/*
 *  Copyright (C) 1999-2000 Harri Porten (porten@kde.org)
 *  Copyright (C) 2003, 2007, 2008, 2009 Apple Inc. All rights reserved.
 *  Copyright (C) 2003 Peter Kelly (pmk@post.com)
 *  Copyright (C) 2006 Alexey Proskuryakov (ap@nypop.com)
 *
 *  This library is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU Lesser General Public
 *  License as published by the Free Software Foundation; either
 *  version 2 of the License, or (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  License along with this library; if not, write to the Free Software
 *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */

#include "config.h"
#include "JSArray.h"

#include "ArrayPrototype.h"
#include "CachedCall.h"
#include "Error.h"
#include "Executable.h"
#include "PropertyNameArray.h"
#include <wtf/AVLTree.h>
#include <wtf/Assertions.h>
#include <wtf/OwnPtr.h>
#include <Operations.h>

#define CHECK_ARRAY_CONSISTENCY 0

using namespace std;
using namespace WTF;

namespace JSC {

ASSERT_CLASS_FITS_IN_CELL(JSArray);

// Overview of JSArray
//
// Properties of JSArray objects may be stored in one of three locations:
//   * The regular JSObject property map.
//   * A storage vector.
//   * A sparse map of array entries.
//
// Properties with non-numeric identifiers, with identifiers that are not representable
// as an unsigned integer, or where the value is greater than  MAX_ARRAY_INDEX
// (specifically, this is only one property - the value 0xFFFFFFFFU as an unsigned 32-bit
// integer) are not considered array indices and will be stored in the JSObject property map.
//
// All properties with a numeric identifer, representable as an unsigned integer i,
// where (i <= MAX_ARRAY_INDEX), are an array index and will be stored in either the
// storage vector or the sparse map.  An array index i will be handled in the following
// fashion:
//
//   * Where (i < MIN_SPARSE_ARRAY_INDEX) the value will be stored in the storage vector.
//   * Where (MIN_SPARSE_ARRAY_INDEX <= i <= MAX_STORAGE_VECTOR_INDEX) the value will either
//     be stored in the storage vector or in the sparse array, depending on the density of
//     data that would be stored in the vector (a vector being used where at least
//     (1 / minDensityMultiplier) of the entries would be populated).
//   * Where (MAX_STORAGE_VECTOR_INDEX < i <= MAX_ARRAY_INDEX) the value will always be stored
//     in the sparse array.

// The definition of MAX_STORAGE_VECTOR_LENGTH is dependant on the definition storageSize
// function below - the MAX_STORAGE_VECTOR_LENGTH limit is defined such that the storage
// size calculation cannot overflow.  (sizeof(ArrayStorage) - sizeof(JSValue)) +
// (vectorLength * sizeof(JSValue)) must be <= 0xFFFFFFFFU (which is maximum value of size_t).
#define MAX_STORAGE_VECTOR_LENGTH static_cast<unsigned>((0xFFFFFFFFU - (sizeof(ArrayStorage) - sizeof(JSValue))) / sizeof(JSValue))

// These values have to be macros to be used in max() and min() without introducing
// a PIC branch in Mach-O binaries, see <rdar://problem/5971391>.
#define MIN_SPARSE_ARRAY_INDEX 10000U
#define MAX_STORAGE_VECTOR_INDEX (MAX_STORAGE_VECTOR_LENGTH - 1)
// 0xFFFFFFFF is a bit weird -- is not an array index even though it's an integer.
#define MAX_ARRAY_INDEX 0xFFFFFFFEU

// Our policy for when to use a vector and when to use a sparse map.
// For all array indices under MIN_SPARSE_ARRAY_INDEX, we always use a vector.
// When indices greater than MIN_SPARSE_ARRAY_INDEX are involved, we use a vector
// as long as it is 1/8 full. If more sparse than that, we use a map.
static const unsigned minDensityMultiplier = 8;

const ClassInfo JSArray::info = {"Array", 0, 0, 0};

static inline size_t storageSize(unsigned vectorLength)
{
    ASSERT(vectorLength <= MAX_STORAGE_VECTOR_LENGTH);

