iff zero.
__ SmiCompare(value.reg(), Smi::FromInt(0));
dest->false_target()->Branch(equal);
Condition is_smi = masm_->CheckSmi(value.reg());
dest->true_target()->Branch(is_smi);
// Call the stub for all other cases.
frame_->Push(&value); // Undo the Pop() from above.
ToBooleanStub stub;
Result temp = frame_->CallStub(&stub, 1);
// Convert the result to a condition code.
__ testq(temp.reg(), temp.reg());
temp.Unuse();
dest->Split(not_equal);
}
}
void CodeGenerator::LoadUnsafeSmi(Register target, Handle<Object> value) {
UNIMPLEMENTED();
// TODO(X64): Implement security policy for loads of smis.
}
bool CodeGenerator::IsUnsafeSmi(Handle<Object> value) {
return false;
}
//------------------------------------------------------------------------------
// CodeGenerator implementation of variables, lookups, and stores.
Reference::Reference(CodeGenerator* cgen,
Expression* expression,
bool persist_after_get)
: cgen_(cgen),
expression_(expression),
type_(ILLEGAL),
persist_after_get_(persist_after_get) {
cgen->LoadReference(this);
}
Reference::~Reference() {
ASSERT(is_unloaded() || is_illegal());
}
void CodeGenerator::LoadReference(Reference* ref) {
// References are loaded from both spilled and unspilled code. Set the
// state to unspilled to allow that (and explicitly spill after
// construction at the construction sites).
bool was_in_spilled_code = in_spilled_code_;
in_spilled_code_ = false;
Comment cmnt(masm_, "[ LoadReference");
Expression* e = ref->expression();
Property* property = e->AsProperty();
Variable* var = e->AsVariableProxy()->AsVariable();
if (property != NULL) {
// The expression is either a property or a variable proxy that rewrites
// to a property.
Load(property->obj());
if (property->key()->IsPropertyName()) {
ref->set_type(Reference::NAMED);
} else {
Load(property->key());
ref->set_type(Reference::KEYED);
}
} else if (var != NULL) {
// The expression is a variable proxy that does not rewrite to a
// property. Global variables are treated as named property references.
if (var->is_global()) {
LoadGlobal();
ref->set_type(Reference::NAMED);
} else {
ASSERT(var->slot() != NULL);
ref->set_type(Reference::SLOT);
}
} else {
// Anything else is a runtime error.
Load(e);
frame_->CallRuntime(Runtime::kThrowReferenceError, 1);
}
in_spilled_code_ = was_in_spilled_code;
}
void CodeGenerator::UnloadReference(Reference* ref) {
// Pop a reference from the stack while preserving TOS.
Comment cmnt(masm_, "[ UnloadReference");
frame_->Nip(ref->size());
ref->set_unloaded();
}
Operand CodeGenerator::SlotOperand(Slot* slot, Register tmp) {
// Currently, this assertion will fail if we try to assign to
// a constant variable that is constant because it is read-only
// (such as the variable referring to a named function expression).
// We need to implement assignments to read-only variables.
// Ideally, we should do this during AST generation (by converting
// such assignments into expression statements); however, in general
// we may not be able to make the decision until past AST generation,
// that is when the entire program is known.
ASSERT(slot != NULL);
int index = slot->index();
switch (slot->type()) {
case Slot::PARAMETER:
return frame_->ParameterAt(index);
case Slot::LOCAL:
return frame_->LocalAt(index);
case Slot::CONTEXT: {
// Follow the context chain if necessary.
ASSERT(!tmp.is(rsi)); // do not overwrite context register
Register context = rsi;
int chain_length = scope()->ContextChainLength(slot->var()->scope());
for (int i = 0; i < chain_length; i++) {
// Load the closure.
// (All contexts, even 'with' contexts, have a closure,
// and it is the same for all contexts inside a function.
// There is no need to go to the function context first.)
__ movq(tmp, ContextOperand(context, Context::CLOSURE_INDEX));
// Load the function context (which is the incoming, outer context).
__ movq(tmp, FieldOperand(tmp, JSFunction::kContextOffset));
context = tmp;
}
// We may have a 'with' context now. Get the function context.
// (In fact this mov may never be the needed, since the scope analysis
// may not permit a direct context access in this case and thus we are
// always at a function context. However it is safe to dereference be-
// cause the function context of a function context is itself. Before
// deleting this mov we should try to create a counter-example first,
// though...)
__ movq(tmp, ContextOperand(context, Context::FCONTEXT_INDEX));
return ContextOperand(tmp, index);
}
default:
UNREACHABLE();
return Operand(rsp, 0);
}
}
Operand CodeGenerator::ContextSlotOperandCheckExtensions(Slot* slot,
Result tmp,
JumpTarget* slow) {
ASSERT(slot->type() == Slot::CONTEXT);
ASSERT(tmp.is_register());
Register context = rsi;
for (Scope* s = scope(); s != slot->var()->scope(); s = s->outer_scope()) {
if (s->num_heap_slots() > 0) {
if (s->calls_eval()) {
// Check that extension is NULL.
__ cmpq(ContextOperand(context, Context::EXTENSION_INDEX),
Immediate(0));
slow->Branch(not_equal, not_taken);
}
__ movq(tmp.reg(), ContextOperand(context, Context::CLOSURE_INDEX));
__ movq(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset));
context = tmp.reg();
}
}
// Check that last extension is NULL.
__ cmpq(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0));
slow->Branch(not_equal, not_taken);
__ movq(tmp.reg(), ContextOperand(context, Context::FCONTEXT_INDEX));
return ContextOperand(tmp.reg(), slot->index());
}
void CodeGenerator::LoadFromSlot(Slot* slot, TypeofState typeof_state) {
if (slot->type() == Slot::LOOKUP) {
ASSERT(slot->var()->is_dynamic());
JumpTarget slow;
JumpTarget done;
Result value;
// Generate fast-case code for variables that might be shadowed by
// eval-introduced variables. Eval is used a lot without
// introducing variables. In those cases, we do not want to
// perform a runtime call for all variables in the scope
// containing the eval.
if (slot->var()->mode() == Variable::DYNAMIC_GLOBAL) {
value = LoadFromGlobalSlotCheckExtensions(slot, typeof_state, &slow);
// If there was no control flow to slow, we can exit early.
if (!slow.is_linked()) {
frame_->Push(&value);
return;
}
done.Jump(&value);
} else if (slot->var()->mode() == Variable::DYNAMIC_LOCAL) {
Slot* potential_slot = slot->var()->local_if_not_shadowed()->slot();
// Only generate the fast case for locals that rewrite to slots.
// This rules out argument loads.
if (potential_slot != NULL) {
// Allocate a fresh register to use as a temp in
// ContextSlotOperandCheckExtensions and to hold the result
// value.
value = allocator_->Allocate();
ASSERT(value.is_valid());
__ movq(value.reg(),
ContextSlotOperandCheckExtensions(potential_slot,
value,
&slow));
if (potential_slot->var()->mode() == Variable::CONST) {
__ CompareRoot(value.reg(), Heap::kTheHoleValueRootIndex);
done.Branch(not_equal, &value);
__ LoadRoot(value.reg(), Heap::kUndefinedValueRootIndex);
}
// There is always control flow to slow from
// ContextSlotOperandCheckExtensions so we have to jump around
// it.
done.Jump(&value);
}
}
slow.Bind();
// A runtime call is inevitable. We eagerly sync frame elements
// to memory so that we can push the arguments directly into place
// on top of the frame.
frame_->SyncRange(0, frame_->element_count() - 1);
frame_->EmitPush(rsi);
__ movq(kScratchRegister, slot->var()->name(), RelocInfo::EMBEDDED_OBJECT);
frame_->EmitPush(kScratchRegister);
if (typeof_state == INSIDE_TYPEOF) {
value =
frame_->CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2);
} else {
value = frame_->CallRuntime(Runtime::kLoadContextSlot, 2);
}
done.Bind(&value);
frame_->Push(&value);
} else if (slot->var()->mode() == Variable::CONST) {
// Const slots may contain 'the hole' value (the constant hasn't been
// initialized yet) which needs to be converted into the 'undefined'
// value.
//
// We currently spill the virtual frame because constants use the
// potentially unsafe direct-frame access of SlotOperand.
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ Load const");
JumpTarget exit;
__ movq(rcx, SlotOperand(slot, rcx));
__ CompareRoot(rcx, Heap::kTheHoleValueRootIndex);
exit.Branch(not_equal);
__ LoadRoot(rcx, Heap::kUndefinedValueRootIndex);
exit.Bind();
frame_->EmitPush(rcx);
} else if (slot->type() == Slot::PARAMETER) {
frame_->PushParameterAt(slot->index());
} else if (slot->type() == Slot::LOCAL) {
frame_->PushLocalAt(slot->index());
} else {
// The other remaining slot types (LOOKUP and GLOBAL) cannot reach
// here.
//
// The use of SlotOperand below is safe for an unspilled frame
// because it will always be a context slot.
ASSERT(slot->type() == Slot::CONTEXT);
Result temp = allocator_->Allocate();
ASSERT(temp.is_valid());
__ movq(temp.reg(), SlotOperand(slot, temp.reg()));
frame_->Push(&temp);
}
}
void CodeGenerator::LoadFromSlotCheckForArguments(Slot* slot,
TypeofState state) {
LoadFromSlot(slot, state);
// Bail out quickly if we're not using lazy arguments allocation.
if (ArgumentsMode() != LAZY_ARGUMENTS_ALLOCATION) return;
// ... or if the slot isn't a non-parameter arguments slot.
if (slot->type() == Slot::PARAMETER || !slot->is_arguments()) return;
// Pop the loaded value from the stack.
Result value = frame_->Pop();
// If the loaded value is a constant, we know if the arguments
// object has been lazily loaded yet.
if (value.is_constant()) {
if (value.handle()->IsTheHole()) {
Result arguments = StoreArgumentsObject(false);
frame_->Push(&arguments);
} else {
frame_->Push(&value);
}
return;
}
// The loaded value is in a register. If it is the sentinel that
// indicates that we haven't loaded the arguments object yet, we
// need to do it now.
JumpTarget exit;
__ CompareRoot(value.reg(), Heap::kTheHoleValueRootIndex);
frame_->Push(&value);
exit.Branch(not_equal);
Result arguments = StoreArgumentsObject(false);
frame_->SetElementAt(0, &arguments);
exit.Bind();
}
void CodeGenerator::StoreToSlot(Slot* slot, InitState init_state) {
if (slot->type() == Slot::LOOKUP) {
ASSERT(slot->var()->is_dynamic());
// For now, just do a runtime call. Since the call is inevitable,
// we eagerly sync the virtual frame so we can directly push the
// arguments into place.
frame_->SyncRange(0, frame_->element_count() - 1);
frame_->EmitPush(rsi);
frame_->EmitPush(slot->var()->name());
Result value;
if (init_state == CONST_INIT) {
// Same as the case for a normal store, but ignores attribute
// (e.g. READ_ONLY) of context slot so that we can initialize const
// properties (introduced via eval("const foo = (some expr);")). Also,
// uses the current function context instead of the top context.
//
// Note that we must declare the foo upon entry of eval(), via a
// context slot declaration, but we cannot initialize it at the same
// time, because the const declaration may be at the end of the eval
// code (sigh...) and the const variable may have been used before
// (where its value is 'undefined'). Thus, we can only do the
// initialization when we actually encounter the expression and when
// the expression operands are defined and valid, and thus we need the
// split into 2 operations: declaration of the context slot followed
// by initialization.
value = frame_->CallRuntime(Runtime::kInitializeConstContextSlot, 3);
} else {
value = frame_->CallRuntime(Runtime::kStoreContextSlot, 3);
}
// Storing a variable must keep the (new) value on the expression
// stack. This is necessary for compiling chained assignment
// expressions.
frame_->Push(&value);
} else {
ASSERT(!slot->var()->is_dynamic());
JumpTarget exit;
if (init_state == CONST_INIT) {
ASSERT(slot->var()->mode() == Variable::CONST);
// Only the first const initialization must be executed (the slot
// still contains 'the hole' value). When the assignment is executed,
// the code is identical to a normal store (see below).
//
// We spill the frame in the code below because the direct-frame
// access of SlotOperand is potentially unsafe with an unspilled
// frame.
VirtualFrame::SpilledScope spilled_scope;
Comment cmnt(masm_, "[ Init const");
__ movq(rcx, SlotOperand(slot, rcx));
__ CompareRoot(rcx, Heap::kTheHoleValueRootIndex);
exit.Branch(not_equal);
}
// We must execute the store. Storing a variable must keep the (new)
// value on the stack. This is necessary for compiling assignment
// expressions.
//
// Note: We will reach here even with slot->var()->mode() ==
// Variable::CONST because of const declarations which will initialize
// consts to 'the hole' value and by doing so, end up calling this code.
if (slot->type() == Slot::PARAMETER) {
frame_->StoreToParameterAt(slot->index());
} else if (slot->type() == Slot::LOCAL) {
frame_->StoreToLocalAt(slot->index());
} else {
// The other slot types (LOOKUP and GLOBAL) cannot reach here.
//
// The use of SlotOperand below is safe for an unspilled frame
// because the slot is a context slot.
ASSERT(slot->type() == Slot::CONTEXT);
frame_->Dup();
Result value = frame_->Pop();
value.ToRegister();
Result start = allocator_->Allocate();
ASSERT(start.is_valid());
__ movq(SlotOperand(slot, start.reg()), value.reg());
// RecordWrite may destroy the value registers.
//
// TODO(204): Avoid actually spilling when the value is not
// needed (probably the common case).
frame_->Spill(value.reg());
int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize;
Result temp = allocator_->Allocate();
ASSERT(temp.is_valid());
__ RecordWrite(start.reg(), offset, value.reg(), temp.reg());
// The results start, value, and temp are unused by going out of
// scope.
}
exit.Bind();
}
}
Result CodeGenerator::LoadFromGlobalSlotCheckExtensions(
Slot* slot,
TypeofState typeof_state,
JumpTarget* slow) {
// Check that no extension objects have been created by calls to
// eval from the current scope to the global scope.
Register context = rsi;
Result tmp = allocator_->Allocate();
ASSERT(tmp.is_valid()); // All non-reserved registers were available.
Scope* s = scope();
while (s != NULL) {
if (s->num_heap_slots() > 0) {
if (s->calls_eval()) {
// Check that extension is NULL.
__ cmpq(ContextOperand(context, Context::EXTENSION_INDEX),
Immediate(0));
slow->Branch(not_equal, not_taken);
}
// Load next context in chain.
__ movq(tmp.reg(), ContextOperand(context, Context::CLOSURE_INDEX));
__ movq(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset));
context = tmp.reg();
}
// If no outer scope calls eval, we do not need to check more
// context extensions. If we have reached an eval scope, we check
// all extensions from this point.
if (!s->outer_scope_calls_eval() || s->is_eval_scope()) break;
s = s->outer_scope();
}
if (s->is_eval_scope()) {
// Loop up the context chain. There is no frame effect so it is
// safe to use raw labels here.
Label next, fast;
if (!context.is(tmp.reg())) {
__ movq(tmp.reg(), context);
}
// Load map for comparison into register, outside loop.
__ LoadRoot(kScratchRegister, Heap::kGlobalContextMapRootIndex);
__ bind(&next);
// Terminate at global context.
__ cmpq(kScratchRegister, FieldOperand(tmp.reg(), HeapObject::kMapOffset));
__ j(equal, &fast);
// Check that extension is NULL.
__ cmpq(ContextOperand(tmp.reg(), Context::EXTENSION_INDEX), Immediate(0));
slow->Branch(not_equal);
// Load next context in chain.
__ movq(tmp.reg(), ContextOperand(tmp.reg(), Context::CLOSURE_INDEX));
__ movq(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset));
__ jmp(&next);
__ bind(&fast);
}
tmp.Unuse();
// All extension objects were empty and it is safe to use a global
// load IC call.
LoadGlobal();
frame_->Push(slot->var()->name());
RelocInfo::Mode mode = (typeof_state == INSIDE_TYPEOF)
? RelocInfo::CODE_TARGET
: RelocInfo::CODE_TARGET_CONTEXT;
Result answer = frame_->CallLoadIC(mode);
// A test rax instruction following the call signals that the inobject
// property case was inlined. Ensure that there is not a test rax
// instruction here.
masm_->nop();
// Discard the global object. The result is in answer.
frame_->Drop();
return answer;
}
void CodeGenerator::LoadGlobal() {
if (in_spilled_code()) {
frame_->EmitPush(GlobalObject());
} else {
Result temp = allocator_->Allocate();
__ movq(temp.reg(), GlobalObject());
frame_->Push(&temp);
}
}
void CodeGenerator::LoadGlobalReceiver() {
Result temp = allocator_->Allocate();
Register reg = temp.reg();
__ movq(reg, GlobalObject());
__ movq(reg, FieldOperand(reg, GlobalObject::kGlobalReceiverOffset));
frame_->Push(&temp);
}
ArgumentsAllocationMode CodeGenerator::ArgumentsMode() {
if (scope()->arguments() == NULL) return NO_ARGUMENTS_ALLOCATION;
ASSERT(scope()->arguments_shadow() != NULL);
// We don't want to do lazy arguments allocation for functions that
// have heap-allocated contexts, because it interfers with the
// uninitialized const tracking in the context objects.
return (scope()->num_heap_slots() > 0)
? EAGER_ARGUMENTS_ALLOCATION
: LAZY_ARGUMENTS_ALLOCATION;
}
Result CodeGenerator::StoreArgumentsObject(bool initial) {
ArgumentsAllocationMode mode = ArgumentsMode();
ASSERT(mode != NO_ARGUMENTS_ALLOCATION);
Comment cmnt(masm_, "[ store arguments object");
if (mode == LAZY_ARGUMENTS_ALLOCATION && initial) {
// When using lazy arguments allocation, we store the hole value
// as a sentinel indicating that the arguments object hasn't been
// allocated yet.
frame_->Push(Factory::the_hole_value());
} else {
ArgumentsAccessStub stub(ArgumentsAccessStub::NEW_OBJECT);
frame_->PushFunction();
frame_->PushReceiverSlotAddress();
frame_->Push(Smi::FromInt(scope()->num_parameters()));
Result result = frame_->CallStub(&stub, 3);
frame_->Push(&result);
}
Variable* arguments = scope()->arguments()->var();
Variable* shadow = scope()->arguments_shadow()->var();
ASSERT(arguments != NULL && arguments->slot() != NULL);
ASSERT(shadow != NULL && shadow->slot() != NULL);
JumpTarget done;
bool skip_arguments = false;
if (mode == LAZY_ARGUMENTS_ALLOCATION && !initial) {
// We have to skip storing into the arguments slot if it has
// already been written to. This can happen if the a function
// has a local variable named 'arguments'.
LoadFromSlot(scope()->arguments()->var()->slot(), NOT_INSIDE_TYPEOF);
Result probe = frame_->Pop();
if (probe.is_constant()) {
// We have to skip updating the arguments object if it has been
// assigned a proper value.
skip_arguments = !probe.handle()->IsTheHole();
} else {
__ CompareRoot(probe.reg(), Heap::kTheHoleValueRootIndex);
probe.Unuse();
done.Branch(not_equal);
}
}
if (!skip_arguments) {
StoreToSlot(arguments->slot(), NOT_CONST_INIT);
if (mode == LAZY_ARGUMENTS_ALLOCATION) done.Bind();
}
StoreToSlot(shadow->slot(), NOT_CONST_INIT);
return frame_->Pop();
}
void CodeGenerator::LoadTypeofExpression(Expression* expr) {
// Special handling of identifiers as subexpressions of typeof.
Variable* variable = expr->AsVariableProxy()->AsVariable();
if (variable != NULL && !variable->is_this() && variable->is_global()) {
// For a global variable we build the property reference
// <global>.<variable> and perform a (regular non-contextual) property
// load to make sure we do not get reference errors.
Slot global(variable, Slot::CONTEXT, Context::GLOBAL_INDEX);
Literal key(variable->name());
Property property(&global, &key, RelocInfo::kNoPosition);
Reference ref(this, &property);
ref.GetValue();
} else if (variable != NULL && variable->slot() != NULL) {
// For a variable that rewrites to a slot, we signal it is the immediate
// subexpression of a typeof.
LoadFromSlotCheckForArguments(variable->slot(), INSIDE_TYPEOF);
} else {
// Anything else can be handled normally.
Load(expr);
}
}
void CodeGenerator::Comparison(AstNode* node,
Condition cc,
bool strict,
ControlDestination* dest) {
// Strict only makes sense for equality comparisons.
ASSERT(!strict || cc == equal);
Result left_side;
Result right_side;
// Implement '>' and '<=' by reversal to obtain ECMA-262 conversion order.
if (cc == greater || cc == less_equal) {
cc = ReverseCondition(cc);
left_side = frame_->Pop();
right_side = frame_->Pop();
} else {
right_side = frame_->Pop();
left_side = frame_->Pop();
}
ASSERT(cc == less || cc == equal || cc == greater_equal);
// If either side is a constant smi, optimize the comparison.
bool left_side_constant_smi =
left_side.is_constant() && left_side.handle()->IsSmi();
bool right_side_constant_smi =
right_side.is_constant() && right_side.handle()->IsSmi();
bool left_side_constant_null =
left_side.is_constant() && left_side.handle()->IsNull();
bool right_side_constant_null =
right_side.is_constant() && right_side.handle()->IsNull();
if (left_side_constant_smi || right_side_constant_smi) {
if (left_side_constant_smi && right_side_constant_smi) {
// Trivial case, comparing two constants.
int left_value = Smi::cast(*left_side.handle())->value();
int right_value = Smi::cast(*right_side.handle())->value();
switch (cc) {
case less:
dest->Goto(left_value < right_value);
break;
case equal:
dest->Goto(left_value == right_value);
break;
case greater_equal:
dest->Goto(left_value >= right_value);
break;
default:
UNREACHABLE();
}
} else {
// Only one side is a constant Smi.
// If left side is a constant Smi, reverse the operands.