    // MAX_STORAGE_VECTOR_LENGTH is defined such that provided (vectorLength <= MAX_STORAGE_VECTOR_LENGTH)
    // - as asserted above - the following calculation cannot overflow.
    size_t size = (sizeof(ArrayStorage) - sizeof(JSValue)) + (vectorLength * sizeof(JSValue));
    // Assertion to detect integer overflow in previous calculation (should not be possible, provided that
    // MAX_STORAGE_VECTOR_LENGTH is correctly defined).
    ASSERT(((size - (sizeof(ArrayStorage) - sizeof(JSValue))) / sizeof(JSValue) == vectorLength) && (size >= (sizeof(ArrayStorage) - sizeof(JSValue))));

    return size;
}

static inline unsigned increasedVectorLength(unsigned newLength)
{
    ASSERT(newLength <= MAX_STORAGE_VECTOR_LENGTH);

    // Mathematically equivalent to:
    //   increasedLength = (newLength * 3 + 1) / 2;
    // or:
    //   increasedLength = (unsigned)ceil(newLength * 1.5));
    // This form is not prone to internal overflow.
    unsigned increasedLength = newLength + (newLength >> 1) + (newLength & 1);
    ASSERT(increasedLength >= newLength);

    return min(increasedLength, MAX_STORAGE_VECTOR_LENGTH);
}

static inline bool isDenseEnoughForVector(unsigned length, unsigned numValues)
{
    return length / minDensityMultiplier <= numValues;
}

#if !CHECK_ARRAY_CONSISTENCY

inline void JSArray::checkConsistency(ConsistencyCheckType)
{
}

#endif

JSArray::JSArray(NonNullPassRefPtr<Structure> structure)
    : JSObject(structure)
{
    unsigned initialCapacity = 0;

    m_storage = static_cast<ArrayStorage*>(fastZeroedMalloc(storageSize(initialCapacity)));
    m_vectorLength = initialCapacity;

    checkConsistency();
}

JSArray::JSArray(NonNullPassRefPtr<Structure> structure, unsigned initialLength)
    : JSObject(structure)
{
    unsigned initialCapacity = min(initialLength, MIN_SPARSE_ARRAY_INDEX);

    m_storage = static_cast<ArrayStorage*>(fastMalloc(storageSize(initialCapacity)));
    m_storage->m_length = initialLength;
    m_vectorLength = initialCapacity;
    m_storage->m_numValuesInVector = 0;
    m_storage->m_sparseValueMap = 0;
    m_storage->lazyCreationData = 0;
    m_storage->reportedMapCapacity = 0;

    JSValue* vector = m_storage->m_vector;
    for (size_t i = 0; i < initialCapacity; ++i)
        vector[i] = JSValue();

    checkConsistency();

    Heap::heap(this)->reportExtraMemoryCost(initialCapacity * sizeof(JSValue));
}

JSArray::JSArray(NonNullPassRefPtr<Structure> structure, const ArgList& list)
    : JSObject(structure)
{
    unsigned initialCapacity = list.size();

    m_storage = static_cast<ArrayStorage*>(fastMalloc(storageSize(initialCapacity)));
    m_storage->m_length = initialCapacity;
    m_vectorLength = initialCapacity;
    m_storage->m_numValuesInVector = initialCapacity;
    m_storage->m_sparseValueMap = 0;
    m_storage->lazyCreationData = 0;
    m_storage->reportedMapCapacity = 0;

    size_t i = 0;
    ArgList::const_iterator end = list.end();
    for (ArgList::const_iterator it = list.begin(); it != end; ++it, ++i)
        m_storage->m_vector[i] = *it;

    checkConsistency();

    Heap::heap(this)->reportExtraMemoryCost(storageSize(initialCapacity));
}

JSArray::~JSArray()
{
    ASSERT(vptr() == JSGlobalData::jsArrayVPtr);
    checkConsistency(DestructorConsistencyCheck);

    delete m_storage->m_sparseValueMap;
    fastFree(m_storage);
}

bool JSArray::getOwnPropertySlot(ExecState* exec, unsigned i, PropertySlot& slot)
{
    ArrayStorage* storage = m_storage;

    if (i >= storage->m_length) {
        if (i > MAX_ARRAY_INDEX)
            return getOwnPropertySlot(exec, Identifier::from(exec, i), slot);
        return false;
    }

    if (i < m_vectorLength) {
        JSValue& valueSlot = storage->m_vector[i];
        if (valueSlot) {
            slot.setValueSlot(&valueSlot);
            return true;
        }
    } else if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
        if (i >= MIN_SPARSE_ARRAY_INDEX) {
            SparseArrayValueMap::iterator it = map->find(i);
            if (it != map->end()) {
                slot.setValueSlot(&it->second);
                return true;
            }
        }
    }

    return JSObject::getOwnPropertySlot(exec, Identifier::from(exec, i), slot);
}

bool JSArray::getOwnPropertySlot(ExecState* exec, const Identifier& propertyName, PropertySlot& slot)
{
    if (propertyName == exec->propertyNames().length) {
        slot.setValue(jsNumber(exec, length()));
        return true;
    }

    bool isArrayIndex;
    unsigned i = propertyName.toArrayIndex(&isArrayIndex);
    if (isArrayIndex)
        return JSArray::getOwnPropertySlot(exec, i, slot);

    return JSObject::getOwnPropertySlot(exec, propertyName, slot);
}

bool JSArray::getOwnPropertyDescriptor(ExecState* exec, const Identifier& propertyName, PropertyDescriptor& descriptor)
{
    if (propertyName == exec->propertyNames().length) {
        descriptor.setDescriptor(jsNumber(exec, length()), DontDelete | DontEnum);
        return true;
    }
    
    bool isArrayIndex;
    unsigned i = propertyName.toArrayIndex(&isArrayIndex);
    if (isArrayIndex) {
        if (i >= m_storage->m_length)
            return false;
        if (i < m_vectorLength) {
            JSValue& value = m_storage->m_vector[i];
            if (value) {
                descriptor.setDescriptor(value, 0);
                return true;
            }
        } else if (SparseArrayValueMap* map = m_storage->m_sparseValueMap) {
            if (i >= MIN_SPARSE_ARRAY_INDEX) {
                SparseArrayValueMap::iterator it = map->find(i);
                if (it != map->end()) {
                    descriptor.setDescriptor(it->second, 0);
                    return true;
                }
            }
        }
    }
    return JSObject::getOwnPropertyDescriptor(exec, propertyName, descriptor);
}

// ECMA 15.4.5.1
void JSArray::put(ExecState* exec, const Identifier& propertyName, JSValue value, PutPropertySlot& slot)
{
    bool isArrayIndex;
    unsigned i = propertyName.toArrayIndex(&isArrayIndex);
    if (isArrayIndex) {
        put(exec, i, value);
        return;
    }

    if (propertyName == exec->propertyNames().length) {
        unsigned newLength = value.toUInt32(exec);
        if (value.toNumber(exec) != static_cast<double>(newLength)) {
            throwError(exec, RangeError, "Invalid array length.");
            return;
        }
        setLength(newLength);
        return;
    }

    JSObject::put(exec, propertyName, value, slot);
}

void JSArray::put(ExecState* exec, unsigned i, JSValue value)
{
    checkConsistency();

    unsigned length = m_storage->m_length;
    if (i >= length && i <= MAX_ARRAY_INDEX) {
        length = i + 1;
        m_storage->m_length = length;
    }

    if (i < m_vectorLength) {
        JSValue& valueSlot = m_storage->m_vector[i];
        if (valueSlot) {
            valueSlot = value;
            checkConsistency();
            return;
        }
        valueSlot = value;
        ++m_storage->m_numValuesInVector;
        checkConsistency();
        return;
    }

    putSlowCase(exec, i, value);
}

NEVER_INLINE void JSArray::putSlowCase(ExecState* exec, unsigned i, JSValue value)
{
    ArrayStorage* storage = m_storage;
    SparseArrayValueMap* map = storage->m_sparseValueMap;

    if (i >= MIN_SPARSE_ARRAY_INDEX) {
        if (i > MAX_ARRAY_INDEX) {
            PutPropertySlot slot;
            put(exec, Identifier::from(exec, i), value, slot);
            return;
        }

        // We miss some cases where we could compact the storage, such as a large array that is being filled from the end
        // (which will only be compacted as we reach indices that are less than MIN_SPARSE_ARRAY_INDEX) - but this makes the check much faster.
        if ((i > MAX_STORAGE_VECTOR_INDEX) || !isDenseEnoughForVector(i + 1, storage->m_numValuesInVector + 1)) {
            if (!map) {
                map = new SparseArrayValueMap;
                storage->m_sparseValueMap = map;
            }

            pair<SparseArrayValueMap::iterator, bool> result = map->add(i, value);
            if (!result.second) { // pre-existing entry
                result.first->second = value;
                return;
            }

            size_t capacity = map->capacity();
            if (capacity != storage->reportedMapCapacity) {
                Heap::heap(this)->reportExtraMemoryCost((capacity - storage->reportedMapCapacity) * (sizeof(unsigned) + sizeof(JSValue)));
                storage->reportedMapCapacity = capacity;
            }
            return;
        }
    }