// Since one side is a constant Smi, conversion order does not matter.
if (left_side_constant_smi) {
Result temp = left_side;
left_side = right_side;
right_side = temp;
cc = ReverseCondition(cc);
// This may reintroduce greater or less_equal as the value of cc.
// CompareStub and the inline code both support all values of cc.
}
// Implement comparison against a constant Smi, inlining the case
// where both sides are Smis.
left_side.ToRegister();
Register left_reg = left_side.reg();
Handle<Object> right_val = right_side.handle();
// Here we split control flow to the stub call and inlined cases
// before finally splitting it to the control destination. We use
// a jump target and branching to duplicate the virtual frame at
// the first split. We manually handle the off-frame references
// by reconstituting them on the non-fall-through path.
JumpTarget is_smi;
Condition left_is_smi = masm_->CheckSmi(left_side.reg());
is_smi.Branch(left_is_smi);
bool is_for_loop_compare = (node->AsCompareOperation() != NULL)
&& node->AsCompareOperation()->is_for_loop_condition();
if (!is_for_loop_compare && right_val->IsSmi()) {
// Right side is a constant smi and left side has been checked
// not to be a smi.
JumpTarget not_number;
__ Cmp(FieldOperand(left_reg, HeapObject::kMapOffset),
Factory::heap_number_map());
not_number.Branch(not_equal, &left_side);
__ movsd(xmm1,
FieldOperand(left_reg, HeapNumber::kValueOffset));
int value = Smi::cast(*right_val)->value();
if (value == 0) {
__ xorpd(xmm0, xmm0);
} else {
Result temp = allocator()->Allocate();
__ movl(temp.reg(), Immediate(value));
__ cvtlsi2sd(xmm0, temp.reg());
temp.Unuse();
}
__ ucomisd(xmm1, xmm0);
// Jump to builtin for NaN.
not_number.Branch(parity_even, &left_side);
left_side.Unuse();
Condition double_cc = cc;
switch (cc) {
case less: double_cc = below; break;
case equal: double_cc = equal; break;
case less_equal: double_cc = below_equal; break;
case greater: double_cc = above; break;
case greater_equal: double_cc = above_equal; break;
default: UNREACHABLE();
}
dest->true_target()->Branch(double_cc);
dest->false_target()->Jump();
not_number.Bind(&left_side);
}
// Setup and call the compare stub.
CompareStub stub(cc, strict);
Result result = frame_->CallStub(&stub, &left_side, &right_side);
result.ToRegister();
__ testq(result.reg(), result.reg());
result.Unuse();
dest->true_target()->Branch(cc);
dest->false_target()->Jump();
is_smi.Bind();
left_side = Result(left_reg);
right_side = Result(right_val);
// Test smi equality and comparison by signed int comparison.
// Both sides are smis, so we can use an Immediate.
__ SmiCompare(left_side.reg(), Smi::cast(*right_side.handle()));
left_side.Unuse();
right_side.Unuse();
dest->Split(cc);
}
} else if (cc == equal &&
(left_side_constant_null || right_side_constant_null)) {
// To make null checks efficient, we check if either the left side or
// the right side is the constant 'null'.
// If so, we optimize the code by inlining a null check instead of
// calling the (very) general runtime routine for checking equality.
Result operand = left_side_constant_null ? right_side : left_side;
right_side.Unuse();
left_side.Unuse();
operand.ToRegister();
__ CompareRoot(operand.reg(), Heap::kNullValueRootIndex);
if (strict) {
operand.Unuse();
dest->Split(equal);
} else {
// The 'null' value is only equal to 'undefined' if using non-strict
// comparisons.
dest->true_target()->Branch(equal);
__ CompareRoot(operand.reg(), Heap::kUndefinedValueRootIndex);
dest->true_target()->Branch(equal);
Condition is_smi = masm_->CheckSmi(operand.reg());
dest->false_target()->Branch(is_smi);
// It can be an undetectable object.
// Use a scratch register in preference to spilling operand.reg().
Result temp = allocator()->Allocate();
ASSERT(temp.is_valid());
__ movq(temp.reg(),
FieldOperand(operand.reg(), HeapObject::kMapOffset));
__ testb(FieldOperand(temp.reg(), Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
temp.Unuse();
operand.Unuse();
dest->Split(not_zero);
}
} else { // Neither side is a constant Smi or null.
// If either side is a non-smi constant, skip the smi check.
bool known_non_smi =
(left_side.is_constant() && !left_side.handle()->IsSmi()) ||
(right_side.is_constant() && !right_side.handle()->IsSmi());
left_side.ToRegister();
right_side.ToRegister();
if (known_non_smi) {
// When non-smi, call out to the compare stub.
CompareStub stub(cc, strict);
Result answer = frame_->CallStub(&stub, &left_side, &right_side);
// The result is a Smi, which is negative, zero, or positive.
__ SmiTest(answer.reg()); // Sets both zero and sign flag.
answer.Unuse();
dest->Split(cc);
} else {
// Here we split control flow to the stub call and inlined cases
// before finally splitting it to the control destination. We use
// a jump target and branching to duplicate the virtual frame at
// the first split. We manually handle the off-frame references
// by reconstituting them on the non-fall-through path.
JumpTarget is_smi;
Register left_reg = left_side.reg();
Register right_reg = right_side.reg();
Condition both_smi = masm_->CheckBothSmi(left_reg, right_reg);
is_smi.Branch(both_smi);
// When non-smi, call out to the compare stub.
CompareStub stub(cc, strict);
Result answer = frame_->CallStub(&stub, &left_side, &right_side);
__ SmiTest(answer.reg()); // Sets both zero and sign flags.
answer.Unuse();
dest->true_target()->Branch(cc);
dest->false_target()->Jump();
is_smi.Bind();
left_side = Result(left_reg);
right_side = Result(right_reg);
__ SmiCompare(left_side.reg(), right_side.reg());
right_side.Unuse();
left_side.Unuse();
dest->Split(cc);
}
}
}
class DeferredInlineBinaryOperation: public DeferredCode {
public:
DeferredInlineBinaryOperation(Token::Value op,
Register dst,
Register left,
Register right,
OverwriteMode mode)
: op_(op), dst_(dst), left_(left), right_(right), mode_(mode) {
set_comment("[ DeferredInlineBinaryOperation");
}
virtual void Generate();
private:
Token::Value op_;
Register dst_;
Register left_;
Register right_;
OverwriteMode mode_;
};
void DeferredInlineBinaryOperation::Generate() {
GenericBinaryOpStub stub(op_, mode_, NO_SMI_CODE_IN_STUB);
stub.GenerateCall(masm_, left_, right_);
if (!dst_.is(rax)) __ movq(dst_, rax);
}
void CodeGenerator::GenericBinaryOperation(Token::Value op,
StaticType* type,
OverwriteMode overwrite_mode) {
Comment cmnt(masm_, "[ BinaryOperation");
Comment cmnt_token(masm_, Token::String(op));
if (op == Token::COMMA) {
// Simply discard left value.
frame_->Nip(1);
return;
}
Result right = frame_->Pop();
Result left = frame_->Pop();
if (op == Token::ADD) {
bool left_is_string = left.is_constant() && left.handle()->IsString();
bool right_is_string = right.is_constant() && right.handle()->IsString();
if (left_is_string || right_is_string) {
frame_->Push(&left);
frame_->Push(&right);
Result answer;
if (left_is_string) {
if (right_is_string) {
// TODO(lrn): if both are constant strings
// -- do a compile time cons, if allocation during codegen is allowed.
answer = frame_->CallRuntime(Runtime::kStringAdd, 2);
} else {
answer =
frame_->InvokeBuiltin(Builtins::STRING_ADD_LEFT, CALL_FUNCTION, 2);
}
} else if (right_is_string) {
answer =
frame_->InvokeBuiltin(Builtins::STRING_ADD_RIGHT, CALL_FUNCTION, 2);
}
frame_->Push(&answer);
return;
}
// Neither operand is known to be a string.
}
bool left_is_smi_constant = left.is_constant() && left.handle()->IsSmi();
bool left_is_non_smi_constant = left.is_constant() && !left.handle()->IsSmi();
bool right_is_smi_constant = right.is_constant() && right.handle()->IsSmi();
bool right_is_non_smi_constant =
right.is_constant() && !right.handle()->IsSmi();
if (left_is_smi_constant && right_is_smi_constant) {
// Compute the constant result at compile time, and leave it on the frame.
int left_int = Smi::cast(*left.handle())->value();
int right_int = Smi::cast(*right.handle())->value();
if (FoldConstantSmis(op, left_int, right_int)) return;
}
// Get number type of left and right sub-expressions.
NumberInfo::Type operands_type =
NumberInfo::Combine(left.number_info(), right.number_info());
Result answer;
if (left_is_non_smi_constant || right_is_non_smi_constant) {
GenericBinaryOpStub stub(op,
overwrite_mode,
NO_SMI_CODE_IN_STUB,
operands_type);
answer = stub.GenerateCall(masm_, frame_, &left, &right);
} else if (right_is_smi_constant) {
answer = ConstantSmiBinaryOperation(op, &left, right.handle(),
type, false, overwrite_mode);
} else if (left_is_smi_constant) {
answer = ConstantSmiBinaryOperation(op, &right, left.handle(),
type, true, overwrite_mode);
} else {
// Set the flags based on the operation, type and loop nesting level.
// Bit operations always assume they likely operate on Smis. Still only
// generate the inline Smi check code if this operation is part of a loop.
// For all other operations only inline the Smi check code for likely smis
// if the operation is part of a loop.
if (loop_nesting() > 0 && (Token::IsBitOp(op) || type->IsLikelySmi())) {
answer = LikelySmiBinaryOperation(op, &left, &right, overwrite_mode);
} else {
GenericBinaryOpStub stub(op,
overwrite_mode,
NO_GENERIC_BINARY_FLAGS,
operands_type);
answer = stub.GenerateCall(masm_, frame_, &left, &right);
}
}
// Set NumberInfo of result according to the operation performed.
// We rely on the fact that smis have a 32 bit payload on x64.
ASSERT(kSmiValueSize == 32);
NumberInfo::Type result_type = NumberInfo::kUnknown;
switch (op) {
case Token::COMMA:
result_type = right.number_info();
break;
case Token::OR:
case Token::AND:
// Result type can be either of the two input types.
result_type = operands_type;
break;
case Token::BIT_OR:
case Token::BIT_XOR:
case Token::BIT_AND:
// Result is always a smi.
result_type = NumberInfo::kSmi;
break;
case Token::SAR:
case Token::SHL:
// Result is always a smi.
result_type = NumberInfo::kSmi;
break;
case Token::SHR:
// Result of x >>> y is always a smi if y >= 1, otherwise a number.
result_type = (right.is_constant() && right.handle()->IsSmi()
&& Smi::cast(*right.handle())->value() >= 1)
? NumberInfo::kSmi
: NumberInfo::kNumber;
break;
case Token::ADD:
// Result could be a string or a number. Check types of inputs.
result_type = NumberInfo::IsNumber(operands_type)
? NumberInfo::kNumber
: NumberInfo::kUnknown;
break;
case Token::SUB:
case Token::MUL:
case Token::DIV:
case Token::MOD:
// Result is always a number.
result_type = NumberInfo::kNumber;
break;
default:
UNREACHABLE();
}
answer.set_number_info(result_type);
frame_->Push(&answer);
}
// Emit a LoadIC call to get the value from receiver and leave it in
// dst. The receiver register is restored after the call.
class DeferredReferenceGetNamedValue: public DeferredCode {
public:
DeferredReferenceGetNamedValue(Register dst,
Register receiver,
Handle<String> name)
: dst_(dst), receiver_(receiver), name_(name) {
set_comment("[ DeferredReferenceGetNamedValue");
}
virtual void Generate();
Label* patch_site() { return &patch_site_; }
private:
Label patch_site_;
Register dst_;
Register receiver_;
Handle<String> name_;
};
void DeferredReferenceGetNamedValue::Generate() {
__ push(receiver_);
__ Move(rcx, name_);
Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET);
// The call must be followed by a test rax instruction to indicate
// that the inobject property case was inlined.
//
// Store the delta to the map check instruction here in the test
// instruction. Use masm_-> instead of the __ macro since the
// latter can't return a value.
int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site());
// Here we use masm_-> instead of the __ macro because this is the
// instruction that gets patched and coverage code gets in the way.
masm_->testl(rax, Immediate(-delta_to_patch_site));
__ IncrementCounter(&Counters::named_load_inline_miss, 1);
if (!dst_.is(rax)) __ movq(dst_, rax);
__ pop(receiver_);
}
void DeferredInlineSmiAdd::Generate() {
GenericBinaryOpStub igostub(Token::ADD, overwrite_mode_, NO_SMI_CODE_IN_STUB);
igostub.GenerateCall(masm_, dst_, value_);
if (!dst_.is(rax)) __ movq(dst_, rax);
}
void DeferredInlineSmiAddReversed::Generate() {
GenericBinaryOpStub igostub(Token::ADD, overwrite_mode_, NO_SMI_CODE_IN_STUB);
igostub.GenerateCall(masm_, value_, dst_);
if (!dst_.is(rax)) __ movq(dst_, rax);
}
void DeferredInlineSmiSub::Generate() {
GenericBinaryOpStub igostub(Token::SUB, overwrite_mode_, NO_SMI_CODE_IN_STUB);
igostub.GenerateCall(masm_, dst_, value_);
if (!dst_.is(rax)) __ movq(dst_, rax);
}
void DeferredInlineSmiOperation::Generate() {
// For mod we don't generate all the Smi code inline.
GenericBinaryOpStub stub(
op_,
overwrite_mode_,
(op_ == Token::MOD) ? NO_GENERIC_BINARY_FLAGS : NO_SMI_CODE_IN_STUB);
stub.GenerateCall(masm_, src_, value_);
if (!dst_.is(rax)) __ movq(dst_, rax);
}
Result CodeGenerator::ConstantSmiBinaryOperation(Token::Value op,
Result* operand,
Handle<Object> value,
StaticType* type,
bool reversed,
OverwriteMode overwrite_mode) {
// NOTE: This is an attempt to inline (a bit) more of the code for
// some possible smi operations (like + and -) when (at least) one
// of the operands is a constant smi.
// Consumes the argument "operand".
// TODO(199): Optimize some special cases of operations involving a
// smi literal (multiply by 2, shift by 0, etc.).
if (IsUnsafeSmi(value)) {
Result unsafe_operand(value);
if (reversed) {
return LikelySmiBinaryOperation(op, &unsafe_operand, operand,
overwrite_mode);
} else {
return LikelySmiBinaryOperation(op, operand, &unsafe_operand,
overwrite_mode);
}
}
// Get the literal value.
Smi* smi_value = Smi::cast(*value);
int int_value = smi_value->value();
Result answer;
switch (op) {
case Token::ADD: {
operand->ToRegister();
frame_->Spill(operand->reg());
DeferredCode* deferred = NULL;
if (reversed) {
deferred = new DeferredInlineSmiAddReversed(operand->reg(),
smi_value,
overwrite_mode);
} else {
deferred = new DeferredInlineSmiAdd(operand->reg(),
smi_value,
overwrite_mode);
}
__ JumpIfNotSmi(operand->reg(), deferred->entry_label());
__ SmiAddConstant(operand->reg(),
operand->reg(),
smi_value,
deferred->entry_label());
deferred->BindExit();
answer = *operand;
break;
}
case Token::SUB: {
if (reversed) {
Result constant_operand(value);
answer = LikelySmiBinaryOperation(op, &constant_operand, operand,
overwrite_mode);
} else {
operand->ToRegister();
frame_->Spill(operand->reg());
DeferredCode* deferred = new DeferredInlineSmiSub(operand->reg(),
smi_value,
overwrite_mode);
__ JumpIfNotSmi(operand->reg(), deferred->entry_label());
// A smi currently fits in a 32-bit Immediate.
__ SmiSubConstant(operand->reg(),
operand->reg(),
smi_value,
deferred->entry_label());
deferred->BindExit();
answer = *operand;
}
break;
}
case Token::SAR:
if (reversed) {
Result constant_operand(value);
answer = LikelySmiBinaryOperation(op, &constant_operand, operand,
overwrite_mode);
} else {
// Only the least significant 5 bits of the shift value are used.
// In the slow case, this masking is done inside the runtime call.
int shift_value = int_value & 0x1f;
operand->ToRegister();
frame_->Spill(operand->reg());
DeferredInlineSmiOperation* deferred =
new DeferredInlineSmiOperation(op,
operand->reg(),
operand->reg(),
smi_value,
overwrite_mode);
__ JumpIfNotSmi(operand->reg(), deferred->entry_label());
__ SmiShiftArithmeticRightConstant(operand->reg(),
operand->reg(),
shift_value);
deferred->BindExit();
answer = *operand;
}
break;
case Token::SHR:
if (reversed) {
Result constant_operand(value);
answer = LikelySmiBinaryOperation(op, &constant_operand, operand,
overwrite_mode);
} else {
// Only the least significant 5 bits of the shift value are used.
// In the slow case, this masking is done inside the runtime call.
int shift_value = int_value & 0x1f;
operand->ToRegister();
answer = allocator()->Allocate();
ASSERT(answer.is_valid());
DeferredInlineSmiOperation* deferred =
new DeferredInlineSmiOperation(op,
answer.reg(),
operand->reg(),
smi_value,
overwrite_mode);
__ JumpIfNotSmi(operand->reg(), deferred->entry_label());
__ SmiShiftLogicalRightConstant(answer.reg(),
operand->reg(),
shift_value,
deferred->entry_label());
deferred->BindExit();
operand->Unuse();
}
break;
case Token::SHL:
if (reversed) {
Result constant_operand(value);
answer = LikelySmiBinaryOperation(op, &constant_operand, operand,
overwrite_mode);
} else {
// Only the least significant 5 bits of the shift value are used.
// In the slow case, this masking is done inside the runtime call.
int shift_value = int_value & 0x1f;
operand->ToRegister();
if (shift_value == 0) {
// Spill operand so it can be overwritten in the slow case.
frame_->Spill(operand->reg());
DeferredInlineSmiOperation* deferred =
new DeferredInlineSmiOperation(op,
operand->reg(),
operand->reg(),
smi_value,
overwrite_mode);
__ JumpIfNotSmi(operand->reg(), deferred->entry_label());
deferred->BindExit();
answer = *operand;
} else {
// Use a fresh temporary for nonzero shift values.
answer = allocator()->Allocate();
ASSERT(answer.is_valid());
DeferredInlineSmiOperation* deferred =
new DeferredInlineSmiOperation(op,
answer.reg(),
operand->reg(),
smi_value,
overwrite_mode);
__ JumpIfNotSmi(operand->reg(), deferred->entry_label());
__ SmiShiftLeftConstant(answer.reg(),
operand->reg(),
shift_value,
deferred->entry_label());
deferred->BindExit();
operand->Unuse();
}
}
break;
case Token::BIT_OR:
case Token::BIT_XOR:
case Token::BIT_AND: {
operand->ToRegister();
frame_->Spill(operand->reg());
if (reversed) {
// Bit operations with a constant smi are commutative.
// We can swap left and right operands with no problem.
// Swap left and right overwrite modes. 0->0, 1->2, 2->1.
overwrite_mode = static_cast<OverwriteMode>((2 * overwrite_mode) % 3);
}
DeferredCode* deferred = new DeferredInlineSmiOperation(op,
operand->reg(),
operand->reg(),
smi_value,
overwrite_mode);
__ JumpIfNotSmi(operand->reg(), deferred->entry_label());
if (op == Token::BIT_AND) {
__ SmiAndConstant(operand->reg(), operand->reg(), smi_value);
} else if (op == Token::BIT_XOR) {
if (int_value != 0) {
__ SmiXorConstant(operand->reg(), operand->reg(), smi_value);
}
} else {
ASSERT(op == Token::BIT_OR);
if (int_value != 0) {
__ SmiOrConstant(operand->reg(), operand->reg(), smi_value);
}
}
deferred->BindExit();
answer = *operand;
break;
}
// Generate inline code for mod of powers of 2 and negative powers of 2.
case Token::MOD:
if (!reversed &&
int_value != 0 &&
(IsPowerOf2(int_value) || IsPowerOf2(-int_value))) {
operand->ToRegister();
frame_->Spill(operand->reg());
DeferredCode* deferred =
new DeferredInlineSmiOperation(op,
operand->reg(),
operand->reg(),
smi_value,
overwrite_mode);
// Check for negative or non-Smi left hand side.
__ JumpIfNotPositiveSmi(operand->reg(), deferred->entry_label());
if (int_value < 0) int_value = -int_value;
if (int_value == 1) {
__ Move(operand->reg(), Smi::FromInt(0));
} else {
__ SmiAndConstant(operand->reg(),
operand->reg(),
Smi::FromInt(int_value - 1));
}
deferred->BindExit();
answer = *operand;
break; // This break only applies if we generated code for MOD.
}
// Fall through if we did not find a power of 2 on the right hand side!
// The next case must be the default.
default: {
Result constant_operand(value);
if (reversed) {
answer = LikelySmiBinaryOperation(op, &constant_operand, operand,
overwrite_mode);
} else {
answer = LikelySmiBinaryOperation(op, operand, &constant_operand,
overwrite_mode);
}
break;
}
}
ASSERT(answer.is_valid());
return answer;
}
Result CodeGenerator::LikelySmiBinaryOperation(Token::Value op,
Result* left,
Result* right,
OverwriteMode overwrite_mode) {
Result answer;
// Special handling of div and mod because they use fixed registers.
if (op == Token::DIV || op == Token::MOD) {
// We need rax as the quotient register, rdx as the remainder
// register, neither left nor right in rax or rdx, and left copied
// to rax.
Result quotient;
Result remainder;
bool left_is_in_rax = false;
// Step 1: get rax for quotient.
if ((left->is_register() && left->reg().is(rax)) ||
(right->is_register() && right->reg().is(rax))) {
// One or both is in rax. Use a fresh non-rdx register for
// them.
Result fresh = allocator_->Allocate();
ASSERT(fresh.is_valid());
if (fresh.reg().is(rdx)) {
remainder = fresh;
fresh = allocator_->Allocate();
ASSERT(fresh.is_valid());
}
if (left->is_register() && left->reg().is(rax)) {
quotient = *left;
*left = fresh;
left_is_in_rax = true;
}
if (right->is_register() && right->reg().is(rax)) {
quotient = *right;
*right = fresh;
}
__ movq(fresh.reg(), rax);
} else {
// Neither left nor right is in rax.
quotient = allocator_->Allocate(rax);
}
ASSERT(quotient.is_register() && quotient.reg().is(rax));
ASSERT(!(left->is_register() && left->reg().is(rax)));
ASSERT(!(right->is_register() && right->reg().is(rax)));
// Step 2: get rdx for remainder if necessary.
if (!remainder.is_valid()) {
if ((left->is_register() && left->reg().is(rdx)) ||
(right->is_register() && right->reg().is(rdx))) {
Result fresh = allocator_->Allocate();
ASSERT(fresh.is_valid());
if (left->is_register() && left->reg().is(rdx)) {
remainder = *left;
*left = fresh;
}
if (right->is_register() && right->reg().is(rdx)) {
remainder = *right;
*right = fresh;
}
__ movq(fresh.reg(), rdx);
} else {
// Neither left nor right is in rdx.
remainder = allocator_->Allocate(rdx);
}
}
ASSERT(remainder.is_register() && remainder.reg().is(rdx));
ASSERT(!(left->is_register() && left->reg().is(rdx)));
ASSERT(!(right->is_register() && right->reg().is(rdx)));
left->ToRegister();
right->ToRegister();
frame_->Spill(rax);
frame_->Spill(rdx);
// Check that left and right are smi tagged.
DeferredInlineBinaryOperation* deferred =
new DeferredInlineBinaryOperation(op,
(op == Token::DIV) ? rax : rdx,
left->reg(),
right->reg(),
overwrite_mode);
__ JumpIfNotBothSmi(left->reg(), right->reg(), deferred->entry_label());
if (op == Token::DIV) {
__ SmiDiv(rax, left->reg(), right->reg(), deferred->entry_label());
deferred->BindExit();
left->Unuse();
right->Unuse();
answer = quotient;
} else {
ASSERT(op == Token::MOD);
__ SmiMod(rdx, left->reg(), right->reg(), deferred->entry_label());
deferred->BindExit();
left->Unuse();
right->Unuse();
answer = remainder;
}
ASSERT(answer.is_valid());
return answer;
}
// Special handling of shift operations because they use fixed
// registers.
if (op == Token::SHL || op == Token::SHR || op == Token::SAR) {
// Move left out of rcx if necessary.
if (left->is_register() && left->reg().is(rcx)) {
*left = allocator_->Allocate();
ASSERT(left->is_valid());
__ movq(left->reg(), rcx);
}
right->ToRegister(rcx);
left->ToRegister();
ASSERT(left->is_register() && !left->reg().is(rcx));
ASSERT(right->is_register() && right->reg().is(rcx));
// We will modify right, it must be spilled.
frame_->Spill(rcx);
// Use a fresh answer register to avoid spilling the left operand.
answer = allocator_->Allocate();
ASSERT(answer.is_valid());
// Check that both operands are smis using the answer register as a
// temporary.
DeferredInlineBinaryOperation* deferred =
new DeferredInlineBinaryOperation(op,
answer.reg(),
left->reg(),
rcx,
overwrite_mode);
__ movq(answer.reg(), left->reg());
__ or_(answer.reg(), rcx);
__ JumpIfNotSmi(answer.reg(), deferred->entry_label());
// Perform the operation.
switch (op) {
case Token::SAR:
__ SmiShiftArithmeticRight(answer.reg(), left->reg(), rcx);
break;
case Token::SHR: {
__ SmiShiftLogicalRight(answer.reg(),
left->reg(),
rcx,
deferred->entry_label());
break;
}
case Token::SHL: {
__ SmiShiftLeft(answer.reg(),
left->reg(),
rcx,
deferred->entry_label());
break;
}
default:
UNREACHABLE();
}
deferred->BindExit();
left->Unuse();
right->Unuse();
ASSERT(answer.is_valid());
return answer;
}
// Handle the other binary operations.
left->ToRegister();
right->ToRegister();
// A newly allocated register answer is used to hold the answer. The
// registers containing left and right are not modified so they don't
// need to be spilled in the fast case.
answer = allocator_->Allocate();
ASSERT(answer.is_valid());
// Perform the smi tag check.
DeferredInlineBinaryOperation* deferred =
new DeferredInlineBinaryOperation(op,
answer.reg(),
left->reg(),
right->reg(),
overwrite_mode);
__ JumpIfNotBothSmi(left->reg(), right->reg(), deferred->entry_label());
switch (op) {
case Token::ADD:
__ SmiAdd(answer.reg(),
left->reg(),
right->reg(),
deferred->entry_label());
break;
case Token::SUB:
__ SmiSub(answer.reg(),
left->reg(),
right->reg(),
deferred->entry_label());
break;
case Token::MUL: {
__ SmiMul(answer.reg(),
left->reg(),
right->reg(),
deferred->entry_label());
break;
}
case Token::BIT_OR:
__ SmiOr(answer.reg(), left->reg(), right->reg());
break;
case Token::BIT_AND:
__ SmiAnd(answer.reg(), left->reg(), right->reg());
break;
case Token::BIT_XOR:
__ SmiXor(answer.reg(), left->reg(), right->reg());
break;
default:
UNREACHABLE();
break;
}
deferred->BindExit();
left->Unuse();
right->Unuse();
ASSERT(answer.is_valid());
return answer;
}
Result CodeGenerator::EmitKeyedLoad(bool is_global) {
Comment cmnt(masm_, "[ Load from keyed Property");
// Inline array load code if inside of a loop. We do not know
// the receiver map yet, so we initially generate the code with
// a check against an invalid map. In the inline cache code, we
// patch the map check if appropriate.
if (loop_nesting() > 0) {
Comment cmnt(masm_, "[ Inlined load from keyed Property");
Result key = frame_->Pop();
Result receiver = frame_->Pop();
key.ToRegister();
receiver.ToRegister();
// Use a fresh temporary to load the elements without destroying
// the receiver which is needed for the deferred slow case.
Result elements = allocator()->Allocate();
ASSERT(elements.is_valid());
// Use a fresh temporary for the index and later the loaded
// value.
Result index = allocator()->Allocate();
ASSERT(index.is_valid());
DeferredReferenceGetKeyedValue* deferred =
new DeferredReferenceGetKeyedValue(index.reg(),
receiver.reg(),
key.reg(),
is_global);
// Check that the receiver is not a smi (only needed if this
// is not a load from the global context) and that it has the
// expected map.
if (!is_global) {
__ JumpIfSmi(receiver.reg(), deferred->entry_label());
}
// Initially, use an invalid map. The map is patched in the IC
// initialization code.
__ bind(deferred->patch_site());
// Use masm-> here instead of the double underscore macro since extra
// coverage code can interfere with the patching. Do not use
// root array to load null_value, since it must be patched with
// the expected receiver map.
masm_->movq(kScratchRegister, Factory::null_value(),
RelocInfo::EMBEDDED_OBJECT);
masm_->cmpq(FieldOperand(receiver.reg(), HeapObject::kMapOffset),
kScratchRegister);
deferred->Branch(not_equal);
// Check that the key is a non-negative smi.
__ JumpIfNotPositiveSmi(key.reg(), deferred->entry_label());
// Get the elements array from the receiver and check that it
// is not a dictionary.
__ movq(elements.reg(),
FieldOperand(receiver.reg(), JSObject::kElementsOffset));
__ Cmp(FieldOperand(elements.reg(), HeapObject::kMapOffset),
Factory::fixed_array_map());
deferred->Branch(not_equal);
// Shift the key to get the actual index value and check that
// it is within bounds.
__ SmiToInteger32(index.reg(), key.reg());
__ cmpl(index.reg(),
FieldOperand(elements.reg(), FixedArray::kLengthOffset));
deferred->Branch(above_equal);
// The index register holds the un-smi-tagged key. It has been
// zero-extended to 64-bits, so it can be used directly as index in the
// operand below.
// Load and check that the result is not the hole. We could
// reuse the index or elements register for the value.
//
// TODO(206): Consider whether it makes sense to try some
// heuristic about which register to reuse. For example, if
// one is rax, the we can reuse that one because the value
// coming from the deferred code will be in rax.
Result value = index;
__ movq(value.reg(),
Operand(elements.reg(),
index.reg(),
times_pointer_size,
FixedArray::kHeaderSize - kHeapObjectTag));
elements.Unuse();
index.Unuse();
__ CompareRoot(value.reg(), Heap::kTheHoleValueRootIndex);
deferred->Branch(equal);
__ IncrementCounter(&Counters::keyed_load_inline, 1);
deferred->BindExit();
// Restore the receiver and key to the frame and push the
// result on top of it.
frame_->Push(&receiver);
frame_->Push(&key);
return value;
} else {
Comment cmnt(masm_, "[ Load from keyed Property");
RelocInfo::Mode mode = is_global
? RelocInfo::CODE_TARGET_CONTEXT
: RelocInfo::CODE_TARGET;
Result answer = frame_->CallKeyedLoadIC(mode);
// Make sure that we do not have a test instruction after the
// call. A test instruction after the call is used to
// indicate that we have generated an inline version of the
// keyed load. The explicit nop instruction is here because
// the push that follows might be peep-hole optimized away.
__ nop();
return answer;
}
}
#undef __
#define __ ACCESS_MASM(masm)
Handle<String> Reference::GetName() {
ASSERT(type_ == NAMED);
Property* property = expression_->AsProperty();
if (property == NULL) {
// Global variable reference treated as a named property reference.
VariableProxy* proxy = expression_->AsVariableProxy();
ASSERT(proxy->AsVariable() != NULL);
ASSERT(proxy->AsVariable()->is_global());
return proxy->name();
} else {
Literal* raw_name = property->key()->AsLiteral();
ASSERT(raw_name != NULL);
return Handle<String>(String::cast(*raw_name->handle()));
}
}
void Reference::GetValue() {
ASSERT(!cgen_->in_spilled_code());
ASSERT(cgen_->HasValidEntryRegisters());
ASSERT(!is_illegal());
MacroAssembler* masm = cgen_->masm();
// Record the source position for the property load.
Property* property = expression_->AsProperty();
if (property != NULL) {
cgen_->CodeForSourcePosition(property->position());
}
switch (type_) {
case SLOT: {
Comment cmnt(masm, "[ Load from Slot");
Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot();
ASSERT(slot != NULL);
cgen_->LoadFromSlotCheckForArguments(slot, NOT_INSIDE_TYPEOF);
break;
}
case NAMED: {
Variable* var = expression_->AsVariableProxy()->AsVariable();
bool is_global = var != NULL;
ASSERT(!is_global || var->is_global());
// Do not inline the inobject property case for loads from the global
// object. Also do not inline for unoptimized code. This saves time
// in the code generator. Unoptimized code is toplevel code or code
// that is not in a loop.
if (is_global ||
cgen_->scope()->is_global_scope() ||
cgen_->loop_nesting() == 0) {
Comment cmnt(masm, "[ Load from named Property");
cgen_->frame()->Push(GetName());
RelocInfo::Mode mode = is_global
? RelocInfo::CODE_TARGET_CONTEXT
: RelocInfo::CODE_TARGET;
Result answer = cgen_->frame()->CallLoadIC(mode);
// A test rax instruction following the call signals that the
// inobject property case was inlined. Ensure that there is not
// a test rax instruction here.
__ nop();
cgen_->frame()->Push(&answer);
} else {
// Inline the inobject property case.
Comment cmnt(masm, "[ Inlined named property load");
Result receiver = cgen_->frame()->Pop();
receiver.ToRegister();
Result value = cgen_->allocator()->Allocate();
ASSERT(value.is_valid());
// Cannot use r12 for receiver, because that changes
// the distance between a call and a fixup location,
// due to a special encoding of r12 as r/m in a ModR/M byte.
if (receiver.reg().is(r12)) {
// Swap receiver and value.
__ movq(value.reg(), receiver.reg());
Result temp = receiver;
receiver = value;
value = temp;
cgen_->frame()->Spill(value.reg()); // r12 may have been shared.
}
DeferredReferenceGetNamedValue* deferred =
new DeferredReferenceGetNamedValue(value.reg(),
receiver.reg(),
GetName());
// Check that the receiver is a heap object.
__ JumpIfSmi(receiver.reg(), deferred->entry_label());
__ bind(deferred->patch_site());
// This is the map check instruction that will be patched (so we can't
// use the double underscore macro that may insert instructions).
// Initially use an invalid map to force a failure.
masm->Move(kScratchRegister, Factory::null_value());
masm->cmpq(FieldOperand(receiver.reg(), HeapObject::kMapOffset),
kScratchRegister);
// This branch is always a forwards branch so it's always a fixed
// size which allows the assert below to succeed and patching to work.
// Don't use deferred->Branch(...), since that might add coverage code.
masm->j(not_equal, deferred->entry_label());
// The delta from the patch label to the load offset must be
// statically known.
ASSERT(masm->SizeOfCodeGeneratedSince(deferred->patch_site()) ==
LoadIC::kOffsetToLoadInstruction);
// The initial (invalid) offset has to be large enough to force
// a 32-bit instruction encoding to allow patching with an
// arbitrary offset. Use kMaxInt (minus kHeapObjectTag).
int offset = kMaxInt;
masm->movq(value.reg(), FieldOperand(receiver.reg(), offset));
__ IncrementCounter(&Counters::named_load_inline, 1);
deferred->BindExit();
cgen_->frame()->Push(&receiver);
cgen_->frame()->Push(&value);
}
break;
}
case KEYED: {
Comment cmnt(masm, "[ Load from keyed Property");
Variable* var = expression_->AsVariableProxy()->AsVariable();
bool is_global = var != NULL;
ASSERT(!is_global || var->is_global());
Result value = cgen_->EmitKeyedLoad(is_global);
cgen_->frame()->Push(&value);
break;
}
default:
UNREACHABLE();
}
if (!persist_after_get_) {
cgen_->UnloadReference(this);
}
}
void Reference::TakeValue() {
// TODO(X64): This function is completely architecture independent. Move
// it somewhere shared.
// For non-constant frame-allocated slots, we invalidate the value in the
// slot. For all others, we fall back on GetValue.
ASSERT(!cgen_->in_spilled_code());
ASSERT(!is_illegal());
if (type_ != SLOT) {
GetValue();
return;
}
Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot();
ASSERT(slot != NULL);
if (slot->type() == Slot::LOOKUP ||
slot->type() == Slot::CONTEXT ||
slot->var()->mode() == Variable::CONST ||
slot->is_arguments()) {
GetValue();
return;
}
// Only non-constant, frame-allocated parameters and locals can reach
// here. Be careful not to use the optimizations for arguments
// object access since it may not have been initialized yet.
ASSERT(!slot->is_arguments());
if (slot->type() == Slot::PARAMETER) {
cgen_->frame()->TakeParameterAt(slot->index());
} else {
ASSERT(slot->type() == Slot::LOCAL);
cgen_->frame()->TakeLocalAt(slot->index());
}
ASSERT(persist_after_get_);
// Do not unload the reference, because it is used in SetValue.
}
void Reference::SetValue(InitState init_state) {
ASSERT(cgen_->HasValidEntryRegisters());
ASSERT(!is_illegal());
MacroAssembler* masm = cgen_->masm();
switch (type_) {
case SLOT: {
Comment cmnt(masm, "[ Store to Slot");
Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot();
ASSERT(slot != NULL);
cgen_->StoreToSlot(slot, init_state);
cgen_->UnloadReference(this);
break;
}
case NAMED: {
Comment cmnt(masm, "[ Store to named Property");
cgen_->frame()->Push(GetName());
Result answer = cgen_->frame()->CallStoreIC();
cgen_->frame()->Push(&answer);
set_unloaded();
break;
}
case KEYED: {
Comment cmnt(masm, "[ Store to keyed Property");
// Generate inlined version of the keyed store if the code is in
// a loop and the key is likely to be a smi.
Property* property = expression()->AsProperty();
ASSERT(property != NULL);
StaticType* key_smi_analysis = property->key()->type();
if (cgen_->loop_nesting() > 0 && key_smi_analysis->IsLikelySmi()) {
Comment cmnt(masm, "[ Inlined store to keyed Property");
// Get the receiver, key and value into registers.
Result value = cgen_->frame()->Pop();
Result key = cgen_->frame()->Pop();
Result receiver = cgen_->frame()->Pop();
Result tmp = cgen_->allocator_->Allocate();
ASSERT(tmp.is_valid());
// Determine whether the value is a constant before putting it
// in a register.
bool value_is_constant = value.is_constant();
// Make sure that value, key and receiver are in registers.
value.ToRegister();
key.ToRegister();
receiver.ToRegister();
DeferredReferenceSetKeyedValue* deferred =
new DeferredReferenceSetKeyedValue(value.reg(),
key.reg(),
receiver.reg());
// Check that the value is a smi if it is not a constant.
// We can skip the write barrier for smis and constants.
if (!value_is_constant) {
__ JumpIfNotSmi(value.reg(), deferred->entry_label());
}
// Check that the key is a non-negative smi.
__ JumpIfNotPositiveSmi(key.reg(), deferred->entry_label());
// Check that the receiver is not a smi.
__ JumpIfSmi(receiver.reg(), deferred->entry_label());
// Check that the receiver is a JSArray.
__ CmpObjectType(receiver.reg(), JS_ARRAY_TYPE, kScratchRegister);
deferred->Branch(not_equal);
// Check that the key is within bounds. Both the key and the
// length of the JSArray are smis.
__ SmiCompare(FieldOperand(receiver.reg(), JSArray::kLengthOffset),
key.reg());
deferred->Branch(less_equal);
// Get the elements array from the receiver and check that it
// is a flat array (not a dictionary).
__ movq(tmp.reg(),
FieldOperand(receiver.reg(), JSObject::kElementsOffset));
// Bind the deferred code patch site to be able to locate the
// fixed array map comparison. When debugging, we patch this
// comparison to always fail so that we will hit the IC call
// in the deferred code which will allow the debugger to
// break for fast case stores.
__ bind(deferred->patch_site());
// Avoid using __ to ensure the distance from patch_site
// to the map address is always the same.
masm->movq(kScratchRegister, Factory::fixed_array_map(),
RelocInfo::EMBEDDED_OBJECT);
__ cmpq(FieldOperand(tmp.reg(), HeapObject::kMapOffset),
kScratchRegister);
deferred->Branch(not_equal);
// Store the value.
SmiIndex index =
masm->SmiToIndex(kScratchRegister, key.reg(), kPointerSizeLog2);
__ movq(Operand(tmp.reg(),
index.reg,
index.scale,
FixedArray::kHeaderSize - kHeapObjectTag),
value.reg());
__ IncrementCounter(&Counters::keyed_store_inline, 1);
deferred->BindExit();
cgen_->frame()->Push(&receiver);
cgen_->frame()->Push(&key);
cgen_->frame()->Push(&value);
} else {
Result answer = cgen_->frame()->CallKeyedStoreIC();
// Make sure that we do not have a test instruction after the
// call. A test instruction after the call is used to
// indicate that we have generated an inline version of the
// keyed store.
masm->nop();
cgen_->frame()->Push(&answer);
}
cgen_->UnloadReference(this);
break;
}
default:
UNREACHABLE();
}
}
void FastNewClosureStub::Generate(MacroAssembler* masm) {
// Clone the boilerplate in new space. Set the context to the
// current context in rsi.
Label gc;
__ AllocateInNewSpace(JSFunction::kSize, rax, rbx, rcx, &gc, TAG_OBJECT);
// Get the boilerplate function from the stack.
__ movq(rdx, Operand(rsp, 1 * kPointerSize));
// Compute the function map in the current global context and set that
// as the map of the allocated object.
__ movq(rcx, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
__ movq(rcx, FieldOperand(rcx, GlobalObject::kGlobalContextOffset));
__ movq(rcx, Operand(rcx, Context::SlotOffset(Context::FUNCTION_MAP_INDEX)));
__ movq(FieldOperand(rax, JSObject::kMapOffset), rcx);
// Clone the rest of the boilerplate fields. We don't have to update
// the write barrier because the allocated object is in new space.
for (int offset = kPointerSize;
offset < JSFunction::kSize;
offset += kPointerSize) {
if (offset == JSFunction::kContextOffset) {
__ movq(FieldOperand(rax, offset), rsi);
} else {
__ movq(rbx, FieldOperand(rdx, offset));
__ movq(FieldOperand(rax, offset), rbx);
}
}
// Return and remove the on-stack parameter.
__ ret(1 * kPointerSize);
// Create a new closure through the slower runtime call.
__ bind(&gc);
__ pop(rcx); // Temporarily remove return address.
__ pop(rdx);
__ push(rsi);
__ push(rdx);
__ push(rcx); // Restore return address.
__ TailCallRuntime(ExternalReference(Runtime::kNewClosure), 2, 1);
}
void FastNewContextStub::Generate(MacroAssembler* masm) {
// Try to allocate the context in new space.
Label gc;
int length = slots_ + Context::MIN_CONTEXT_SLOTS;
__ AllocateInNewSpace((length * kPointerSize) + FixedArray::kHeaderSize,
rax, rbx, rcx, &gc, TAG_OBJECT);
// Get the function from the stack.
__ movq(rcx, Operand(rsp, 1 * kPointerSize));
// Setup the object header.
__ LoadRoot(kScratchRegister, Heap::kContextMapRootIndex);
__ movq(FieldOperand(rax, HeapObject::kMapOffset), kScratchRegister);
__ movl(FieldOperand(rax, Array::kLengthOffset), Immediate(length));
// Setup the fixed slots.
__ xor_(rbx, rbx); // Set to NULL.
__ movq(Operand(rax, Context::SlotOffset(Context::CLOSURE_INDEX)), rcx);
__ movq(Operand(rax, Context::SlotOffset(Context::FCONTEXT_INDEX)), rax);
__ movq(Operand(rax, Context::SlotOffset(Context::PREVIOUS_INDEX)), rbx);
__ movq(Operand(rax, Context::SlotOffset(Context::EXTENSION_INDEX)), rbx);
// Copy the global object from the surrounding context.