    // We have decided that we'll put the new item into the vector.
    // Fast case is when there is no sparse map, so we can increase the vector size without moving values from it.
    if (!map || map->isEmpty()) {
        if (increaseVectorLength(i + 1)) {
            storage = m_storage;
            storage->m_vector[i] = value;
            ++storage->m_numValuesInVector;
            checkConsistency();
        } else
            throwOutOfMemoryError(exec);
        return;
    }

    // Decide how many values it would be best to move from the map.
    unsigned newNumValuesInVector = storage->m_numValuesInVector + 1;
    unsigned newVectorLength = increasedVectorLength(i + 1);
    for (unsigned j = max(m_vectorLength, MIN_SPARSE_ARRAY_INDEX); j < newVectorLength; ++j)
        newNumValuesInVector += map->contains(j);
    if (i >= MIN_SPARSE_ARRAY_INDEX)
        newNumValuesInVector -= map->contains(i);
    if (isDenseEnoughForVector(newVectorLength, newNumValuesInVector)) {
        unsigned proposedNewNumValuesInVector = newNumValuesInVector;
        // If newVectorLength is already the maximum - MAX_STORAGE_VECTOR_LENGTH - then do not attempt to grow any further.
        while (newVectorLength < MAX_STORAGE_VECTOR_LENGTH) {
            unsigned proposedNewVectorLength = increasedVectorLength(newVectorLength + 1);
            for (unsigned j = max(newVectorLength, MIN_SPARSE_ARRAY_INDEX); j < proposedNewVectorLength; ++j)
                proposedNewNumValuesInVector += map->contains(j);
            if (!isDenseEnoughForVector(proposedNewVectorLength, proposedNewNumValuesInVector))
                break;
            newVectorLength = proposedNewVectorLength;
            newNumValuesInVector = proposedNewNumValuesInVector;
        }
    }

    if (!tryFastRealloc(storage, storageSize(newVectorLength)).getValue(storage)) {
        throwOutOfMemoryError(exec);
        return;
    }

    unsigned vectorLength = m_vectorLength;

    if (newNumValuesInVector == storage->m_numValuesInVector + 1) {
        for (unsigned j = vectorLength; j < newVectorLength; ++j)
            storage->m_vector[j] = JSValue();
        if (i > MIN_SPARSE_ARRAY_INDEX)
            map->remove(i);
    } else {
        for (unsigned j = vectorLength; j < max(vectorLength, MIN_SPARSE_ARRAY_INDEX); ++j)
            storage->m_vector[j] = JSValue();
        for (unsigned j = max(vectorLength, MIN_SPARSE_ARRAY_INDEX); j < newVectorLength; ++j)
            storage->m_vector[j] = map->take(j);
    }

    storage->m_vector[i] = value;

    m_vectorLength = newVectorLength;
    storage->m_numValuesInVector = newNumValuesInVector;

    m_storage = storage;

    checkConsistency();

    Heap::heap(this)->reportExtraMemoryCost(storageSize(newVectorLength) - storageSize(vectorLength));
}

bool JSArray::deleteProperty(ExecState* exec, const Identifier& propertyName)
{
    bool isArrayIndex;
    unsigned i = propertyName.toArrayIndex(&isArrayIndex);
    if (isArrayIndex)
        return deleteProperty(exec, i);

    if (propertyName == exec->propertyNames().length)
        return false;

    return JSObject::deleteProperty(exec, propertyName);
}

bool JSArray::deleteProperty(ExecState* exec, unsigned i)
{
    checkConsistency();

    ArrayStorage* storage = m_storage;

    if (i < m_vectorLength) {
        JSValue& valueSlot = storage->m_vector[i];
        if (!valueSlot) {
            checkConsistency();
            return false;
        }
        valueSlot = JSValue();
        --storage->m_numValuesInVector;
        checkConsistency();
        return true;
    }

    if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
        if (i >= MIN_SPARSE_ARRAY_INDEX) {
            SparseArrayValueMap::iterator it = map->find(i);
            if (it != map->end()) {
                map->remove(it);
                checkConsistency();
                return true;
            }
        }
    }

    checkConsistency();

    if (i > MAX_ARRAY_INDEX)
        return deleteProperty(exec, Identifier::from(exec, i));

    return false;
}

void JSArray::getOwnPropertyNames(ExecState* exec, PropertyNameArray& propertyNames, EnumerationMode mode)
{
    // FIXME: Filling PropertyNameArray with an identifier for every integer
    // is incredibly inefficient for large arrays. We need a different approach,
    // which almost certainly means a different structure for PropertyNameArray.

    ArrayStorage* storage = m_storage;

    unsigned usedVectorLength = min(storage->m_length, m_vectorLength);
    for (unsigned i = 0; i < usedVectorLength; ++i) {
        if (storage->m_vector[i])
            propertyNames.add(Identifier::from(exec, i));
    }

    if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
        SparseArrayValueMap::iterator end = map->end();
        for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it)
            propertyNames.add(Identifier::from(exec, it->first));
    }

    if (mode == IncludeDontEnumProperties)
        propertyNames.add(exec->propertyNames().length);

    JSObject::getOwnPropertyNames(exec, propertyNames, mode);
}

bool JSArray::increaseVectorLength(unsigned newLength)
{
    // This function leaves the array in an internally inconsistent state, because it does not move any values from sparse value map
    // to the vector. Callers have to account for that, because they can do it more efficiently.

    ArrayStorage* storage = m_storage;

    unsigned vectorLength = m_vectorLength;
    ASSERT(newLength > vectorLength);
    ASSERT(newLength <= MAX_STORAGE_VECTOR_INDEX);
    unsigned newVectorLength = increasedVectorLength(newLength);

    if (!tryFastRealloc(storage, storageSize(newVectorLength)).getValue(storage))
        return false;

    m_vectorLength = newVectorLength;

    for (unsigned i = vectorLength; i < newVectorLength; ++i)
        storage->m_vector[i] = JSValue();

    m_storage = storage;

    Heap::heap(this)->reportExtraMemoryCost(storageSize(newVectorLength) - storageSize(vectorLength));

    return true;
}

void JSArray::setLength(unsigned newLength)
{
    checkConsistency();

    ArrayStorage* storage = m_storage;

    unsigned length = m_storage->m_length;

    if (newLength < length) {
        unsigned usedVectorLength = min(length, m_vectorLength);
        for (unsigned i = newLength; i < usedVectorLength; ++i) {
            JSValue& valueSlot = storage->m_vector[i];
            bool hadValue = valueSlot;
            valueSlot = JSValue();
            storage->m_numValuesInVector -= hadValue;
        }

        if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
            SparseArrayValueMap copy = *map;
            SparseArrayValueMap::iterator end = copy.end();
            for (SparseArrayValueMap::iterator it = copy.begin(); it != end; ++it) {
                if (it->first >= newLength)
                    map->remove(it->first);
            }
            if (map->isEmpty()) {
                delete map;
                storage->m_sparseValueMap = 0;
            }
        }
    }

    m_storage->m_length = newLength;

    checkConsistency();
}

JSValue JSArray::pop()
{
    checkConsistency();

    unsigned length = m_storage->m_length;
    if (!length)
        return jsUndefined();

    --length;

    JSValue result;

    if (length < m_vectorLength) {
        JSValue& valueSlot = m_storage->m_vector[length];
        if (valueSlot) {
            --m_storage->m_numValuesInVector;
            result = valueSlot;
            valueSlot = JSValue();
        } else
            result = jsUndefined();
    } else {
        result = jsUndefined();
        if (SparseArrayValueMap* map = m_storage->m_sparseValueMap) {
            SparseArrayValueMap::iterator it = map->find(length);
            if (it != map->end()) {
                result = it->second;
                map->remove(it);
                if (map->isEmpty()) {
                    delete map;
                    m_storage->m_sparseValueMap = 0;
                }
            }
        }
    }

    m_storage->m_length = length;

    checkConsistency();

    return result;
}

void JSArray::push(ExecState* exec, JSValue value)
{
    checkConsistency();

    if (m_storage->m_length < m_vectorLength) {
        m_storage->m_vector[m_storage->m_length] = value;
        ++m_storage->m_numValuesInVector;
        ++m_storage->m_length;
        checkConsistency();
        return;
    }

    if (m_storage->m_length < MIN_SPARSE_ARRAY_INDEX) {
        SparseArrayValueMap* map = m_storage->m_sparseValueMap;
        if (!map || map->isEmpty()) {
            if (increaseVectorLength(m_storage->m_length + 1)) {
                m_storage->m_vector[m_storage->m_length] = value;
                ++m_storage->m_numValuesInVector;
                ++m_storage->m_length;
                checkConsistency();
                return;
            }
            checkConsistency();
            throwOutOfMemoryError(exec);
            return;
        }
    }

    putSlowCase(exec, m_storage->m_length++, value);
}

void JSArray::markChildren(MarkStack& markStack)
{
    markChildrenDirect(markStack);
}

static int compareNumbersForQSort(const void* a, const void* b)
{
    double da = static_cast<const JSValue*>(a)->uncheckedGetNumber();
    double db = static_cast<const JSValue*>(b)->uncheckedGetNumber();
    return (da > db) - (da < db);
}