__ movq(rbx, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
__ movq(Operand(rax, Context::SlotOffset(Context::GLOBAL_INDEX)), rbx);
// Initialize the rest of the slots to undefined.
__ LoadRoot(rbx, Heap::kUndefinedValueRootIndex);
for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) {
__ movq(Operand(rax, Context::SlotOffset(i)), rbx);
}
// Return and remove the on-stack parameter.
__ movq(rsi, rax);
__ ret(1 * kPointerSize);
// Need to collect. Call into runtime system.
__ bind(&gc);
__ TailCallRuntime(ExternalReference(Runtime::kNewContext), 1, 1);
}
void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) {
// Stack layout on entry:
//
// [rsp + kPointerSize]: constant elements.
// [rsp + (2 * kPointerSize)]: literal index.
// [rsp + (3 * kPointerSize)]: literals array.
// All sizes here are multiples of kPointerSize.
int elements_size = (length_ > 0) ? FixedArray::SizeFor(length_) : 0;
int size = JSArray::kSize + elements_size;
// Load boilerplate object into rcx and check if we need to create a
// boilerplate.
Label slow_case;
__ movq(rcx, Operand(rsp, 3 * kPointerSize));
__ movq(rax, Operand(rsp, 2 * kPointerSize));
SmiIndex index = masm->SmiToIndex(rax, rax, kPointerSizeLog2);
__ movq(rcx,
FieldOperand(rcx, index.reg, index.scale, FixedArray::kHeaderSize));
__ CompareRoot(rcx, Heap::kUndefinedValueRootIndex);
__ j(equal, &slow_case);
// Allocate both the JS array and the elements array in one big
// allocation. This avoids multiple limit checks.
__ AllocateInNewSpace(size, rax, rbx, rdx, &slow_case, TAG_OBJECT);
// Copy the JS array part.
for (int i = 0; i < JSArray::kSize; i += kPointerSize) {
if ((i != JSArray::kElementsOffset) || (length_ == 0)) {
__ movq(rbx, FieldOperand(rcx, i));
__ movq(FieldOperand(rax, i), rbx);
}
}
if (length_ > 0) {
// Get hold of the elements array of the boilerplate and setup the
// elements pointer in the resulting object.
__ movq(rcx, FieldOperand(rcx, JSArray::kElementsOffset));
__ lea(rdx, Operand(rax, JSArray::kSize));
__ movq(FieldOperand(rax, JSArray::kElementsOffset), rdx);
// Copy the elements array.
for (int i = 0; i < elements_size; i += kPointerSize) {
__ movq(rbx, FieldOperand(rcx, i));
__ movq(FieldOperand(rdx, i), rbx);
}
}
// Return and remove the on-stack parameters.
__ ret(3 * kPointerSize);
__ bind(&slow_case);
ExternalReference runtime(Runtime::kCreateArrayLiteralShallow);
__ TailCallRuntime(runtime, 3, 1);
}
void ToBooleanStub::Generate(MacroAssembler* masm) {
Label false_result, true_result, not_string;
__ movq(rax, Operand(rsp, 1 * kPointerSize));
// 'null' => false.
__ CompareRoot(rax, Heap::kNullValueRootIndex);
__ j(equal, &false_result);
// Get the map and type of the heap object.
// We don't use CmpObjectType because we manipulate the type field.
__ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset));
__ movzxbq(rcx, FieldOperand(rdx, Map::kInstanceTypeOffset));
// Undetectable => false.
__ movzxbq(rbx, FieldOperand(rdx, Map::kBitFieldOffset));
__ and_(rbx, Immediate(1 << Map::kIsUndetectable));
__ j(not_zero, &false_result);
// JavaScript object => true.
__ cmpq(rcx, Immediate(FIRST_JS_OBJECT_TYPE));
__ j(above_equal, &true_result);
// String value => false iff empty.
__ cmpq(rcx, Immediate(FIRST_NONSTRING_TYPE));
__ j(above_equal, ¬_string);
__ movl(rdx, FieldOperand(rax, String::kLengthOffset));
__ testl(rdx, rdx);
__ j(zero, &false_result);
__ jmp(&true_result);
__ bind(¬_string);
// HeapNumber => false iff +0, -0, or NaN.
// These three cases set C3 when compared to zero in the FPU.
__ CompareRoot(rdx, Heap::kHeapNumberMapRootIndex);
__ j(not_equal, &true_result);
__ fldz(); // Load zero onto fp stack
// Load heap-number double value onto fp stack
__ fld_d(FieldOperand(rax, HeapNumber::kValueOffset));
__ FCmp();
__ j(zero, &false_result);
// Fall through to |true_result|.
// Return 1/0 for true/false in rax.
__ bind(&true_result);
__ movq(rax, Immediate(1));
__ ret(1 * kPointerSize);
__ bind(&false_result);
__ xor_(rax, rax);
__ ret(1 * kPointerSize);
}
bool CodeGenerator::FoldConstantSmis(Token::Value op, int left, int right) {
Object* answer_object = Heap::undefined_value();
switch (op) {
case Token::ADD:
// Use intptr_t to detect overflow of 32-bit int.
if (Smi::IsValid(static_cast<intptr_t>(left) + right)) {
answer_object = Smi::FromInt(left + right);
}
break;
case Token::SUB:
// Use intptr_t to detect overflow of 32-bit int.
if (Smi::IsValid(static_cast<intptr_t>(left) - right)) {
answer_object = Smi::FromInt(left - right);
}
break;
case Token::MUL: {
double answer = static_cast<double>(left) * right;
if (answer >= Smi::kMinValue && answer <= Smi::kMaxValue) {
// If the product is zero and the non-zero factor is negative,
// the spec requires us to return floating point negative zero.
if (answer != 0 || (left + right) >= 0) {
answer_object = Smi::FromInt(static_cast<int>(answer));
}
}
}
break;
case Token::DIV:
case Token::MOD:
break;
case Token::BIT_OR:
answer_object = Smi::FromInt(left | right);
break;
case Token::BIT_AND:
answer_object = Smi::FromInt(left & right);
break;
case Token::BIT_XOR:
answer_object = Smi::FromInt(left ^ right);
break;
case Token::SHL: {
int shift_amount = right & 0x1F;
if (Smi::IsValid(left << shift_amount)) {
answer_object = Smi::FromInt(left << shift_amount);
}
break;
}
case Token::SHR: {
int shift_amount = right & 0x1F;
unsigned int unsigned_left = left;
unsigned_left >>= shift_amount;
if (unsigned_left <= static_cast<unsigned int>(Smi::kMaxValue)) {
answer_object = Smi::FromInt(unsigned_left);
}
break;
}
case Token::SAR: {
int shift_amount = right & 0x1F;
unsigned int unsigned_left = left;
if (left < 0) {
// Perform arithmetic shift of a negative number by
// complementing number, logical shifting, complementing again.
unsigned_left = ~unsigned_left;
unsigned_left >>= shift_amount;
unsigned_left = ~unsigned_left;
} else {
unsigned_left >>= shift_amount;
}
ASSERT(Smi::IsValid(static_cast<int32_t>(unsigned_left)));
answer_object = Smi::FromInt(static_cast<int32_t>(unsigned_left));
break;
}
default:
UNREACHABLE();
break;
}
if (answer_object == Heap::undefined_value()) {
return false;
}
frame_->Push(Handle<Object>(answer_object));
return true;
}
// End of CodeGenerator implementation.
// Get the integer part of a heap number. Surprisingly, all this bit twiddling
// is faster than using the built-in instructions on floating point registers.
// Trashes rdi and rbx. Dest is rcx. Source cannot be rcx or one of the
// trashed registers.
void IntegerConvert(MacroAssembler* masm,
Register source,
bool use_sse3,
Label* conversion_failure) {
ASSERT(!source.is(rcx) && !source.is(rdi) && !source.is(rbx));
Label done, right_exponent, normal_exponent;
Register scratch = rbx;
Register scratch2 = rdi;
// Get exponent word.
__ movl(scratch, FieldOperand(source, HeapNumber::kExponentOffset));
// Get exponent alone in scratch2.
__ movl(scratch2, scratch);
__ and_(scratch2, Immediate(HeapNumber::kExponentMask));
if (use_sse3) {
CpuFeatures::Scope scope(SSE3);
// Check whether the exponent is too big for a 64 bit signed integer.
static const uint32_t kTooBigExponent =
(HeapNumber::kExponentBias + 63) << HeapNumber::kExponentShift;
__ cmpl(scratch2, Immediate(kTooBigExponent));
__ j(greater_equal, conversion_failure);
// Load x87 register with heap number.
__ fld_d(FieldOperand(source, HeapNumber::kValueOffset));
// Reserve space for 64 bit answer.
__ subq(rsp, Immediate(sizeof(uint64_t))); // Nolint.
// Do conversion, which cannot fail because we checked the exponent.
__ fisttp_d(Operand(rsp, 0));
__ movl(rcx, Operand(rsp, 0)); // Load low word of answer into rcx.
__ addq(rsp, Immediate(sizeof(uint64_t))); // Nolint.
} else {
// Load rcx with zero. We use this either for the final shift or
// for the answer.
__ xor_(rcx, rcx);
// Check whether the exponent matches a 32 bit signed int that cannot be
// represented by a Smi. A non-smi 32 bit integer is 1.xxx * 2^30 so the
// exponent is 30 (biased). This is the exponent that we are fastest at and
// also the highest exponent we can handle here.
const uint32_t non_smi_exponent =
(HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
__ cmpl(scratch2, Immediate(non_smi_exponent));
// If we have a match of the int32-but-not-Smi exponent then skip some
// logic.
__ j(equal, &right_exponent);
// If the exponent is higher than that then go to slow case. This catches
// numbers that don't fit in a signed int32, infinities and NaNs.
__ j(less, &normal_exponent);
{
// Handle a big exponent. The only reason we have this code is that the
// >>> operator has a tendency to generate numbers with an exponent of 31.
const uint32_t big_non_smi_exponent =
(HeapNumber::kExponentBias + 31) << HeapNumber::kExponentShift;
__ cmpl(scratch2, Immediate(big_non_smi_exponent));
__ j(not_equal, conversion_failure);
// We have the big exponent, typically from >>>. This means the number is
// in the range 2^31 to 2^32 - 1. Get the top bits of the mantissa.
__ movl(scratch2, scratch);
__ and_(scratch2, Immediate(HeapNumber::kMantissaMask));
// Put back the implicit 1.
__ or_(scratch2, Immediate(1 << HeapNumber::kExponentShift));
// Shift up the mantissa bits to take up the space the exponent used to
// take. We just orred in the implicit bit so that took care of one and
// we want to use the full unsigned range so we subtract 1 bit from the
// shift distance.
const int big_shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 1;
__ shl(scratch2, Immediate(big_shift_distance));
// Get the second half of the double.
__ movl(rcx, FieldOperand(source, HeapNumber::kMantissaOffset));
// Shift down 21 bits to get the most significant 11 bits or the low
// mantissa word.
__ shr(rcx, Immediate(32 - big_shift_distance));
__ or_(rcx, scratch2);
// We have the answer in rcx, but we may need to negate it.
__ testl(scratch, scratch);
__ j(positive, &done);
__ neg(rcx);
__ jmp(&done);
}
__ bind(&normal_exponent);
// Exponent word in scratch, exponent part of exponent word in scratch2.
// Zero in rcx.
// We know the exponent is smaller than 30 (biased). If it is less than
// 0 (biased) then the number is smaller in magnitude than 1.0 * 2^0, ie
// it rounds to zero.
const uint32_t zero_exponent =
(HeapNumber::kExponentBias + 0) << HeapNumber::kExponentShift;
__ subl(scratch2, Immediate(zero_exponent));
// rcx already has a Smi zero.
__ j(less, &done);
// We have a shifted exponent between 0 and 30 in scratch2.
__ shr(scratch2, Immediate(HeapNumber::kExponentShift));
__ movl(rcx, Immediate(30));
__ subl(rcx, scratch2);
__ bind(&right_exponent);
// Here rcx is the shift, scratch is the exponent word.
// Get the top bits of the mantissa.
__ and_(scratch, Immediate(HeapNumber::kMantissaMask));
// Put back the implicit 1.
__ or_(scratch, Immediate(1 << HeapNumber::kExponentShift));
// Shift up the mantissa bits to take up the space the exponent used to
// take. We have kExponentShift + 1 significant bits int he low end of the
// word. Shift them to the top bits.
const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
__ shl(scratch, Immediate(shift_distance));
// Get the second half of the double. For some exponents we don't
// actually need this because the bits get shifted out again, but
// it's probably slower to test than just to do it.
__ movl(scratch2, FieldOperand(source, HeapNumber::kMantissaOffset));
// Shift down 22 bits to get the most significant 10 bits or the low
// mantissa word.
__ shr(scratch2, Immediate(32 - shift_distance));
__ or_(scratch2, scratch);
// Move down according to the exponent.
__ shr_cl(scratch2);
// Now the unsigned answer is in scratch2. We need to move it to rcx and
// we may need to fix the sign.
Label negative;
__ xor_(rcx, rcx);
__ cmpl(rcx, FieldOperand(source, HeapNumber::kExponentOffset));
__ j(greater, &negative);
__ movl(rcx, scratch2);
__ jmp(&done);
__ bind(&negative);
__ subl(rcx, scratch2);
__ bind(&done);
}
}
void GenericUnaryOpStub::Generate(MacroAssembler* masm) {
Label slow, done;
if (op_ == Token::SUB) {
// Check whether the value is a smi.
Label try_float;
__ JumpIfNotSmi(rax, &try_float);
// Enter runtime system if the value of the smi is zero
// to make sure that we switch between 0 and -0.
// Also enter it if the value of the smi is Smi::kMinValue.
__ SmiNeg(rax, rax, &done);
// Either zero or Smi::kMinValue, neither of which become a smi when
// negated.
__ SmiCompare(rax, Smi::FromInt(0));
__ j(not_equal, &slow);
__ Move(rax, Factory::minus_zero_value());
__ jmp(&done);
// Try floating point case.
__ bind(&try_float);
__ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset));
__ CompareRoot(rdx, Heap::kHeapNumberMapRootIndex);
__ j(not_equal, &slow);
// Operand is a float, negate its value by flipping sign bit.
__ movq(rdx, FieldOperand(rax, HeapNumber::kValueOffset));
__ movq(kScratchRegister, Immediate(0x01));
__ shl(kScratchRegister, Immediate(63));
__ xor_(rdx, kScratchRegister); // Flip sign.
// rdx is value to store.
if (overwrite_) {
__ movq(FieldOperand(rax, HeapNumber::kValueOffset), rdx);
} else {
__ AllocateHeapNumber(rcx, rbx, &slow);
// rcx: allocated 'empty' number
__ movq(FieldOperand(rcx, HeapNumber::kValueOffset), rdx);
__ movq(rax, rcx);
}
} else if (op_ == Token::BIT_NOT) {
// Check if the operand is a heap number.
__ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset));
__ CompareRoot(rdx, Heap::kHeapNumberMapRootIndex);
__ j(not_equal, &slow);
// Convert the heap number in rax to an untagged integer in rcx.
IntegerConvert(masm, rax, CpuFeatures::IsSupported(SSE3), &slow);
// Do the bitwise operation and check if the result fits in a smi.
Label try_float;
__ not_(rcx);
// Tag the result as a smi and we're done.
ASSERT(kSmiTagSize == 1);
__ Integer32ToSmi(rax, rcx);
}
// Return from the stub.
__ bind(&done);
__ StubReturn(1);
// Handle the slow case by jumping to the JavaScript builtin.
__ bind(&slow);
__ pop(rcx); // pop return address
__ push(rax);
__ push(rcx); // push return address
switch (op_) {
case Token::SUB:
__ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION);
break;
case Token::BIT_NOT:
__ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION);
break;
default:
UNREACHABLE();
}
}
void RegExpExecStub::Generate(MacroAssembler* masm) {
// Just jump directly to runtime if native RegExp is not selected at compile
// time or if regexp entry in generated code is turned off runtime switch or
// at compilation.
#ifndef V8_NATIVE_REGEXP
__ TailCallRuntime(ExternalReference(Runtime::kRegExpExec), 4, 1);
#else // V8_NATIVE_REGEXP
if (!FLAG_regexp_entry_native) {
__ TailCallRuntime(ExternalReference(Runtime::kRegExpExec), 4, 1);
return;
}
// Stack frame on entry.
// esp[0]: return address
// esp[8]: last_match_info (expected JSArray)
// esp[16]: previous index
// esp[24]: subject string
// esp[32]: JSRegExp object
static const int kLastMatchInfoOffset = 1 * kPointerSize;
static const int kPreviousIndexOffset = 2 * kPointerSize;
static const int kSubjectOffset = 3 * kPointerSize;
static const int kJSRegExpOffset = 4 * kPointerSize;
Label runtime;
// Ensure that a RegExp stack is allocated.
ExternalReference address_of_regexp_stack_memory_address =
ExternalReference::address_of_regexp_stack_memory_address();
ExternalReference address_of_regexp_stack_memory_size =
ExternalReference::address_of_regexp_stack_memory_size();
__ movq(kScratchRegister, address_of_regexp_stack_memory_size);
__ movq(kScratchRegister, Operand(kScratchRegister, 0));
__ testq(kScratchRegister, kScratchRegister);
__ j(zero, &runtime);
// Check that the first argument is a JSRegExp object.
__ movq(rax, Operand(rsp, kJSRegExpOffset));
__ JumpIfSmi(rax, &runtime);
__ CmpObjectType(rax, JS_REGEXP_TYPE, kScratchRegister);
__ j(not_equal, &runtime);
// Check that the RegExp has been compiled (data contains a fixed array).
__ movq(rcx, FieldOperand(rax, JSRegExp::kDataOffset));
if (FLAG_debug_code) {
Condition is_smi = masm->CheckSmi(rcx);
__ Check(NegateCondition(is_smi),
"Unexpected type for RegExp data, FixedArray expected");
__ CmpObjectType(rcx, FIXED_ARRAY_TYPE, kScratchRegister);
__ Check(equal, "Unexpected type for RegExp data, FixedArray expected");
}
// rcx: RegExp data (FixedArray)
// Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
__ movq(rbx, FieldOperand(rcx, JSRegExp::kDataTagOffset));
__ SmiCompare(rbx, Smi::FromInt(JSRegExp::IRREGEXP));
__ j(not_equal, &runtime);
// rcx: RegExp data (FixedArray)
// Check that the number of captures fit in the static offsets vector buffer.
__ movq(rdx, FieldOperand(rcx, JSRegExp::kIrregexpCaptureCountOffset));
// Calculate number of capture registers (number_of_captures + 1) * 2.
__ PositiveSmiTimesPowerOfTwoToInteger64(rdx, rdx, 1);
__ addq(rdx, Immediate(2)); // rdx was number_of_captures * 2.
// Check that the static offsets vector buffer is large enough.
__ cmpq(rdx, Immediate(OffsetsVector::kStaticOffsetsVectorSize));
__ j(above, &runtime);
// rcx: RegExp data (FixedArray)
// rdx: Number of capture registers
// Check that the second argument is a string.
__ movq(rax, Operand(rsp, kSubjectOffset));
__ JumpIfSmi(rax, &runtime);
Condition is_string = masm->IsObjectStringType(rax, rbx, rbx);
__ j(NegateCondition(is_string), &runtime);
// Get the length of the string to rbx.
__ movl(rbx, FieldOperand(rax, String::kLengthOffset));
// rbx: Length of subject string
// rcx: RegExp data (FixedArray)
// rdx: Number of capture registers
// Check that the third argument is a positive smi less than the string
// length. A negative value will be greater (usigned comparison).
__ movq(rax, Operand(rsp, kPreviousIndexOffset));
__ SmiToInteger32(rax, rax);
__ cmpl(rax, rbx);
__ j(above, &runtime);
// rcx: RegExp data (FixedArray)
// rdx: Number of capture registers
// Check that the fourth object is a JSArray object.
__ movq(rax, Operand(rsp, kLastMatchInfoOffset));
__ JumpIfSmi(rax, &runtime);
__ CmpObjectType(rax, JS_ARRAY_TYPE, kScratchRegister);
__ j(not_equal, &runtime);
// Check that the JSArray is in fast case.
__ movq(rbx, FieldOperand(rax, JSArray::kElementsOffset));
__ movq(rax, FieldOperand(rbx, HeapObject::kMapOffset));
__ Cmp(rax, Factory::fixed_array_map());
__ j(not_equal, &runtime);
// Check that the last match info has space for the capture registers and the
// additional information. Ensure no overflow in add.
ASSERT(FixedArray::kMaxLength < kMaxInt - FixedArray::kLengthOffset);
__ movl(rax, FieldOperand(rbx, FixedArray::kLengthOffset));
__ addl(rdx, Immediate(RegExpImpl::kLastMatchOverhead));
__ cmpl(rdx, rax);
__ j(greater, &runtime);
// ecx: RegExp data (FixedArray)
// Check the representation and encoding of the subject string.
Label seq_string, seq_two_byte_string, check_code;
const int kStringRepresentationEncodingMask =
kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
__ movq(rax, Operand(rsp, kSubjectOffset));
__ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset));
__ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
__ andb(rbx, Immediate(kStringRepresentationEncodingMask));
// First check for sequential string.
ASSERT_EQ(0, kStringTag);
ASSERT_EQ(0, kSeqStringTag);
__ testb(rbx, Immediate(kIsNotStringMask | kStringRepresentationMask));
__ j(zero, &seq_string);
// Check for flat cons string.
// A flat cons string is a cons string where the second part is the empty
// string. In that case the subject string is just the first part of the cons
// string. Also in this case the first part of the cons string is known to be
// a sequential string or an external string.
__ movl(rdx, rbx);
__ andb(rdx, Immediate(kStringRepresentationMask));
__ cmpb(rdx, Immediate(kConsStringTag));
__ j(not_equal, &runtime);
__ movq(rdx, FieldOperand(rax, ConsString::kSecondOffset));
__ Cmp(rdx, Factory::empty_string());
__ j(not_equal, &runtime);
__ movq(rax, FieldOperand(rax, ConsString::kFirstOffset));
__ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset));
__ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
ASSERT_EQ(0, kSeqStringTag);
__ testb(rbx, Immediate(kStringRepresentationMask));
__ j(not_zero, &runtime);
__ andb(rbx, Immediate(kStringRepresentationEncodingMask));
__ bind(&seq_string);
// rax: subject string (sequential either ascii to two byte)
// rbx: suject string type & kStringRepresentationEncodingMask
// rcx: RegExp data (FixedArray)
// Check that the irregexp code has been generated for an ascii string. If
// it has, the field contains a code object otherwise it contains the hole.
__ cmpb(rbx, Immediate(kStringTag | kSeqStringTag | kTwoByteStringTag));
__ j(equal, &seq_two_byte_string);
if (FLAG_debug_code) {
__ cmpb(rbx, Immediate(kStringTag | kSeqStringTag | kAsciiStringTag));
__ Check(equal, "Expected sequential ascii string");
}
__ movq(r12, FieldOperand(rcx, JSRegExp::kDataAsciiCodeOffset));
__ Set(rdi, 1); // Type is ascii.
__ jmp(&check_code);
__ bind(&seq_two_byte_string);
// rax: subject string
// rcx: RegExp data (FixedArray)
__ movq(r12, FieldOperand(rcx, JSRegExp::kDataUC16CodeOffset));
__ Set(rdi, 0); // Type is two byte.
__ bind(&check_code);
// Check that the irregexp code has been generated for the actual string
// encoding. If it has, the field contains a code object otherwise it contains
// the hole.
__ CmpObjectType(r12, CODE_TYPE, kScratchRegister);
__ j(not_equal, &runtime);
// rax: subject string
// rdi: encoding of subject string (1 if ascii, 0 if two_byte);
// r12: code
// Load used arguments before starting to push arguments for call to native
// RegExp code to avoid handling changing stack height.
__ movq(rbx, Operand(rsp, kPreviousIndexOffset));
__ SmiToInteger64(rbx, rbx); // Previous index from smi.
// rax: subject string
// rbx: previous index
// rdi: encoding of subject string (1 if ascii 0 if two_byte);
// r12: code
// All checks done. Now push arguments for native regexp code.
__ IncrementCounter(&Counters::regexp_entry_native, 1);
// rsi is caller save on Windows and used to pass parameter on Linux.
__ push(rsi);
static const int kRegExpExecuteArguments = 7;
__ PrepareCallCFunction(kRegExpExecuteArguments);
int argument_slots_on_stack =
masm->ArgumentStackSlotsForCFunctionCall(kRegExpExecuteArguments);
// Argument 7: Indicate that this is a direct call from JavaScript.
__ movq(Operand(rsp, (argument_slots_on_stack - 1) * kPointerSize),
Immediate(1));
// Argument 6: Start (high end) of backtracking stack memory area.
__ movq(kScratchRegister, address_of_regexp_stack_memory_address);
__ movq(r9, Operand(kScratchRegister, 0));
__ movq(kScratchRegister, address_of_regexp_stack_memory_size);
__ addq(r9, Operand(kScratchRegister, 0));
// Argument 6 passed in r9 on Linux and on the stack on Windows.
#ifdef _WIN64
__ movq(Operand(rsp, (argument_slots_on_stack - 2) * kPointerSize), r9);
#endif
// Argument 5: static offsets vector buffer.
__ movq(r8, ExternalReference::address_of_static_offsets_vector());
// Argument 5 passed in r8 on Linux and on the stack on Windows.
#ifdef _WIN64
__ movq(Operand(rsp, (argument_slots_on_stack - 3) * kPointerSize), r8);
#endif
// First four arguments are passed in registers on both Linux and Windows.
#ifdef _WIN64
Register arg4 = r9;
Register arg3 = r8;
Register arg2 = rdx;
Register arg1 = rcx;
#else
Register arg4 = rcx;
Register arg3 = rdx;
Register arg2 = rsi;
Register arg1 = rdi;
#endif
// Keep track on aliasing between argX defined above and the registers used.
// rax: subject string
// rbx: previous index
// rdi: encoding of subject string (1 if ascii 0 if two_byte);
// r12: code
// Argument 4: End of string data
// Argument 3: Start of string data
Label setup_two_byte, setup_rest;
__ testb(rdi, rdi);
__ movl(rdi, FieldOperand(rax, String::kLengthOffset));
__ j(zero, &setup_two_byte);
__ lea(arg4, FieldOperand(rax, rdi, times_1, SeqAsciiString::kHeaderSize));
__ lea(arg3, FieldOperand(rax, rbx, times_1, SeqAsciiString::kHeaderSize));
__ jmp(&setup_rest);
__ bind(&setup_two_byte);
__ lea(arg4, FieldOperand(rax, rdi, times_2, SeqTwoByteString::kHeaderSize));
__ lea(arg3, FieldOperand(rax, rbx, times_2, SeqTwoByteString::kHeaderSize));
__ bind(&setup_rest);
// Argument 2: Previous index.
__ movq(arg2, rbx);
// Argument 1: Subject string.
__ movq(arg1, rax);
// Locate the code entry and call it.
__ addq(r12, Immediate(Code::kHeaderSize - kHeapObjectTag));
__ CallCFunction(r12, kRegExpExecuteArguments);
// rsi is caller save, as it is used to pass parameter.
__ pop(rsi);
// Check the result.
Label success;
__ cmpq(rax, Immediate(NativeRegExpMacroAssembler::SUCCESS));
__ j(equal, &success);
Label failure;
__ cmpq(rax, Immediate(NativeRegExpMacroAssembler::FAILURE));
__ j(equal, &failure);
__ cmpq(rax, Immediate(NativeRegExpMacroAssembler::EXCEPTION));
// If not exception it can only be retry. Handle that in the runtime system.
__ j(not_equal, &runtime);
// Result must now be exception. If there is no pending exception already a
// stack overflow (on the backtrack stack) was detected in RegExp code but
// haven't created the exception yet. Handle that in the runtime system.
// TODO(592) Rerunning the RegExp to get the stack overflow exception.
ExternalReference pending_exception_address(Top::k_pending_exception_address);
__ movq(kScratchRegister, pending_exception_address);
__ Cmp(kScratchRegister, Factory::the_hole_value());
__ j(equal, &runtime);
__ bind(&failure);
// For failure and exception return null.
__ Move(rax, Factory::null_value());
__ ret(4 * kPointerSize);
// Load RegExp data.
__ bind(&success);
__ movq(rax, Operand(rsp, kJSRegExpOffset));
__ movq(rcx, FieldOperand(rax, JSRegExp::kDataOffset));
__ movq(rdx, FieldOperand(rcx, JSRegExp::kIrregexpCaptureCountOffset));
// Calculate number of capture registers (number_of_captures + 1) * 2.
__ PositiveSmiTimesPowerOfTwoToInteger64(rdx, rdx, 1);
__ addq(rdx, Immediate(2)); // rdx was number_of_captures * 2.
// rdx: Number of capture registers
// Load last_match_info which is still known to be a fast case JSArray.
__ movq(rax, Operand(rsp, kLastMatchInfoOffset));
__ movq(rbx, FieldOperand(rax, JSArray::kElementsOffset));
// rbx: last_match_info backing store (FixedArray)
// rdx: number of capture registers
// Store the capture count.
__ Integer32ToSmi(kScratchRegister, rdx);
__ movq(FieldOperand(rbx, RegExpImpl::kLastCaptureCountOffset),
kScratchRegister);
// Store last subject and last input.
__ movq(rax, Operand(rsp, kSubjectOffset));
__ movq(FieldOperand(rbx, RegExpImpl::kLastSubjectOffset), rax);
__ movq(rcx, rbx);
__ RecordWrite(rcx, RegExpImpl::kLastSubjectOffset, rax, rdi);
__ movq(rax, Operand(rsp, kSubjectOffset));
__ movq(FieldOperand(rbx, RegExpImpl::kLastInputOffset), rax);
__ movq(rcx, rbx);
__ RecordWrite(rcx, RegExpImpl::kLastInputOffset, rax, rdi);
// Get the static offsets vector filled by the native regexp code.
__ movq(rcx, ExternalReference::address_of_static_offsets_vector());
// rbx: last_match_info backing store (FixedArray)
// rcx: offsets vector
// rdx: number of capture registers
Label next_capture, done;
__ movq(rax, Operand(rsp, kPreviousIndexOffset));
// Capture register counter starts from number of capture registers and
// counts down until wraping after zero.
__ bind(&next_capture);
__ subq(rdx, Immediate(1));
__ j(negative, &done);
// Read the value from the static offsets vector buffer and make it a smi.
__ movl(rdi, Operand(rcx, rdx, times_int_size, 0));
__ Integer32ToSmi(rdi, rdi, &runtime);
// Add previous index (from its stack slot) if value is not negative.
Label capture_negative;
// Negative flag set by smi convertion above.
__ j(negative, &capture_negative);
__ SmiAdd(rdi, rdi, rax, &runtime); // Add previous index.
__ bind(&capture_negative);
// Store the smi value in the last match info.
__ movq(FieldOperand(rbx,
rdx,
times_pointer_size,
RegExpImpl::kFirstCaptureOffset),
rdi);
__ jmp(&next_capture);
__ bind(&done);
// Return last match info.
__ movq(rax, Operand(rsp, kLastMatchInfoOffset));
__ ret(4 * kPointerSize);
// Do the runtime call to execute the regexp.
__ bind(&runtime);
__ TailCallRuntime(ExternalReference(Runtime::kRegExpExec), 4, 1);
#endif // V8_NATIVE_REGEXP
}
void CompareStub::Generate(MacroAssembler* masm) {
Label call_builtin, done;
// NOTICE! This code is only reached after a smi-fast-case check, so
// it is certain that at least one operand isn't a smi.
if (cc_ == equal) { // Both strict and non-strict.
Label slow; // Fallthrough label.
// Equality is almost reflexive (everything but NaN), so start by testing
// for "identity and not NaN".
{
Label not_identical;
__ cmpq(rax, rdx);
__ j(not_equal, ¬_identical);
// Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
// so we do the second best thing - test it ourselves.
if (never_nan_nan_) {
__ xor_(rax, rax);
__ ret(0);
} else {
Label return_equal;
Label heap_number;
// If it's not a heap number, then return equal.
__ Cmp(FieldOperand(rdx, HeapObject::kMapOffset),
Factory::heap_number_map());
__ j(equal, &heap_number);
__ bind(&return_equal);
__ xor_(rax, rax);
__ ret(0);
__ bind(&heap_number);
// It is a heap number, so return non-equal if it's NaN and equal if
// it's not NaN.
// The representation of NaN values has all exponent bits (52..62) set,
// and not all mantissa bits (0..51) clear.
// We only allow QNaNs, which have bit 51 set (which also rules out
// the value being Infinity).
// Value is a QNaN if value & kQuietNaNMask == kQuietNaNMask, i.e.,
// all bits in the mask are set. We only need to check the word
// that contains the exponent and high bit of the mantissa.
ASSERT_NE(0, (kQuietNaNHighBitsMask << 1) & 0x80000000u);
__ movl(rdx, FieldOperand(rdx, HeapNumber::kExponentOffset));
__ xorl(rax, rax);
__ addl(rdx, rdx); // Shift value and mask so mask applies to top bits.
__ cmpl(rdx, Immediate(kQuietNaNHighBitsMask << 1));
__ setcc(above_equal, rax);
__ ret(0);
}
__ bind(¬_identical);
}
// If we're doing a strict equality comparison, we don't have to do
// type conversion, so we generate code to do fast comparison for objects
// and oddballs. Non-smi numbers and strings still go through the usual
// slow-case code.
if (strict_) {
// If either is a Smi (we know that not both are), then they can only
// be equal if the other is a HeapNumber. If so, use the slow case.
{
Label not_smis;
__ SelectNonSmi(rbx, rax, rdx, ¬_smis);
// Check if the non-smi operand is a heap number.
__ Cmp(FieldOperand(rbx, HeapObject::kMapOffset),
Factory::heap_number_map());
// If heap number, handle it in the slow case.
__ j(equal, &slow);
// Return non-equal. ebx (the lower half of rbx) is not zero.
__ movq(rax, rbx);
__ ret(0);
__ bind(¬_smis);
}
// If either operand is a JSObject or an oddball value, then they are not
// equal since their pointers are different
// There is no test for undetectability in strict equality.
// If the first object is a JS object, we have done pointer comparison.
ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
Label first_non_object;
__ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx);
__ j(below, &first_non_object);
// Return non-zero (eax (not rax) is not zero)
Label return_not_equal;
ASSERT(kHeapObjectTag != 0);
__ bind(&return_not_equal);
__ ret(0);
__ bind(&first_non_object);
// Check for oddballs: true, false, null, undefined.
__ CmpInstanceType(rcx, ODDBALL_TYPE);
__ j(equal, &return_not_equal);
__ CmpObjectType(rdx, FIRST_JS_OBJECT_TYPE, rcx);
__ j(above_equal, &return_not_equal);
// Check for oddballs: true, false, null, undefined.
__ CmpInstanceType(rcx, ODDBALL_TYPE);
__ j(equal, &return_not_equal);
// Fall through to the general case.
}
__ bind(&slow);
}
// Push arguments below the return address to prepare jump to builtin.
__ pop(rcx);
__ push(rax);
__ push(rdx);
__ push(rcx);
// Inlined floating point compare.
// Call builtin if operands are not floating point or smi.
Label check_for_symbols;
// Push arguments on stack, for helper functions.
FloatingPointHelper::CheckNumberOperands(masm, &check_for_symbols);
FloatingPointHelper::LoadFloatOperands(masm, rax, rdx);
__ FCmp();
// Jump to builtin for NaN.
__ j(parity_even, &call_builtin);
// TODO(1243847): Use cmov below once CpuFeatures are properly hooked up.
Label below_lbl, above_lbl;
// use rdx, rax to convert unsigned to signed comparison
__ j(below, &below_lbl);
__ j(above, &above_lbl);
__ xor_(rax, rax); // equal
__ ret(2 * kPointerSize);
__ bind(&below_lbl);
__ movq(rax, Immediate(-1));
__ ret(2 * kPointerSize);
__ bind(&above_lbl);
__ movq(rax, Immediate(1));
__ ret(2 * kPointerSize); // rax, rdx were pushed
// Fast negative check for symbol-to-symbol equality.
__ bind(&check_for_symbols);
Label check_for_strings;
if (cc_ == equal) {
BranchIfNonSymbol(masm, &check_for_strings, rax, kScratchRegister);
BranchIfNonSymbol(masm, &check_for_strings, rdx, kScratchRegister);
// We've already checked for object identity, so if both operands
// are symbols they aren't equal. Register eax (not rax) already holds a
// non-zero value, which indicates not equal, so just return.
__ ret(2 * kPointerSize);
}
__ bind(&check_for_strings);
__ JumpIfNotBothSequentialAsciiStrings(rdx, rax, rcx, rbx, &call_builtin);
// Inline comparison of ascii strings.
StringCompareStub::GenerateCompareFlatAsciiStrings(masm,
rdx,
rax,
rcx,
rbx,
rdi,
r8);
#ifdef DEBUG
__ Abort("Unexpected fall-through from string comparison");
#endif
__ bind(&call_builtin);
// must swap argument order
__ pop(rcx);
__ pop(rdx);
__ pop(rax);
__ push(rdx);
__ push(rax);
// Figure out which native to call and setup the arguments.
Builtins::JavaScript builtin;
if (cc_ == equal) {
builtin = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
} else {
builtin = Builtins::COMPARE;
int ncr; // NaN compare result
if (cc_ == less || cc_ == less_equal) {
ncr = GREATER;
} else {
ASSERT(cc_ == greater || cc_ == greater_equal); // remaining cases
ncr = LESS;
}
__ Push(Smi::FromInt(ncr));
}
// Restore return address on the stack.
__ push(rcx);
// Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
// tagged as a small integer.
__ InvokeBuiltin(builtin, JUMP_FUNCTION);
}
void CompareStub::BranchIfNonSymbol(MacroAssembler* masm,
Label* label,
Register object,
Register scratch) {
__ JumpIfSmi(object, label);
__ movq(scratch, FieldOperand(object, HeapObject::kMapOffset));
__ movzxbq(scratch,
FieldOperand(scratch, Map::kInstanceTypeOffset));
// Ensure that no non-strings have the symbol bit set.
ASSERT(kNotStringTag + kIsSymbolMask > LAST_TYPE);
ASSERT(kSymbolTag != 0);
__ testb(scratch, Immediate(kIsSymbolMask));
__ j(zero, label);
}
// Call the function just below TOS on the stack with the given
// arguments. The receiver is the TOS.
void CodeGenerator::CallWithArguments(ZoneList<Expression*>* args,
CallFunctionFlags flags,
int position) {
// Push the arguments ("left-to-right") on the stack.
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
Load(args->at(i));
}
// Record the position for debugging purposes.
CodeForSourcePosition(position);
// Use the shared code stub to call the function.
InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP;
CallFunctionStub call_function(arg_count, in_loop, flags);
Result answer = frame_->CallStub(&call_function, arg_count + 1);
// Restore context and replace function on the stack with the
// result of the stub invocation.
frame_->RestoreContextRegister();
frame_->SetElementAt(0, &answer);
}
void InstanceofStub::Generate(MacroAssembler* masm) {
// Implements "value instanceof function" operator.
// Expected input state:
// rsp[0] : return address
// rsp[1] : function pointer
// rsp[2] : value
// Get the object - go slow case if it's a smi.
Label slow;
__ movq(rax, Operand(rsp, 2 * kPointerSize));
__ JumpIfSmi(rax, &slow);
// Check that the left hand is a JS object. Leave its map in rax.
__ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rax);
__ j(below, &slow);
__ CmpInstanceType(rax, LAST_JS_OBJECT_TYPE);
__ j(above, &slow);
// Get the prototype of the function.
__ movq(rdx, Operand(rsp, 1 * kPointerSize));
__ TryGetFunctionPrototype(rdx, rbx, &slow);
// Check that the function prototype is a JS object.
__ JumpIfSmi(rbx, &slow);
__ CmpObjectType(rbx, FIRST_JS_OBJECT_TYPE, kScratchRegister);
__ j(below, &slow);
__ CmpInstanceType(kScratchRegister, LAST_JS_OBJECT_TYPE);
__ j(above, &slow);
// Register mapping: rax is object map and rbx is function prototype.
__ movq(rcx, FieldOperand(rax, Map::kPrototypeOffset));
// Loop through the prototype chain looking for the function prototype.
Label loop, is_instance, is_not_instance;
__ LoadRoot(kScratchRegister, Heap::kNullValueRootIndex);
__ bind(&loop);
__ cmpq(rcx, rbx);
__ j(equal, &is_instance);
__ cmpq(rcx, kScratchRegister);
__ j(equal, &is_not_instance);
__ movq(rcx, FieldOperand(rcx, HeapObject::kMapOffset));
__ movq(rcx, FieldOperand(rcx, Map::kPrototypeOffset));
__ jmp(&loop);
__ bind(&is_instance);
__ xorl(rax, rax);
__ ret(2 * kPointerSize);
__ bind(&is_not_instance);
__ movl(rax, Immediate(1));
__ ret(2 * kPointerSize);
// Slow-case: Go through the JavaScript implementation.
__ bind(&slow);
__ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
}
void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) {
// rsp[0] : return address
// rsp[8] : number of parameters
// rsp[16] : receiver displacement
// rsp[24] : function
// The displacement is used for skipping the return address and the
// frame pointer on the stack. It is the offset of the last
// parameter (if any) relative to the frame pointer.
static const int kDisplacement = 2 * kPointerSize;
// Check if the calling frame is an arguments adaptor frame.
Label adaptor_frame, try_allocate, runtime;
__ movq(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
__ SmiCompare(Operand(rdx, StandardFrameConstants::kContextOffset),
Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
__ j(equal, &adaptor_frame);
// Get the length from the frame.
__ movq(rcx, Operand(rsp, 1 * kPointerSize));
__ jmp(&try_allocate);
// Patch the arguments.length and the parameters pointer.
__ bind(&adaptor_frame);
__ movq(rcx, Operand(rdx, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ movq(Operand(rsp, 1 * kPointerSize), rcx);
// Do not clobber the length index for the indexing operation since
// it is used compute the size for allocation later.
SmiIndex index = masm->SmiToIndex(rbx, rcx, kPointerSizeLog2);
__ lea(rdx, Operand(rdx, index.reg, index.scale, kDisplacement));
__ movq(Operand(rsp, 2 * kPointerSize), rdx);
// Try the new space allocation. Start out with computing the size of
// the arguments object and the elements array.
Label add_arguments_object;
__ bind(&try_allocate);
__ testq(rcx, rcx);
__ j(zero, &add_arguments_object);
index = masm->SmiToIndex(rcx, rcx, kPointerSizeLog2);
__ lea(rcx, Operand(index.reg, index.scale, FixedArray::kHeaderSize));
__ bind(&add_arguments_object);
__ addq(rcx, Immediate(Heap::kArgumentsObjectSize));
// Do the allocation of both objects in one go.
__ AllocateInNewSpace(rcx, rax, rdx, rbx, &runtime, TAG_OBJECT);
// Get the arguments boilerplate from the current (global) context.
int offset = Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX);
__ movq(rdi, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
__ movq(rdi, FieldOperand(rdi, GlobalObject::kGlobalContextOffset));
__ movq(rdi, Operand(rdi, offset));
// Copy the JS object part.
for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) {
__ movq(kScratchRegister, FieldOperand(rdi, i));
__ movq(FieldOperand(rax, i), kScratchRegister);
}
// Setup the callee in-object property.
ASSERT(Heap::arguments_callee_index == 0);
__ movq(kScratchRegister, Operand(rsp, 3 * kPointerSize));
__ movq(FieldOperand(rax, JSObject::kHeaderSize), kScratchRegister);
// Get the length (smi tagged) and set that as an in-object property too.