typedef std::pair<JSValue, UString> ValueStringPair;

static int compareByStringPairForQSort(const void* a, const void* b)
{
    const ValueStringPair* va = static_cast<const ValueStringPair*>(a);
    const ValueStringPair* vb = static_cast<const ValueStringPair*>(b);
    return compare(va->second, vb->second);
}

void JSArray::sortNumeric(ExecState* exec, JSValue compareFunction, CallType callType, const CallData& callData)
{
    unsigned lengthNotIncludingUndefined = compactForSorting();
    if (m_storage->m_sparseValueMap) {
        throwOutOfMemoryError(exec);
        return;
    }

    if (!lengthNotIncludingUndefined)
        return;
        
    bool allValuesAreNumbers = true;
    size_t size = m_storage->m_numValuesInVector;
    for (size_t i = 0; i < size; ++i) {
        if (!m_storage->m_vector[i].isNumber()) {
            allValuesAreNumbers = false;
            break;
        }
    }

    if (!allValuesAreNumbers)
        return sort(exec, compareFunction, callType, callData);

    // For numeric comparison, which is fast, qsort is faster than mergesort. We
    // also don't require mergesort's stability, since there's no user visible
    // side-effect from swapping the order of equal primitive values.
    qsort(m_storage->m_vector, size, sizeof(JSValue), compareNumbersForQSort);

    checkConsistency(SortConsistencyCheck);
}

void JSArray::sort(ExecState* exec)
{
    unsigned lengthNotIncludingUndefined = compactForSorting();
    if (m_storage->m_sparseValueMap) {
        throwOutOfMemoryError(exec);
        return;
    }

    if (!lengthNotIncludingUndefined)
        return;

    // Converting JavaScript values to strings can be expensive, so we do it once up front and sort based on that.
    // This is a considerable improvement over doing it twice per comparison, though it requires a large temporary
    // buffer. Besides, this protects us from crashing if some objects have custom toString methods that return
    // random or otherwise changing results, effectively making compare function inconsistent.

    Vector<ValueStringPair> values(lengthNotIncludingUndefined);
    if (!values.begin()) {
        throwOutOfMemoryError(exec);
        return;
    }

    for (size_t i = 0; i < lengthNotIncludingUndefined; i++) {
        JSValue value = m_storage->m_vector[i];
        ASSERT(!value.isUndefined());
        values[i].first = value;
    }

    // FIXME: While calling these toString functions, the array could be mutated.
    // In that case, objects pointed to by values in this vector might get garbage-collected!

    // FIXME: The following loop continues to call toString on subsequent values even after
    // a toString call raises an exception.

    for (size_t i = 0; i < lengthNotIncludingUndefined; i++)
        values[i].second = values[i].first.toString(exec);

    if (exec->hadException())
        return;

    // FIXME: Since we sort by string value, a fast algorithm might be to use a radix sort. That would be O(N) rather
    // than O(N log N).

#if HAVE(MERGESORT)
    mergesort(values.begin(), values.size(), sizeof(ValueStringPair), compareByStringPairForQSort);
#else
    // FIXME: The qsort library function is likely to not be a stable sort.
    // ECMAScript-262 does not specify a stable sort, but in practice, browsers perform a stable sort.
    qsort(values.begin(), values.size(), sizeof(ValueStringPair), compareByStringPairForQSort);
#endif

    // FIXME: If the toString function changed the length of the array, this might be
    // modifying the vector incorrectly.

    for (size_t i = 0; i < lengthNotIncludingUndefined; i++)
        m_storage->m_vector[i] = values[i].first;

    checkConsistency(SortConsistencyCheck);
}

struct AVLTreeNodeForArrayCompare {
    JSValue value;

    // Child pointers.  The high bit of gt is robbed and used as the
    // balance factor sign.  The high bit of lt is robbed and used as
    // the magnitude of the balance factor.
    int32_t gt;
    int32_t lt;
};

struct AVLTreeAbstractorForArrayCompare {
    typedef int32_t handle; // Handle is an index into m_nodes vector.
    typedef JSValue key;
    typedef int32_t size;

    Vector<AVLTreeNodeForArrayCompare> m_nodes;
    ExecState* m_exec;
    JSValue m_compareFunction;
    CallType m_compareCallType;
    const CallData* m_compareCallData;
    JSValue m_globalThisValue;
    OwnPtr<CachedCall> m_cachedCall;

    handle get_less(handle h) { return m_nodes[h].lt & 0x7FFFFFFF; }
    void set_less(handle h, handle lh) { m_nodes[h].lt &= 0x80000000; m_nodes[h].lt |= lh; }
    handle get_greater(handle h) { return m_nodes[h].gt & 0x7FFFFFFF; }
    void set_greater(handle h, handle gh) { m_nodes[h].gt &= 0x80000000; m_nodes[h].gt |= gh; }

    int get_balance_factor(handle h)
    {
        if (m_nodes[h].gt & 0x80000000)
            return -1;
        return static_cast<unsigned>(m_nodes[h].lt) >> 31;
    }

    void set_balance_factor(handle h, int bf)
    {
        if (bf == 0) {
            m_nodes[h].lt &= 0x7FFFFFFF;
            m_nodes[h].gt &= 0x7FFFFFFF;
        } else {
            m_nodes[h].lt |= 0x80000000;
            if (bf < 0)
                m_nodes[h].gt |= 0x80000000;
            else
                m_nodes[h].gt &= 0x7FFFFFFF;
        }
    }

    int compare_key_key(key va, key vb)
    {
        ASSERT(!va.isUndefined());
        ASSERT(!vb.isUndefined());

        if (m_exec->hadException())
            return 1;

        double compareResult;
        if (m_cachedCall) {
            m_cachedCall->setThis(m_globalThisValue);
            m_cachedCall->setArgument(0, va);
            m_cachedCall->setArgument(1, vb);
            compareResult = m_cachedCall->call().toNumber(m_cachedCall->newCallFrame(m_exec));
        } else {
            MarkedArgumentBuffer arguments;
            arguments.append(va);
            arguments.append(vb);
            compareResult = call(m_exec, m_compareFunction, m_compareCallType, *m_compareCallData, m_globalThisValue, arguments).toNumber(m_exec);
        }
        return (compareResult < 0) ? -1 : 1; // Not passing equality through, because we need to store all values, even if equivalent.
    }

    int compare_key_node(key k, handle h) { return compare_key_key(k, m_nodes[h].value); }
    int compare_node_node(handle h1, handle h2) { return compare_key_key(m_nodes[h1].value, m_nodes[h2].value); }

    static handle null() { return 0x7FFFFFFF; }
};

void JSArray::sort(ExecState* exec, JSValue compareFunction, CallType callType, const CallData& callData)
{
    checkConsistency();

    // FIXME: This ignores exceptions raised in the compare function or in toNumber.

    // The maximum tree depth is compiled in - but the caller is clearly up to no good
    // if a larger array is passed.
    ASSERT(m_storage->m_length <= static_cast<unsigned>(std::numeric_limits<int>::max()));
    if (m_storage->m_length > static_cast<unsigned>(std::numeric_limits<int>::max()))
        return;

    if (!m_storage->m_length)
        return;

    unsigned usedVectorLength = min(m_storage->m_length, m_vectorLength);

    AVLTree<AVLTreeAbstractorForArrayCompare, 44> tree; // Depth 44 is enough for 2^31 items
    tree.abstractor().m_exec = exec;
    tree.abstractor().m_compareFunction = compareFunction;
    tree.abstractor().m_compareCallType = callType;
    tree.abstractor().m_compareCallData = &callData;
    tree.abstractor().m_globalThisValue = exec->globalThisValue();
    tree.abstractor().m_nodes.resize(usedVectorLength + (m_storage->m_sparseValueMap ? m_storage->m_sparseValueMap->size() : 0));

    if (callType == CallTypeJS)
        tree.abstractor().m_cachedCall.set(new CachedCall(exec, asFunction(compareFunction), 2, exec->exceptionSlot()));

    if (!tree.abstractor().m_nodes.begin()) {
        throwOutOfMemoryError(exec);
        return;
    }

    // FIXME: If the compare function modifies the array, the vector, map, etc. could be modified
    // right out from under us while we're building the tree here.

    unsigned numDefined = 0;
    unsigned numUndefined = 0;