ASSERT(Heap::arguments_length_index == 1);
__ movq(rcx, Operand(rsp, 1 * kPointerSize));
__ movq(FieldOperand(rax, JSObject::kHeaderSize + kPointerSize), rcx);
// If there are no actual arguments, we're done.
Label done;
__ testq(rcx, rcx);
__ j(zero, &done);
// Get the parameters pointer from the stack and untag the length.
__ movq(rdx, Operand(rsp, 2 * kPointerSize));
__ SmiToInteger32(rcx, rcx);
// Setup the elements pointer in the allocated arguments object and
// initialize the header in the elements fixed array.
__ lea(rdi, Operand(rax, Heap::kArgumentsObjectSize));
__ movq(FieldOperand(rax, JSObject::kElementsOffset), rdi);
__ LoadRoot(kScratchRegister, Heap::kFixedArrayMapRootIndex);
__ movq(FieldOperand(rdi, FixedArray::kMapOffset), kScratchRegister);
__ movq(FieldOperand(rdi, FixedArray::kLengthOffset), rcx);
// Copy the fixed array slots.
Label loop;
__ bind(&loop);
__ movq(kScratchRegister, Operand(rdx, -1 * kPointerSize)); // Skip receiver.
__ movq(FieldOperand(rdi, FixedArray::kHeaderSize), kScratchRegister);
__ addq(rdi, Immediate(kPointerSize));
__ subq(rdx, Immediate(kPointerSize));
__ decq(rcx);
__ j(not_zero, &loop);
// Return and remove the on-stack parameters.
__ bind(&done);
__ ret(3 * kPointerSize);
// Do the runtime call to allocate the arguments object.
__ bind(&runtime);
__ TailCallRuntime(ExternalReference(Runtime::kNewArgumentsFast), 3, 1);
}
void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
// The key is in rdx and the parameter count is in rax.
// The displacement is used for skipping the frame pointer on the
// stack. It is the offset of the last parameter (if any) relative
// to the frame pointer.
static const int kDisplacement = 1 * kPointerSize;
// Check that the key is a smi.
Label slow;
__ JumpIfNotSmi(rdx, &slow);
// Check if the calling frame is an arguments adaptor frame.
Label adaptor;
__ movq(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
__ SmiCompare(Operand(rbx, StandardFrameConstants::kContextOffset),
Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
__ j(equal, &adaptor);
// Check index against formal parameters count limit passed in
// through register rax. Use unsigned comparison to get negative
// check for free.
__ cmpq(rdx, rax);
__ j(above_equal, &slow);
// Read the argument from the stack and return it.
SmiIndex index = masm->SmiToIndex(rax, rax, kPointerSizeLog2);
__ lea(rbx, Operand(rbp, index.reg, index.scale, 0));
index = masm->SmiToNegativeIndex(rdx, rdx, kPointerSizeLog2);
__ movq(rax, Operand(rbx, index.reg, index.scale, kDisplacement));
__ Ret();
// Arguments adaptor case: Check index against actual arguments
// limit found in the arguments adaptor frame. Use unsigned
// comparison to get negative check for free.
__ bind(&adaptor);
__ movq(rcx, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ cmpq(rdx, rcx);
__ j(above_equal, &slow);
// Read the argument from the stack and return it.
index = masm->SmiToIndex(rax, rcx, kPointerSizeLog2);
__ lea(rbx, Operand(rbx, index.reg, index.scale, 0));
index = masm->SmiToNegativeIndex(rdx, rdx, kPointerSizeLog2);
__ movq(rax, Operand(rbx, index.reg, index.scale, kDisplacement));
__ Ret();
// Slow-case: Handle non-smi or out-of-bounds access to arguments
// by calling the runtime system.
__ bind(&slow);
__ pop(rbx); // Return address.
__ push(rdx);
__ push(rbx);
Runtime::Function* f =
Runtime::FunctionForId(Runtime::kGetArgumentsProperty);
__ TailCallRuntime(ExternalReference(f), 1, f->result_size);
}
void ArgumentsAccessStub::GenerateReadLength(MacroAssembler* masm) {
// Check if the calling frame is an arguments adaptor frame.
Label adaptor;
__ movq(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
__ SmiCompare(Operand(rdx, StandardFrameConstants::kContextOffset),
Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
// Arguments adaptor case: Read the arguments length from the
// adaptor frame and return it.
// Otherwise nothing to do: The number of formal parameters has already been
// passed in register eax by calling function. Just return it.
__ cmovq(equal, rax,
Operand(rdx, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ ret(0);
}
void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
// Check that stack should contain next handler, frame pointer, state and
// return address in that order.
ASSERT_EQ(StackHandlerConstants::kFPOffset + kPointerSize,
StackHandlerConstants::kStateOffset);
ASSERT_EQ(StackHandlerConstants::kStateOffset + kPointerSize,
StackHandlerConstants::kPCOffset);
ExternalReference handler_address(Top::k_handler_address);
__ movq(kScratchRegister, handler_address);
__ movq(rsp, Operand(kScratchRegister, 0));
// get next in chain
__ pop(rcx);
__ movq(Operand(kScratchRegister, 0), rcx);
__ pop(rbp); // pop frame pointer
__ pop(rdx); // remove state
// Before returning we restore the context from the frame pointer if not NULL.
// The frame pointer is NULL in the exception handler of a JS entry frame.
__ xor_(rsi, rsi); // tentatively set context pointer to NULL
Label skip;
__ cmpq(rbp, Immediate(0));
__ j(equal, &skip);
__ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
__ bind(&skip);
__ ret(0);
}
void CEntryStub::GenerateCore(MacroAssembler* masm,
Label* throw_normal_exception,
Label* throw_termination_exception,
Label* throw_out_of_memory_exception,
bool do_gc,
bool always_allocate_scope) {
// rax: result parameter for PerformGC, if any.
// rbx: pointer to C function (C callee-saved).
// rbp: frame pointer (restored after C call).
// rsp: stack pointer (restored after C call).
// r14: number of arguments including receiver (C callee-saved).
// r15: pointer to the first argument (C callee-saved).
// This pointer is reused in LeaveExitFrame(), so it is stored in a
// callee-saved register.
// Simple results returned in rax (both AMD64 and Win64 calling conventions).
// Complex results must be written to address passed as first argument.
// AMD64 calling convention: a struct of two pointers in rax+rdx
if (do_gc) {
// Pass failure code returned from last attempt as first argument to GC.
#ifdef _WIN64
__ movq(rcx, rax);
#else // ! defined(_WIN64)
__ movq(rdi, rax);
#endif
__ movq(kScratchRegister,
FUNCTION_ADDR(Runtime::PerformGC),
RelocInfo::RUNTIME_ENTRY);
__ call(kScratchRegister);
}
ExternalReference scope_depth =
ExternalReference::heap_always_allocate_scope_depth();
if (always_allocate_scope) {
__ movq(kScratchRegister, scope_depth);
__ incl(Operand(kScratchRegister, 0));
}
// Call C function.
#ifdef _WIN64
// Windows 64-bit ABI passes arguments in rcx, rdx, r8, r9
// Store Arguments object on stack, below the 4 WIN64 ABI parameter slots.
__ movq(Operand(rsp, 4 * kPointerSize), r14); // argc.
__ movq(Operand(rsp, 5 * kPointerSize), r15); // argv.
if (result_size_ < 2) {
// Pass a pointer to the Arguments object as the first argument.
// Return result in single register (rax).
__ lea(rcx, Operand(rsp, 4 * kPointerSize));
} else {
ASSERT_EQ(2, result_size_);
// Pass a pointer to the result location as the first argument.
__ lea(rcx, Operand(rsp, 6 * kPointerSize));
// Pass a pointer to the Arguments object as the second argument.
__ lea(rdx, Operand(rsp, 4 * kPointerSize));
}
#else // ! defined(_WIN64)
// GCC passes arguments in rdi, rsi, rdx, rcx, r8, r9.
__ movq(rdi, r14); // argc.
__ movq(rsi, r15); // argv.
#endif
__ call(rbx);
// Result is in rax - do not destroy this register!
if (always_allocate_scope) {
__ movq(kScratchRegister, scope_depth);
__ decl(Operand(kScratchRegister, 0));
}
// Check for failure result.
Label failure_returned;
ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
#ifdef _WIN64
// If return value is on the stack, pop it to registers.
if (result_size_ > 1) {
ASSERT_EQ(2, result_size_);
// Read result values stored on stack. Result is stored
// above the four argument mirror slots and the two
// Arguments object slots.
__ movq(rax, Operand(rsp, 6 * kPointerSize));
__ movq(rdx, Operand(rsp, 7 * kPointerSize));
}
#endif
__ lea(rcx, Operand(rax, 1));
// Lower 2 bits of rcx are 0 iff rax has failure tag.
__ testl(rcx, Immediate(kFailureTagMask));
__ j(zero, &failure_returned);
// Exit the JavaScript to C++ exit frame.
__ LeaveExitFrame(mode_, result_size_);
__ ret(0);
// Handling of failure.
__ bind(&failure_returned);
Label retry;
// If the returned exception is RETRY_AFTER_GC continue at retry label
ASSERT(Failure::RETRY_AFTER_GC == 0);
__ testl(rax, Immediate(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
__ j(zero, &retry);
// Special handling of out of memory exceptions.
__ movq(kScratchRegister, Failure::OutOfMemoryException(), RelocInfo::NONE);
__ cmpq(rax, kScratchRegister);
__ j(equal, throw_out_of_memory_exception);
// Retrieve the pending exception and clear the variable.
ExternalReference pending_exception_address(Top::k_pending_exception_address);
__ movq(kScratchRegister, pending_exception_address);
__ movq(rax, Operand(kScratchRegister, 0));
__ movq(rdx, ExternalReference::the_hole_value_location());
__ movq(rdx, Operand(rdx, 0));
__ movq(Operand(kScratchRegister, 0), rdx);
// Special handling of termination exceptions which are uncatchable
// by javascript code.
__ CompareRoot(rax, Heap::kTerminationExceptionRootIndex);
__ j(equal, throw_termination_exception);
// Handle normal exception.
__ jmp(throw_normal_exception);
// Retry.
__ bind(&retry);
}
void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm,
UncatchableExceptionType type) {
// Fetch top stack handler.
ExternalReference handler_address(Top::k_handler_address);
__ movq(kScratchRegister, handler_address);
__ movq(rsp, Operand(kScratchRegister, 0));
// Unwind the handlers until the ENTRY handler is found.
Label loop, done;
__ bind(&loop);
// Load the type of the current stack handler.
const int kStateOffset = StackHandlerConstants::kStateOffset;
__ cmpq(Operand(rsp, kStateOffset), Immediate(StackHandler::ENTRY));
__ j(equal, &done);
// Fetch the next handler in the list.
const int kNextOffset = StackHandlerConstants::kNextOffset;
__ movq(rsp, Operand(rsp, kNextOffset));
__ jmp(&loop);
__ bind(&done);
// Set the top handler address to next handler past the current ENTRY handler.
__ movq(kScratchRegister, handler_address);
__ pop(Operand(kScratchRegister, 0));
if (type == OUT_OF_MEMORY) {
// Set external caught exception to false.
ExternalReference external_caught(Top::k_external_caught_exception_address);
__ movq(rax, Immediate(false));
__ store_rax(external_caught);
// Set pending exception and rax to out of memory exception.
ExternalReference pending_exception(Top::k_pending_exception_address);
__ movq(rax, Failure::OutOfMemoryException(), RelocInfo::NONE);
__ store_rax(pending_exception);
}
// Clear the context pointer.
__ xor_(rsi, rsi);
// Restore registers from handler.
ASSERT_EQ(StackHandlerConstants::kNextOffset + kPointerSize,
StackHandlerConstants::kFPOffset);
__ pop(rbp); // FP
ASSERT_EQ(StackHandlerConstants::kFPOffset + kPointerSize,
StackHandlerConstants::kStateOffset);
__ pop(rdx); // State
ASSERT_EQ(StackHandlerConstants::kStateOffset + kPointerSize,
StackHandlerConstants::kPCOffset);
__ ret(0);
}
void CallFunctionStub::Generate(MacroAssembler* masm) {
Label slow;
// If the receiver might be a value (string, number or boolean) check for this
// and box it if it is.
if (ReceiverMightBeValue()) {
// Get the receiver from the stack.
// +1 ~ return address
Label receiver_is_value, receiver_is_js_object;
__ movq(rax, Operand(rsp, (argc_ + 1) * kPointerSize));
// Check if receiver is a smi (which is a number value).
__ JumpIfSmi(rax, &receiver_is_value);
// Check if the receiver is a valid JS object.
__ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rdi);
__ j(above_equal, &receiver_is_js_object);
// Call the runtime to box the value.
__ bind(&receiver_is_value);
__ EnterInternalFrame();
__ push(rax);
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
__ LeaveInternalFrame();
__ movq(Operand(rsp, (argc_ + 1) * kPointerSize), rax);
__ bind(&receiver_is_js_object);
}
// Get the function to call from the stack.
// +2 ~ receiver, return address
__ movq(rdi, Operand(rsp, (argc_ + 2) * kPointerSize));
// Check that the function really is a JavaScript function.
__ JumpIfSmi(rdi, &slow);
// Goto slow case if we do not have a function.
__ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
__ j(not_equal, &slow);
// Fast-case: Just invoke the function.
ParameterCount actual(argc_);
__ InvokeFunction(rdi, actual, JUMP_FUNCTION);
// Slow-case: Non-function called.
__ bind(&slow);
// CALL_NON_FUNCTION expects the non-function callee as receiver (instead
// of the original receiver from the call site).
__ movq(Operand(rsp, (argc_ + 1) * kPointerSize), rdi);
__ Set(rax, argc_);
__ Set(rbx, 0);
__ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION);
Handle<Code> adaptor(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline));
__ Jump(adaptor, RelocInfo::CODE_TARGET);
}
void CEntryStub::Generate(MacroAssembler* masm) {
// rax: number of arguments including receiver
// rbx: pointer to C function (C callee-saved)
// rbp: frame pointer of calling JS frame (restored after C call)
// rsp: stack pointer (restored after C call)
// rsi: current context (restored)
// NOTE: Invocations of builtins may return failure objects
// instead of a proper result. The builtin entry handles
// this by performing a garbage collection and retrying the
// builtin once.
// Enter the exit frame that transitions from JavaScript to C++.
__ EnterExitFrame(mode_, result_size_);
// rax: Holds the context at this point, but should not be used.
// On entry to code generated by GenerateCore, it must hold
// a failure result if the collect_garbage argument to GenerateCore
// is true. This failure result can be the result of code
// generated by a previous call to GenerateCore. The value
// of rax is then passed to Runtime::PerformGC.
// rbx: pointer to builtin function (C callee-saved).
// rbp: frame pointer of exit frame (restored after C call).
// rsp: stack pointer (restored after C call).
// r14: number of arguments including receiver (C callee-saved).
// r15: argv pointer (C callee-saved).
Label throw_normal_exception;
Label throw_termination_exception;
Label throw_out_of_memory_exception;
// Call into the runtime system.
GenerateCore(masm,
&throw_normal_exception,
&throw_termination_exception,
&throw_out_of_memory_exception,
false,
false);
// Do space-specific GC and retry runtime call.
GenerateCore(masm,
&throw_normal_exception,
&throw_termination_exception,
&throw_out_of_memory_exception,
true,
false);
// Do full GC and retry runtime call one final time.
Failure* failure = Failure::InternalError();
__ movq(rax, failure, RelocInfo::NONE);
GenerateCore(masm,
&throw_normal_exception,
&throw_termination_exception,
&throw_out_of_memory_exception,
true,
true);
__ bind(&throw_out_of_memory_exception);
GenerateThrowUncatchable(masm, OUT_OF_MEMORY);
__ bind(&throw_termination_exception);
GenerateThrowUncatchable(masm, TERMINATION);
__ bind(&throw_normal_exception);
GenerateThrowTOS(masm);
}
void ApiGetterEntryStub::Generate(MacroAssembler* masm) {
UNREACHABLE();
}
void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
Label invoke, exit;
#ifdef ENABLE_LOGGING_AND_PROFILING
Label not_outermost_js, not_outermost_js_2;
#endif
// Setup frame.
__ push(rbp);
__ movq(rbp, rsp);
// Push the stack frame type marker twice.
int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
__ Push(Smi::FromInt(marker)); // context slot
__ Push(Smi::FromInt(marker)); // function slot
// Save callee-saved registers (X64 calling conventions).
__ push(r12);
__ push(r13);
__ push(r14);
__ push(r15);
__ push(rdi);
__ push(rsi);
__ push(rbx);
// TODO(X64): Push XMM6-XMM15 (low 64 bits) as well, or make them
// callee-save in JS code as well.
// Save copies of the top frame descriptor on the stack.
ExternalReference c_entry_fp(Top::k_c_entry_fp_address);
__ load_rax(c_entry_fp);
__ push(rax);
#ifdef ENABLE_LOGGING_AND_PROFILING
// If this is the outermost JS call, set js_entry_sp value.
ExternalReference js_entry_sp(Top::k_js_entry_sp_address);
__ load_rax(js_entry_sp);
__ testq(rax, rax);
__ j(not_zero, ¬_outermost_js);
__ movq(rax, rbp);
__ store_rax(js_entry_sp);
__ bind(¬_outermost_js);
#endif
// Call a faked try-block that does the invoke.
__ call(&invoke);
// Caught exception: Store result (exception) in the pending
// exception field in the JSEnv and return a failure sentinel.
ExternalReference pending_exception(Top::k_pending_exception_address);
__ store_rax(pending_exception);
__ movq(rax, Failure::Exception(), RelocInfo::NONE);
__ jmp(&exit);
// Invoke: Link this frame into the handler chain.
__ bind(&invoke);
__ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER);
// Clear any pending exceptions.
__ load_rax(ExternalReference::the_hole_value_location());
__ store_rax(pending_exception);
// Fake a receiver (NULL).
__ push(Immediate(0)); // receiver
// Invoke the function by calling through JS entry trampoline
// builtin and pop the faked function when we return. We load the address
// from an external reference instead of inlining the call target address
// directly in the code, because the builtin stubs may not have been
// generated yet at the time this code is generated.
if (is_construct) {
ExternalReference construct_entry(Builtins::JSConstructEntryTrampoline);
__ load_rax(construct_entry);
} else {
ExternalReference entry(Builtins::JSEntryTrampoline);
__ load_rax(entry);
}
__ lea(kScratchRegister, FieldOperand(rax, Code::kHeaderSize));
__ call(kScratchRegister);
// Unlink this frame from the handler chain.
__ movq(kScratchRegister, ExternalReference(Top::k_handler_address));
__ pop(Operand(kScratchRegister, 0));
// Pop next_sp.
__ addq(rsp, Immediate(StackHandlerConstants::kSize - kPointerSize));
#ifdef ENABLE_LOGGING_AND_PROFILING
// If current EBP value is the same as js_entry_sp value, it means that
// the current function is the outermost.
__ movq(kScratchRegister, js_entry_sp);
__ cmpq(rbp, Operand(kScratchRegister, 0));
__ j(not_equal, ¬_outermost_js_2);
__ movq(Operand(kScratchRegister, 0), Immediate(0));
__ bind(¬_outermost_js_2);
#endif
// Restore the top frame descriptor from the stack.
__ bind(&exit);
__ movq(kScratchRegister, ExternalReference(Top::k_c_entry_fp_address));
__ pop(Operand(kScratchRegister, 0));
// Restore callee-saved registers (X64 conventions).
__ pop(rbx);
__ pop(rsi);
__ pop(rdi);
__ pop(r15);
__ pop(r14);
__ pop(r13);
__ pop(r12);
__ addq(rsp, Immediate(2 * kPointerSize)); // remove markers
// Restore frame pointer and return.
__ pop(rbp);
__ ret(0);
}
// -----------------------------------------------------------------------------
// Implementation of stubs.
// Stub classes have public member named masm, not masm_.
void StackCheckStub::Generate(MacroAssembler* masm) {
// Because builtins always remove the receiver from the stack, we
// have to fake one to avoid underflowing the stack. The receiver
// must be inserted below the return address on the stack so we
// temporarily store that in a register.
__ pop(rax);
__ Push(Smi::FromInt(0));
__ push(rax);
// Do tail-call to runtime routine.
Runtime::Function* f = Runtime::FunctionForId(Runtime::kStackGuard);
__ TailCallRuntime(ExternalReference(f), 1, f->result_size);
}
void FloatingPointHelper::LoadFloatOperand(MacroAssembler* masm,
Register number) {
Label load_smi, done;
__ JumpIfSmi(number, &load_smi);
__ fld_d(FieldOperand(number, HeapNumber::kValueOffset));
__ jmp(&done);
__ bind(&load_smi);
__ SmiToInteger32(number, number);
__ push(number);
__ fild_s(Operand(rsp, 0));
__ pop(number);
__ bind(&done);
}
void FloatingPointHelper::LoadFloatOperand(MacroAssembler* masm,
Register src,
XMMRegister dst) {
Label load_smi, done;
__ JumpIfSmi(src, &load_smi);
__ movsd(dst, FieldOperand(src, HeapNumber::kValueOffset));
__ jmp(&done);
__ bind(&load_smi);
__ SmiToInteger32(src, src);
__ cvtlsi2sd(dst, src);
__ bind(&done);
}
void FloatingPointHelper::LoadFloatOperands(MacroAssembler* masm,
XMMRegister dst1,
XMMRegister dst2) {
__ movq(kScratchRegister, rdx);
LoadFloatOperand(masm, kScratchRegister, dst1);
__ movq(kScratchRegister, rax);
LoadFloatOperand(masm, kScratchRegister, dst2);
}
void FloatingPointHelper::LoadFloatOperandsFromSmis(MacroAssembler* masm,
XMMRegister dst1,
XMMRegister dst2) {
__ SmiToInteger32(kScratchRegister, rdx);
__ cvtlsi2sd(dst1, kScratchRegister);
__ SmiToInteger32(kScratchRegister, rax);
__ cvtlsi2sd(dst2, kScratchRegister);
}
// Input: rdx, rax are the left and right objects of a bit op.
// Output: rax, rcx are left and right integers for a bit op.
void FloatingPointHelper::LoadAsIntegers(MacroAssembler* masm,
bool use_sse3,
Label* conversion_failure) {
// Check float operands.
Label arg1_is_object, check_undefined_arg1;
Label arg2_is_object, check_undefined_arg2;
Label load_arg2, done;
__ JumpIfNotSmi(rdx, &arg1_is_object);
__ SmiToInteger32(rdx, rdx);
__ jmp(&load_arg2);
// If the argument is undefined it converts to zero (ECMA-262, section 9.5).
__ bind(&check_undefined_arg1);
__ CompareRoot(rdx, Heap::kUndefinedValueRootIndex);
__ j(not_equal, conversion_failure);
__ movl(rdx, Immediate(0));
__ jmp(&load_arg2);
__ bind(&arg1_is_object);
__ movq(rbx, FieldOperand(rdx, HeapObject::kMapOffset));
__ CompareRoot(rbx, Heap::kHeapNumberMapRootIndex);
__ j(not_equal, &check_undefined_arg1);
// Get the untagged integer version of the edx heap number in rcx.
IntegerConvert(masm, rdx, use_sse3, conversion_failure);
__ movl(rdx, rcx);
// Here edx has the untagged integer, eax has a Smi or a heap number.
__ bind(&load_arg2);
// Test if arg2 is a Smi.
__ JumpIfNotSmi(rax, &arg2_is_object);
__ SmiToInteger32(rax, rax);
__ movl(rcx, rax);
__ jmp(&done);
// If the argument is undefined it converts to zero (ECMA-262, section 9.5).
__ bind(&check_undefined_arg2);
__ CompareRoot(rax, Heap::kUndefinedValueRootIndex);
__ j(not_equal, conversion_failure);
__ movl(rcx, Immediate(0));
__ jmp(&done);
__ bind(&arg2_is_object);
__ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset));
__ CompareRoot(rbx, Heap::kHeapNumberMapRootIndex);
__ j(not_equal, &check_undefined_arg2);
// Get the untagged integer version of the eax heap number in ecx.
IntegerConvert(masm, rax, use_sse3, conversion_failure);
__ bind(&done);
__ movl(rax, rdx);
}
void FloatingPointHelper::LoadFloatOperands(MacroAssembler* masm,
Register lhs,
Register rhs) {
Label load_smi_lhs, load_smi_rhs, done_load_lhs, done;
__ JumpIfSmi(lhs, &load_smi_lhs);
__ fld_d(FieldOperand(lhs, HeapNumber::kValueOffset));
__ bind(&done_load_lhs);
__ JumpIfSmi(rhs, &load_smi_rhs);
__ fld_d(FieldOperand(rhs, HeapNumber::kValueOffset));
__ jmp(&done);
__ bind(&load_smi_lhs);
__ SmiToInteger64(kScratchRegister, lhs);
__ push(kScratchRegister);
__ fild_d(Operand(rsp, 0));
__ pop(kScratchRegister);
__ jmp(&done_load_lhs);
__ bind(&load_smi_rhs);
__ SmiToInteger64(kScratchRegister, rhs);
__ push(kScratchRegister);
__ fild_d(Operand(rsp, 0));
__ pop(kScratchRegister);
__ bind(&done);
}
void FloatingPointHelper::CheckNumberOperands(MacroAssembler* masm,
Label* non_float) {
Label test_other, done;
// Test if both operands are numbers (heap_numbers or smis).
// If not, jump to label non_float.
__ JumpIfSmi(rdx, &test_other); // argument in rdx is OK
__ Cmp(FieldOperand(rdx, HeapObject::kMapOffset), Factory::heap_number_map());
__ j(not_equal, non_float); // The argument in rdx is not a number.
__ bind(&test_other);
__ JumpIfSmi(rax, &done); // argument in rax is OK
__ Cmp(FieldOperand(rax, HeapObject::kMapOffset), Factory::heap_number_map());
__ j(not_equal, non_float); // The argument in rax is not a number.
// Fall-through: Both operands are numbers.
__ bind(&done);
}
const char* GenericBinaryOpStub::GetName() {
if (name_ != NULL) return name_;
const int len = 100;
name_ = Bootstrapper::AllocateAutoDeletedArray(len);
if (name_ == NULL) return "OOM";
const char* op_name = Token::Name(op_);
const char* overwrite_name;
switch (mode_) {
case NO_OVERWRITE: overwrite_name = "Alloc"; break;
case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break;
case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break;
default: overwrite_name = "UnknownOverwrite"; break;
}
OS::SNPrintF(Vector<char>(name_, len),
"GenericBinaryOpStub_%s_%s%s_%s%s_%s%s",
op_name,
overwrite_name,
(flags_ & NO_SMI_CODE_IN_STUB) ? "_NoSmiInStub" : "",
args_in_registers_ ? "RegArgs" : "StackArgs",
args_reversed_ ? "_R" : "",
use_sse3_ ? "SSE3" : "SSE2",
NumberInfo::ToString(operands_type_));
return name_;
}
void GenericBinaryOpStub::GenerateCall(
MacroAssembler* masm,
Register left,
Register right) {
if (!ArgsInRegistersSupported()) {
// Pass arguments on the stack.
__ push(left);
__ push(right);
} else {
// The calling convention with registers is left in rdx and right in rax.
Register left_arg = rdx;
Register right_arg = rax;
if (!(left.is(left_arg) && right.is(right_arg))) {
if (left.is(right_arg) && right.is(left_arg)) {
if (IsOperationCommutative()) {
SetArgsReversed();
} else {
__ xchg(left, right);
}
} else if (left.is(left_arg)) {
__ movq(right_arg, right);
} else if (right.is(right_arg)) {
__ movq(left_arg, left);
} else if (left.is(right_arg)) {
if (IsOperationCommutative()) {
__ movq(left_arg, right);
SetArgsReversed();
} else {
// Order of moves important to avoid destroying left argument.
__ movq(left_arg, left);
__ movq(right_arg, right);
}
} else if (right.is(left_arg)) {
if (IsOperationCommutative()) {
__ movq(right_arg, left);
SetArgsReversed();
} else {
// Order of moves important to avoid destroying right argument.
__ movq(right_arg, right);
__ movq(left_arg, left);
}
} else {
// Order of moves is not important.
__ movq(left_arg, left);
__ movq(right_arg, right);
}
}
// Update flags to indicate that arguments are in registers.
SetArgsInRegisters();
__ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1);
}
// Call the stub.
__ CallStub(this);
}
void GenericBinaryOpStub::GenerateCall(
MacroAssembler* masm,
Register left,
Smi* right) {
if (!ArgsInRegistersSupported()) {
// Pass arguments on the stack.
__ push(left);
__ Push(right);
} else {
// The calling convention with registers is left in rdx and right in rax.
Register left_arg = rdx;
Register right_arg = rax;
if (left.is(left_arg)) {
__ Move(right_arg, right);
} else if (left.is(right_arg) && IsOperationCommutative()) {
__ Move(left_arg, right);
SetArgsReversed();
} else {
// For non-commutative operations, left and right_arg might be
// the same register. Therefore, the order of the moves is
// important here in order to not overwrite left before moving
// it to left_arg.
__ movq(left_arg, left);
__ Move(right_arg, right);
}
// Update flags to indicate that arguments are in registers.
SetArgsInRegisters();
__ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1);
}
// Call the stub.
__ CallStub(this);
}
void GenericBinaryOpStub::GenerateCall(
MacroAssembler* masm,
Smi* left,
Register right) {
if (!ArgsInRegistersSupported()) {
// Pass arguments on the stack.
__ Push(left);
__ push(right);
} else {
// The calling convention with registers is left in rdx and right in rax.
Register left_arg = rdx;
Register right_arg = rax;
if (right.is(right_arg)) {
__ Move(left_arg, left);
} else if (right.is(left_arg) && IsOperationCommutative()) {
__ Move(right_arg, left);
SetArgsReversed();
} else {
// For non-commutative operations, right and left_arg might be
// the same register. Therefore, the order of the moves is
// important here in order to not overwrite right before moving
// it to right_arg.
__ movq(right_arg, right);
__ Move(left_arg, left);
}
// Update flags to indicate that arguments are in registers.
SetArgsInRegisters();
__ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1);
}
// Call the stub.
__ CallStub(this);
}
Result GenericBinaryOpStub::GenerateCall(MacroAssembler* masm,
VirtualFrame* frame,
Result* left,
Result* right) {
if (ArgsInRegistersSupported()) {
SetArgsInRegisters();
return frame->CallStub(this, left, right);
} else {
frame->Push(left);
frame->Push(right);
return frame->CallStub(this, 2);
}
}
void GenericBinaryOpStub::GenerateSmiCode(MacroAssembler* masm, Label* slow) {
// 1. Move arguments into edx, eax except for DIV and MOD, which need the
// dividend in eax and edx free for the division. Use eax, ebx for those.
Comment load_comment(masm, "-- Load arguments");
Register left = rdx;
Register right = rax;
if (op_ == Token::DIV || op_ == Token::MOD) {
left = rax;
right = rbx;
if (HasArgsInRegisters()) {
__ movq(rbx, rax);
__ movq(rax, rdx);
}
}
if (!HasArgsInRegisters()) {
__ movq(right, Operand(rsp, 1 * kPointerSize));
__ movq(left, Operand(rsp, 2 * kPointerSize));
}
// 2. Smi check both operands. Skip the check for OR as it is better combined
// with the actual operation.
Label not_smis;
if (op_ != Token::BIT_OR) {
Comment smi_check_comment(masm, "-- Smi check arguments");
__ JumpIfNotBothSmi(left, right, ¬_smis);
}
// 3. Operands are both smis (except for OR), perform the operation leaving
// the result in rax and check the result if necessary.
Comment perform_smi(masm, "-- Perform smi operation");
Label use_fp_on_smis;
switch (op_) {
case Token::ADD: {
ASSERT(right.is(rax));
__ SmiAdd(right, right, left, &use_fp_on_smis); // ADD is commutative.
break;
}
case Token::SUB: {
__ SmiSub(left, left, right, &use_fp_on_smis);
__ movq(rax, left);
break;
}
case Token::MUL:
ASSERT(right.is(rax));
__ SmiMul(right, right, left, &use_fp_on_smis); // MUL is commutative.
break;
case Token::DIV:
ASSERT(left.is(rax));
__ SmiDiv(left, left, right, &use_fp_on_smis);
break;
case Token::MOD:
ASSERT(left.is(rax));
__ SmiMod(left, left, right, slow);
break;
case Token::BIT_OR:
ASSERT(right.is(rax));
__ movq(rcx, right); // Save the right operand.
__ SmiOr(right, right, left); // BIT_OR is commutative.
__ testb(right, Immediate(kSmiTagMask));
__ j(not_zero, ¬_smis);
break;
case Token::BIT_AND:
ASSERT(right.is(rax));
__ SmiAnd(right, right, left); // BIT_AND is commutative.
break;
case Token::BIT_XOR:
ASSERT(right.is(rax));
__ SmiXor(right, right, left); // BIT_XOR is commutative.
break;
case Token::SHL:
case Token::SHR:
case Token::SAR:
switch (op_) {
case Token::SAR:
__ SmiShiftArithmeticRight(left, left, right);
break;
case Token::SHR:
__ SmiShiftLogicalRight(left, left, right, slow);
break;
case Token::SHL:
__ SmiShiftLeft(left, left, right, slow);
break;
default:
UNREACHABLE();
}
__ movq(rax, left);
break;
default:
UNREACHABLE();
break;
}
// 4. Emit return of result in eax.
GenerateReturn(masm);
// 5. For some operations emit inline code to perform floating point
// operations on known smis (e.g., if the result of the operation
// overflowed the smi range).
switch (op_) {
case Token::ADD:
case Token::SUB:
case Token::MUL:
case Token::DIV: {
__ bind(&use_fp_on_smis);
if (op_ == Token::DIV) {
__ movq(rdx, rax);
__ movq(rax, rbx);
}
// left is rdx, right is rax.
__ AllocateHeapNumber(rbx, rcx, slow);
FloatingPointHelper::LoadFloatOperandsFromSmis(masm, xmm4, xmm5);
switch (op_) {
case Token::ADD: __ addsd(xmm4, xmm5); break;
case Token::SUB: __ subsd(xmm4, xmm5); break;
case Token::MUL: __ mulsd(xmm4, xmm5); break;
case Token::DIV: __ divsd(xmm4, xmm5); break;
default: UNREACHABLE();
}
__ movsd(FieldOperand(rbx, HeapNumber::kValueOffset), xmm4);
__ movq(rax, rbx);
GenerateReturn(masm);
}
default:
break;
}
// 6. Non-smi operands, fall out to the non-smi code with the operands in
// rdx and rax.
Comment done_comment(masm, "-- Enter non-smi code");
__ bind(¬_smis);
switch (op_) {
case Token::DIV:
case Token::MOD:
// Operands are in rax, rbx at this point.
__ movq(rdx, rax);
__ movq(rax, rbx);
break;
case Token::BIT_OR:
// Right operand is saved in rcx and rax was destroyed by the smi
// operation.
__ movq(rax, rcx);
break;
default:
break;
}
}
void GenericBinaryOpStub::Generate(MacroAssembler* masm) {
Label call_runtime;
if (HasSmiCodeInStub()) {
GenerateSmiCode(masm, &call_runtime);
} else if (op_ != Token::MOD) {
GenerateLoadArguments(masm);
}
// Floating point case.
switch (op_) {
case Token::ADD:
case Token::SUB:
case Token::MUL:
case Token::DIV: {
// rax: y
// rdx: x
if (NumberInfo::IsNumber(operands_type_)) {
if (FLAG_debug_code) {
// Assert at runtime that inputs are only numbers.
__ AbortIfNotNumber(rdx, "GenericBinaryOpStub operand not a number.");
__ AbortIfNotNumber(rax, "GenericBinaryOpStub operand not a number.");
}
} else {
FloatingPointHelper::CheckNumberOperands(masm, &call_runtime);
}
// Fast-case: Both operands are numbers.
// xmm4 and xmm5 are volatile XMM registers.
FloatingPointHelper::LoadFloatOperands(masm, xmm4, xmm5);
switch (op_) {
case Token::ADD: __ addsd(xmm4, xmm5); break;
case Token::SUB: __ subsd(xmm4, xmm5); break;
case Token::MUL: __ mulsd(xmm4, xmm5); break;
case Token::DIV: __ divsd(xmm4, xmm5); break;
default: UNREACHABLE();
}
// Allocate a heap number, if needed.
Label skip_allocation;
OverwriteMode mode = mode_;
if (HasArgsReversed()) {
if (mode == OVERWRITE_RIGHT) {
mode = OVERWRITE_LEFT;
} else if (mode == OVERWRITE_LEFT) {
mode = OVERWRITE_RIGHT;
}
}
switch (mode) {
case OVERWRITE_LEFT:
__ JumpIfNotSmi(rdx, &skip_allocation);
__ AllocateHeapNumber(rbx, rcx, &call_runtime);
__ movq(rdx, rbx);
__ bind(&skip_allocation);
__ movq(rax, rdx);
break;
case OVERWRITE_RIGHT:
// If the argument in rax is already an object, we skip the
// allocation of a heap number.
__ JumpIfNotSmi(rax, &skip_allocation);
// Fall through!
case NO_OVERWRITE:
// Allocate a heap number for the result. Keep rax and rdx intact
// for the possible runtime call.
__ AllocateHeapNumber(rbx, rcx, &call_runtime);
__ movq(rax, rbx);
__ bind(&skip_allocation);
break;
default: UNREACHABLE();
}
__ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm4);
GenerateReturn(masm);
}
case Token::MOD: {
// For MOD we go directly to runtime in the non-smi case.
break;
}
case Token::BIT_OR:
case Token::BIT_AND:
case Token::BIT_XOR:
case Token::SAR:
case Token::SHL:
case Token::SHR: {
Label skip_allocation, non_smi_result;
FloatingPointHelper::LoadAsIntegers(masm, use_sse3_, &call_runtime);
switch (op_) {
case Token::BIT_OR: __ orl(rax, rcx); break;
case Token::BIT_AND: __ andl(rax, rcx); break;
case Token::BIT_XOR: __ xorl(rax, rcx); break;
case Token::SAR: __ sarl_cl(rax); break;
case Token::SHL: __ shll_cl(rax); break;
case Token::SHR: __ shrl_cl(rax); break;
default: UNREACHABLE();
}
if (op_ == Token::SHR) {
// Check if result is non-negative. This can only happen for a shift
// by zero, which also doesn't update the sign flag.
__ testl(rax, rax);
__ j(negative, &non_smi_result);
}
__ JumpIfNotValidSmiValue(rax, &non_smi_result);
// Tag smi result, if possible, and return.
__ Integer32ToSmi(rax, rax);
GenerateReturn(masm);
// All ops except SHR return a signed int32 that we load in a HeapNumber.
if (op_ != Token::SHR && non_smi_result.is_linked()) {
__ bind(&non_smi_result);
// Allocate a heap number if needed.
__ movsxlq(rbx, rax); // rbx: sign extended 32-bit result
switch (mode_) {
case OVERWRITE_LEFT:
case OVERWRITE_RIGHT:
// If the operand was an object, we skip the
// allocation of a heap number.
__ movq(rax, Operand(rsp, mode_ == OVERWRITE_RIGHT ?
1 * kPointerSize : 2 * kPointerSize));
__ JumpIfNotSmi(rax, &skip_allocation);
// Fall through!
case NO_OVERWRITE:
__ AllocateHeapNumber(rax, rcx, &call_runtime);
__ bind(&skip_allocation);
break;
default: UNREACHABLE();
}
// Store the result in the HeapNumber and return.
__ movq(Operand(rsp, 1 * kPointerSize), rbx);
__ fild_s(Operand(rsp, 1 * kPointerSize));
__ fstp_d(FieldOperand(rax, HeapNumber::kValueOffset));
GenerateReturn(masm);
}
// SHR should return uint32 - go to runtime for non-smi/negative result.
if (op_ == Token::SHR) {
__ bind(&non_smi_result);
}
break;
}
default: UNREACHABLE(); break;
}
// If all else fails, use the runtime system to get the correct
// result. If arguments was passed in registers now place them on the
// stack in the correct order below the return address.
__ bind(&call_runtime);
if (HasArgsInRegisters()) {
__ pop(rcx);
if (HasArgsReversed()) {
__ push(rax);
__ push(rdx);
} else {
__ push(rdx);
__ push(rax);
}
__ push(rcx);
}
switch (op_) {
case Token::ADD: {
// Test for string arguments before calling runtime.
Label not_strings, both_strings, not_string1, string1;
Condition is_smi;
Result answer;
is_smi = masm->CheckSmi(rdx);
__ j(is_smi, ¬_string1);
__ CmpObjectType(rdx, FIRST_NONSTRING_TYPE, rdx);
__ j(above_equal, ¬_string1);
// First argument is a a string, test second.
is_smi = masm->CheckSmi(rax);
__ j(is_smi, &string1);
__ CmpObjectType(rax, FIRST_NONSTRING_TYPE, rax);
__ j(above_equal, &string1);
// First and second argument are strings.
StringAddStub stub(NO_STRING_CHECK_IN_STUB);
__ TailCallStub(&stub);
// Only first argument is a string.
__ bind(&string1);
__ InvokeBuiltin(
HasArgsReversed() ?
Builtins::STRING_ADD_RIGHT :
Builtins::STRING_ADD_LEFT,
JUMP_FUNCTION);
// First argument was not a string, test second.
__ bind(¬_string1);
is_smi = masm->CheckSmi(rax);
__ j(is_smi, ¬_strings);
__ CmpObjectType(rax, FIRST_NONSTRING_TYPE, rax);
__ j(above_equal, ¬_strings);
// Only second argument is a string.
__ InvokeBuiltin(
HasArgsReversed() ?
Builtins::STRING_ADD_LEFT :
Builtins::STRING_ADD_RIGHT,
JUMP_FUNCTION);
__ bind(¬_strings);
// Neither argument is a string.
__ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION);
break;
}
case Token::SUB:
__ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION);
break;
case Token::MUL:
__ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION);
break;
case Token::DIV:
__ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION);
break;
case Token::MOD:
__ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION);
break;
case Token::BIT_OR:
__ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION);
break;
case Token::BIT_AND:
__ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION);
break;
case Token::BIT_XOR:
__ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION);
break;
case Token::SAR:
__ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION);
break;
case Token::SHL:
__ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION);
break;
case Token::SHR:
__ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION);
break;
default:
UNREACHABLE();
}
}
void GenericBinaryOpStub::GenerateLoadArguments(MacroAssembler* masm) {
// If arguments are not passed in registers read them from the stack.
if (!HasArgsInRegisters()) {
__ movq(rax, Operand(rsp, 1 * kPointerSize));
__ movq(rdx, Operand(rsp, 2 * kPointerSize));
}
}
void GenericBinaryOpStub::GenerateReturn(MacroAssembler* masm) {
// If arguments are not passed in registers remove them from the stack before
// returning.
if (!HasArgsInRegisters()) {
__ ret(2 * kPointerSize); // Remove both operands
} else {
__ ret(0);
}
}
int CompareStub::MinorKey() {
// Encode the three parameters in a unique 16 bit value.
ASSERT(static_cast<unsigned>(cc_) < (1 << 14));
int nnn_value = (never_nan_nan_ ? 2 : 0);
if (cc_ != equal) nnn_value = 0; // Avoid duplicate stubs.
return (static_cast<unsigned>(cc_) << 2) | nnn_value | (strict_ ? 1 : 0);
}
const char* CompareStub::GetName() {
switch (cc_) {
case less: return "CompareStub_LT";
case greater: return "CompareStub_GT";
case less_equal: return "CompareStub_LE";
case greater_equal: return "CompareStub_GE";
case not_equal: {
if (strict_) {
if (never_nan_nan_) {
return "CompareStub_NE_STRICT_NO_NAN";
} else {
return "CompareStub_NE_STRICT";
}
} else {
if (never_nan_nan_) {
return "CompareStub_NE_NO_NAN";
} else {
return "CompareStub_NE";
}
}
}
case equal: {
if (strict_) {
if (never_nan_nan_) {
return "CompareStub_EQ_STRICT_NO_NAN";
} else {
return "CompareStub_EQ_STRICT";
}
} else {
if (never_nan_nan_) {
return "CompareStub_EQ_NO_NAN";
} else {
return "CompareStub_EQ";
}
}
}
default: return "CompareStub";
}
}
void StringAddStub::Generate(MacroAssembler* masm) {
Label string_add_runtime;
// Load the two arguments.
__ movq(rax, Operand(rsp, 2 * kPointerSize)); // First argument.
__ movq(rdx, Operand(rsp, 1 * kPointerSize)); // Second argument.
// Make sure that both arguments are strings if not known in advance.
if (string_check_) {
Condition is_smi;
is_smi = masm->CheckSmi(rax);
__ j(is_smi, &string_add_runtime);
__ CmpObjectType(rax, FIRST_NONSTRING_TYPE, r8);
__ j(above_equal, &string_add_runtime);
// First argument is a a string, test second.
is_smi = masm->CheckSmi(rdx);
__ j(is_smi, &string_add_runtime);
__ CmpObjectType(rdx, FIRST_NONSTRING_TYPE, r9);
__ j(above_equal, &string_add_runtime);
}
// Both arguments are strings.
// rax: first string
// rdx: second string
// Check if either of the strings are empty. In that case return the other.
Label second_not_zero_length, both_not_zero_length;
__ movl(rcx, FieldOperand(rdx, String::kLengthOffset));
__ testl(rcx, rcx);
__ j(not_zero, &second_not_zero_length);
// Second string is empty, result is first string which is already in rax.
__ IncrementCounter(&Counters::string_add_native, 1);
__ ret(2 * kPointerSize);
__ bind(&second_not_zero_length);
__ movl(rbx, FieldOperand(rax, String::kLengthOffset));
__ testl(rbx, rbx);
__ j(not_zero, &both_not_zero_length);
// First string is empty, result is second string which is in rdx.
__ movq(rax, rdx);
__ IncrementCounter(&Counters::string_add_native, 1);
__ ret(2 * kPointerSize);
// Both strings are non-empty.
// rax: first string
// rbx: length of first string
// rcx: length of second string
// rdx: second string
// r8: instance type of first string if string check was performed above
// r9: instance type of first string if string check was performed above
Label string_add_flat_result;
__ bind(&both_not_zero_length);
// Look at the length of the result of adding the two strings.
__ addl(rbx, rcx);
// Use the runtime system when adding two one character strings, as it
// contains optimizations for this specific case using the symbol table.
__ cmpl(rbx, Immediate(2));
__ j(equal, &string_add_runtime);
// If arguments where known to be strings, maps are not loaded to r8 and r9
// by the code above.
if (!string_check_) {
__ movq(r8, FieldOperand(rax, HeapObject::kMapOffset));
__ movq(r9, FieldOperand(rdx, HeapObject::kMapOffset));
}
// Get the instance types of the two strings as they will be needed soon.
__ movzxbl(r8, FieldOperand(r8, Map::kInstanceTypeOffset));
__ movzxbl(r9, FieldOperand(r9, Map::kInstanceTypeOffset));
// Check if resulting string will be flat.
__ cmpl(rbx, Immediate(String::kMinNonFlatLength));
__ j(below, &string_add_flat_result);
// Handle exceptionally long strings in the runtime system.
ASSERT((String::kMaxLength & 0x80000000) == 0);
__ cmpl(rbx, Immediate(String::kMaxLength));
__ j(above, &string_add_runtime);
// If result is not supposed to be flat, allocate a cons string object. If
// both strings are ascii the result is an ascii cons string.
// rax: first string
// ebx: length of resulting flat string
// rdx: second string
// r8: instance type of first string
// r9: instance type of second string
Label non_ascii, allocated;
__ movl(rcx, r8);
__ and_(rcx, r9);
ASSERT(kStringEncodingMask == kAsciiStringTag);
__ testl(rcx, Immediate(kAsciiStringTag));
__ j(zero, &non_ascii);
// Allocate an acsii cons string.
__ AllocateAsciiConsString(rcx, rdi, no_reg, &string_add_runtime);
__ bind(&allocated);
// Fill the fields of the cons string.
__ movl(FieldOperand(rcx, ConsString::kLengthOffset), rbx);
__ movl(FieldOperand(rcx, ConsString::kHashFieldOffset),
Immediate(String::kEmptyHashField));
__ movq(FieldOperand(rcx, ConsString::kFirstOffset), rax);
__ movq(FieldOperand(rcx, ConsString::kSecondOffset), rdx);
__ movq(rax, rcx);
__ IncrementCounter(&Counters::string_add_native, 1);
__ ret(2 * kPointerSize);
__ bind(&non_ascii);
// Allocate a two byte cons string.
__ AllocateConsString(rcx, rdi, no_reg, &string_add_runtime);
__ jmp(&allocated);
// Handle creating a flat result. First check that both strings are not
// external strings.
// rax: first string
// ebx: length of resulting flat string
// rdx: second string
// r8: instance type of first string
// r9: instance type of first string
__ bind(&string_add_flat_result);
__ movl(rcx, r8);
__ and_(rcx, Immediate(kStringRepresentationMask));
__ cmpl(rcx, Immediate(kExternalStringTag));
__ j(equal, &string_add_runtime);
__ movl(rcx, r9);
__ and_(rcx, Immediate(kStringRepresentationMask));
__ cmpl(rcx, Immediate(kExternalStringTag));
__ j(equal, &string_add_runtime);
// Now check if both strings are ascii strings.
// rax: first string
// ebx: length of resulting flat string
// rdx: second string
// r8: instance type of first string
// r9: instance type of second string
Label non_ascii_string_add_flat_result;
ASSERT(kStringEncodingMask == kAsciiStringTag);
__ testl(r8, Immediate(kAsciiStringTag));
__ j(zero, &non_ascii_string_add_flat_result);
__ testl(r9, Immediate(kAsciiStringTag));
__ j(zero, &string_add_runtime);
// Both strings are ascii strings. As they are short they are both flat.
__ AllocateAsciiString(rcx, rbx, rdi, r14, r15, &string_add_runtime);
// rcx: result string
__ movq(rbx, rcx);
// Locate first character of result.
__ addq(rcx, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
// Locate first character of first argument
__ movl(rdi, FieldOperand(rax, String::kLengthOffset));
__ addq(rax, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
// rax: first char of first argument
// rbx: result string
// rcx: first character of result
// rdx: second string
// rdi: length of first argument
GenerateCopyCharacters(masm, rcx, rax, rdi, true);
// Locate first character of second argument.
__ movl(rdi, FieldOperand(rdx, String::kLengthOffset));
__ addq(rdx, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
// rbx: result string
// rcx: next character of result
// rdx: first char of second argument
// rdi: length of second argument
GenerateCopyCharacters(masm, rcx, rdx, rdi, true);
__ movq(rax, rbx);
__ IncrementCounter(&Counters::string_add_native, 1);
__ ret(2 * kPointerSize);
// Handle creating a flat two byte result.
// rax: first string - known to be two byte
// rbx: length of resulting flat string
// rdx: second string
// r8: instance type of first string
// r9: instance type of first string
__ bind(&non_ascii_string_add_flat_result);
__ and_(r9, Immediate(kAsciiStringTag));
__ j(not_zero, &string_add_runtime);
// Both strings are two byte strings. As they are short they are both
// flat.
__ AllocateTwoByteString(rcx, rbx, rdi, r14, r15, &string_add_runtime);
// rcx: result string
__ movq(rbx, rcx);
// Locate first character of result.
__ addq(rcx, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
// Locate first character of first argument.
__ movl(rdi, FieldOperand(rax, String::kLengthOffset));
__ addq(rax, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
// rax: first char of first argument
// rbx: result string
// rcx: first character of result
// rdx: second argument
// rdi: length of first argument
GenerateCopyCharacters(masm, rcx, rax, rdi, false);
// Locate first character of second argument.
__ movl(rdi, FieldOperand(rdx, String::kLengthOffset));
__ addq(rdx, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
// rbx: result string
// rcx: next character of result
// rdx: first char of second argument
// rdi: length of second argument
GenerateCopyCharacters(masm, rcx, rdx, rdi, false);
__ movq(rax, rbx);
__ IncrementCounter(&Counters::string_add_native, 1);
__ ret(2 * kPointerSize);
// Just jump to runtime to add the two strings.
__ bind(&string_add_runtime);
__ TailCallRuntime(ExternalReference(Runtime::kStringAdd), 2, 1);
}
void StringStubBase::GenerateCopyCharacters(MacroAssembler* masm,
Register dest,
Register src,
Register count,
bool ascii) {
Label loop;
__ bind(&loop);
// This loop just copies one character at a time, as it is only used for very
// short strings.
if (ascii) {
__ movb(kScratchRegister, Operand(src, 0));
__ movb(Operand(dest, 0), kScratchRegister);
__ addq(src, Immediate(1));
__ addq(dest, Immediate(1));
} else {
__ movzxwl(kScratchRegister, Operand(src, 0));
__ movw(Operand(dest, 0), kScratchRegister);
__ addq(src, Immediate(2));
__ addq(dest, Immediate(2));
}
__ subl(count, Immediate(1));
__ j(not_zero, &loop);
}
void StringStubBase::GenerateCopyCharactersREP(MacroAssembler* masm,
Register dest,
Register src,
Register count,
bool ascii) {
// Copy characters using rep movs of doublewords. Align destination on 4 byte
// boundary before starting rep movs. Copy remaining characters after running
// rep movs.
ASSERT(dest.is(rdi)); // rep movs destination
ASSERT(src.is(rsi)); // rep movs source
ASSERT(count.is(rcx)); // rep movs count
// Nothing to do for zero characters.
Label done;
__ testq(count, count);
__ j(zero, &done);
// Make count the number of bytes to copy.
if (!ascii) {
ASSERT_EQ(2, sizeof(uc16)); // NOLINT
__ addq(count, count);
}
// Don't enter the rep movs if there are less than 4 bytes to copy.
Label last_bytes;
__ testq(count, Immediate(~7));
__ j(zero, &last_bytes);
// Copy from edi to esi using rep movs instruction.
__ movq(kScratchRegister, count);
__ sar(count, Immediate(3)); // Number of doublewords to copy.
__ repmovsq();
// Find number of bytes left.
__ movq(count, kScratchRegister);
__ and_(count, Immediate(7));
// Check if there are more bytes to copy.
__ bind(&last_bytes);
__ testq(count, count);
__ j(zero, &done);
// Copy remaining characters.
Label loop;
__ bind(&loop);
__ movb(kScratchRegister, Operand(src, 0));
__ movb(Operand(dest, 0), kScratchRegister);
__ addq(src, Immediate(1));
__ addq(dest, Immediate(1));
__ subq(count, Immediate(1));
__ j(not_zero, &loop);
__ bind(&done);
}
void SubStringStub::Generate(MacroAssembler* masm) {
Label runtime;
// Stack frame on entry.
// rsp[0]: return address
// rsp[8]: to
// rsp[16]: from
// rsp[24]: string
const int kToOffset = 1 * kPointerSize;
const int kFromOffset = kToOffset + kPointerSize;
const int kStringOffset = kFromOffset + kPointerSize;
const int kArgumentsSize = (kStringOffset + kPointerSize) - kToOffset;
// Make sure first argument is a string.
__ movq(rax, Operand(rsp, kStringOffset));
ASSERT_EQ(0, kSmiTag);
__ testl(rax, Immediate(kSmiTagMask));
__ j(zero, &runtime);
Condition is_string = masm->IsObjectStringType(rax, rbx, rbx);
__ j(NegateCondition(is_string), &runtime);
// rax: string
// rbx: instance type
// Calculate length of sub string using the smi values.
__ movq(rcx, Operand(rsp, kToOffset));
__ movq(rdx, Operand(rsp, kFromOffset));
__ JumpIfNotBothPositiveSmi(rcx, rdx, &runtime);
__ SmiSub(rcx, rcx, rdx, NULL); // Overflow doesn't happen.
__ j(negative, &runtime);
// Handle sub-strings of length 2 and less in the runtime system.
__ SmiToInteger32(rcx, rcx);
__ cmpl(rcx, Immediate(2));
__ j(below_equal, &runtime);
// rax: string
// rbx: instance type
// rcx: result string length
// Check for flat ascii string
Label non_ascii_flat;
__ and_(rbx, Immediate(kStringRepresentationMask | kStringEncodingMask));
__ cmpb(rbx, Immediate(kSeqStringTag | kAsciiStringTag));
__ j(not_equal, &non_ascii_flat);
// Allocate the result.
__ AllocateAsciiString(rax, rcx, rbx, rdx, rdi, &runtime);
// rax: result string
// rcx: result string length
__ movq(rdx, rsi); // esi used by following code.
// Locate first character of result.
__ lea(rdi, FieldOperand(rax, SeqAsciiString::kHeaderSize));
// Load string argument and locate character of sub string start.
__ movq(rsi, Operand(rsp, kStringOffset));
__ movq(rbx, Operand(rsp, kFromOffset));
{
SmiIndex smi_as_index = masm->SmiToIndex(rbx, rbx, times_1);
__ lea(rsi, Operand(rsi, smi_as_index.reg, smi_as_index.scale,
SeqAsciiString::kHeaderSize - kHeapObjectTag));
}
// rax: result string
// rcx: result length
// rdx: original value of rsi
// rdi: first character of result
// rsi: character of sub string start
GenerateCopyCharactersREP(masm, rdi, rsi, rcx, true);
__ movq(rsi, rdx); // Restore rsi.
__ IncrementCounter(&Counters::sub_string_native, 1);
__ ret(kArgumentsSize);
__ bind(&non_ascii_flat);
// rax: string
// rbx: instance type & kStringRepresentationMask | kStringEncodingMask
// rcx: result string length
// Check for sequential two byte string
__ cmpb(rbx, Immediate(kSeqStringTag | kTwoByteStringTag));
__ j(not_equal, &runtime);
// Allocate the result.
__ AllocateTwoByteString(rax, rcx, rbx, rdx, rdi, &runtime);
// rax: result string
// rcx: result string length
__ movq(rdx, rsi); // esi used by following code.
// Locate first character of result.
__ lea(rdi, FieldOperand(rax, SeqTwoByteString::kHeaderSize));
// Load string argument and locate character of sub string start.
__ movq(rsi, Operand(rsp, kStringOffset));
__ movq(rbx, Operand(rsp, kFromOffset));
{
SmiIndex smi_as_index = masm->SmiToIndex(rbx, rbx, times_2);
__ lea(rsi, Operand(rsi, smi_as_index.reg, smi_as_index.scale,
SeqAsciiString::kHeaderSize - kHeapObjectTag));
}
// rax: result string
// rcx: result length
// rdx: original value of rsi
// rdi: first character of result
// rsi: character of sub string start
GenerateCopyCharactersREP(masm, rdi, rsi, rcx, false);
__ movq(rsi, rdx); // Restore esi.
__ IncrementCounter(&Counters::sub_string_native, 1);
__ ret(kArgumentsSize);
// Just jump to runtime to create the sub string.
__ bind(&runtime);
__ TailCallRuntime(ExternalReference(Runtime::kSubString), 3, 1);
}
void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
Register left,
Register right,
Register scratch1,
Register scratch2,
Register scratch3,
Register scratch4) {
// Ensure that you can always subtract a string length from a non-negative
// number (e.g. another length).
ASSERT(String::kMaxLength < 0x7fffffff);
// Find minimum length and length difference.
__ movl(scratch1, FieldOperand(left, String::kLengthOffset));
__ movl(scratch4, scratch1);
__ subl(scratch4, FieldOperand(right, String::kLengthOffset));
// Register scratch4 now holds left.length - right.length.
const Register length_difference = scratch4;
Label left_shorter;
__ j(less, &left_shorter);
// The right string isn't longer that the left one.
// Get the right string's length by subtracting the (non-negative) difference
// from the left string's length.
__ subl(scratch1, length_difference);
__ bind(&left_shorter);
// Register scratch1 now holds Min(left.length, right.length).
const Register min_length = scratch1;
Label compare_lengths;
// If min-length is zero, go directly to comparing lengths.
__ testl(min_length, min_length);
__ j(zero, &compare_lengths);
// Registers scratch2 and scratch3 are free.
Label result_not_equal;
Label loop;
{
// Check characters 0 .. min_length - 1 in a loop.
// Use scratch3 as loop index, min_length as limit and scratch2
// for computation.
const Register index = scratch3;
__ movl(index, Immediate(0)); // Index into strings.
__ bind(&loop);
// Compare characters.
// TODO(lrn): Could we load more than one character at a time?
__ movb(scratch2, FieldOperand(left,
index,
times_1,
SeqAsciiString::kHeaderSize));
// Increment index and use -1 modifier on next load to give
// the previous load extra time to complete.
__ addl(index, Immediate(1));
__ cmpb(scratch2, FieldOperand(right,
index,
times_1,
SeqAsciiString::kHeaderSize - 1));
__ j(not_equal, &result_not_equal);
__ cmpl(index, min_length);
__ j(not_equal, &loop);
}
// Completed loop without finding different characters.
// Compare lengths (precomputed).
__ bind(&compare_lengths);
__ testl(length_difference, length_difference);
__ j(not_zero, &result_not_equal);
// Result is EQUAL.
__ Move(rax, Smi::FromInt(EQUAL));
__ ret(2 * kPointerSize);
Label result_greater;
__ bind(&result_not_equal);
// Unequal comparison of left to right, either character or length.
__ j(greater, &result_greater);
// Result is LESS.
__ Move(rax, Smi::FromInt(LESS));
__ ret(2 * kPointerSize);
// Result is GREATER.
__ bind(&result_greater);
__ Move(rax, Smi::FromInt(GREATER));
__ ret(2 * kPointerSize);
}
void StringCompareStub::Generate(MacroAssembler* masm) {
Label runtime;
// Stack frame on entry.
// rsp[0]: return address
// rsp[8]: right string
// rsp[16]: left string
__ movq(rdx, Operand(rsp, 2 * kPointerSize)); // left
__ movq(rax, Operand(rsp, 1 * kPointerSize)); // right
// Check for identity.
Label not_same;
__ cmpq(rdx, rax);
__ j(not_equal, ¬_same);
__ Move(rax, Smi::FromInt(EQUAL));
__ IncrementCounter(&Counters::string_compare_native, 1);
__ ret(2 * kPointerSize);
__ bind(¬_same);
// Check that both are sequential ASCII strings.
__ JumpIfNotBothSequentialAsciiStrings(rdx, rax, rcx, rbx, &runtime);
// Inline comparison of ascii strings.
__ IncrementCounter(&Counters::string_compare_native, 1);
GenerateCompareFlatAsciiStrings(masm, rdx, rax, rcx, rbx, rdi, r8);
// Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
// tagged as a small integer.
__ bind(&runtime);
__ TailCallRuntime(ExternalReference(Runtime::kStringCompare), 2, 1);
}
#undef __
#define __ masm.
#ifdef _WIN64
typedef double (*ModuloFunction)(double, double);
// Define custom fmod implementation.
ModuloFunction CreateModuloFunction() {
size_t actual_size;
byte* buffer = static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize,
&actual_size,
true));
CHECK(buffer);
Assembler masm(buffer, static_cast<int>(actual_size));
// Generated code is put into a fixed, unmovable, buffer, and not into
// the V8 heap. We can't, and don't, refer to any relocatable addresses
// (e.g. the JavaScript nan-object).
// Windows 64 ABI passes double arguments in xmm0, xmm1 and
// returns result in xmm0.
// Argument backing space is allocated on the stack above
// the return address.
// Compute x mod y.
// Load y and x (use argument backing store as temporary storage).
__ movsd(Operand(rsp, kPointerSize * 2), xmm1);
__ movsd(Operand(rsp, kPointerSize), xmm0);
__ fld_d(Operand(rsp, kPointerSize * 2));
__ fld_d(Operand(rsp, kPointerSize));
// Clear exception flags before operation.
{
Label no_exceptions;
__ fwait();
__ fnstsw_ax();
// Clear if Illegal Operand or Zero Division exceptions are set.
__ testb(rax, Immediate(5));
__ j(zero, &no_exceptions);
__ fnclex();
__ bind(&no_exceptions);
}
// Compute st(0) % st(1)
{
Label partial_remainder_loop;
__ bind(&partial_remainder_loop);
__ fprem();
__ fwait();
__ fnstsw_ax();
__ testl(rax, Immediate(0x400 /* C2 */));
// If C2 is set, computation only has partial result. Loop to
// continue computation.
__ j(not_zero, &partial_remainder_loop);
}
Label valid_result;
Label return_result;
// If Invalid Operand or Zero Division exceptions are set,
// return NaN.
__ testb(rax, Immediate(5));
__ j(zero, &valid_result);
__ fstp(0); // Drop result in st(0).
int64_t kNaNValue = V8_INT64_C(0x7ff8000000000000);
__ movq(rcx, kNaNValue, RelocInfo::NONE);
__ movq(Operand(rsp, kPointerSize), rcx);
__ movsd(xmm0, Operand(rsp, kPointerSize));
__ jmp(&return_result);
// If result is valid, return that.
__ bind(&valid_result);
__ fstp_d(Operand(rsp, kPointerSize));
__ movsd(xmm0, Operand(rsp, kPointerSize));
// Clean up FPU stack and exceptions and return xmm0
__ bind(&return_result);
__ fstp(0); // Unload y.
Label clear_exceptions;
__ testb(rax, Immediate(0x3f /* Any Exception*/));
__ j(not_zero, &clear_exceptions);
__ ret(0);
__ bind(&clear_exceptions);
__ fnclex();
__ ret(0);
CodeDesc desc;
masm.GetCode(&desc);
// Call the function from C++.
return FUNCTION_CAST<ModuloFunction>(buffer);
}
#endif
#undef __
} } // namespace v8::internal