    // Iterate over the array, ignoring missing values, counting undefined ones, and inserting all other ones into the tree.
    for (; numDefined < usedVectorLength; ++numDefined) {
        JSValue v = m_storage->m_vector[numDefined];
        if (!v || v.isUndefined())
            break;
        tree.abstractor().m_nodes[numDefined].value = v;
        tree.insert(numDefined);
    }
    for (unsigned i = numDefined; i < usedVectorLength; ++i) {
        JSValue v = m_storage->m_vector[i];
        if (v) {
            if (v.isUndefined())
                ++numUndefined;
            else {
                tree.abstractor().m_nodes[numDefined].value = v;
                tree.insert(numDefined);
                ++numDefined;
            }
        }
    }

    unsigned newUsedVectorLength = numDefined + numUndefined;

    if (SparseArrayValueMap* map = m_storage->m_sparseValueMap) {
        newUsedVectorLength += map->size();
        if (newUsedVectorLength > m_vectorLength) {
            // Check that it is possible to allocate an array large enough to hold all the entries.
            if ((newUsedVectorLength > MAX_STORAGE_VECTOR_LENGTH) || !increaseVectorLength(newUsedVectorLength)) {
                throwOutOfMemoryError(exec);
                return;
            }
        }

        SparseArrayValueMap::iterator end = map->end();
        for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it) {
            tree.abstractor().m_nodes[numDefined].value = it->second;
            tree.insert(numDefined);
            ++numDefined;
        }

        delete map;
        m_storage->m_sparseValueMap = 0;
    }

    ASSERT(tree.abstractor().m_nodes.size() >= numDefined);

    // FIXME: If the compare function changed the length of the array, the following might be
    // modifying the vector incorrectly.

    // Copy the values back into m_storage.
    AVLTree<AVLTreeAbstractorForArrayCompare, 44>::Iterator iter;
    iter.start_iter_least(tree);
    for (unsigned i = 0; i < numDefined; ++i) {
        m_storage->m_vector[i] = tree.abstractor().m_nodes[*iter].value;
        ++iter;
    }

    // Put undefined values back in.
    for (unsigned i = numDefined; i < newUsedVectorLength; ++i)
        m_storage->m_vector[i] = jsUndefined();

    // Ensure that unused values in the vector are zeroed out.
    for (unsigned i = newUsedVectorLength; i < usedVectorLength; ++i)
        m_storage->m_vector[i] = JSValue();

    m_storage->m_numValuesInVector = newUsedVectorLength;

    checkConsistency(SortConsistencyCheck);
}

void JSArray::fillArgList(ExecState* exec, MarkedArgumentBuffer& args)
{
    JSValue* vector = m_storage->m_vector;
    unsigned vectorEnd = min(m_storage->m_length, m_vectorLength);
    unsigned i = 0;
    for (; i < vectorEnd; ++i) {
        JSValue& v = vector[i];
        if (!v)
            break;
        args.append(v);
    }

    for (; i < m_storage->m_length; ++i)
        args.append(get(exec, i));
}

void JSArray::copyToRegisters(ExecState* exec, Register* buffer, uint32_t maxSize)
{
    ASSERT(m_storage->m_length == maxSize);
    UNUSED_PARAM(maxSize);
    JSValue* vector = m_storage->m_vector;
    unsigned vectorEnd = min(m_storage->m_length, m_vectorLength);
    unsigned i = 0;
    for (; i < vectorEnd; ++i) {
        JSValue& v = vector[i];
        if (!v)
            break;
        buffer[i] = v;
    }

    for (; i < m_storage->m_length; ++i)
        buffer[i] = get(exec, i);
}

unsigned JSArray::compactForSorting()
{
    checkConsistency();

    ArrayStorage* storage = m_storage;

    unsigned usedVectorLength = min(m_storage->m_length, m_vectorLength);

    unsigned numDefined = 0;
    unsigned numUndefined = 0;

    for (; numDefined < usedVectorLength; ++numDefined) {
        JSValue v = storage->m_vector[numDefined];
        if (!v || v.isUndefined())
            break;
    }
    for (unsigned i = numDefined; i < usedVectorLength; ++i) {
        JSValue v = storage->m_vector[i];
        if (v) {
            if (v.isUndefined())
                ++numUndefined;
            else
                storage->m_vector[numDefined++] = v;
        }
    }

    unsigned newUsedVectorLength = numDefined + numUndefined;

    if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
        newUsedVectorLength += map->size();
        if (newUsedVectorLength > m_vectorLength) {
            // Check that it is possible to allocate an array large enough to hold all the entries - if not,
            // exception is thrown by caller.
            if ((newUsedVectorLength > MAX_STORAGE_VECTOR_LENGTH) || !increaseVectorLength(newUsedVectorLength))
                return 0;
            storage = m_storage;
        }

        SparseArrayValueMap::iterator end = map->end();
        for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it)
            storage->m_vector[numDefined++] = it->second;

        delete map;
        storage->m_sparseValueMap = 0;
    }

    for (unsigned i = numDefined; i < newUsedVectorLength; ++i)
        storage->m_vector[i] = jsUndefined();
    for (unsigned i = newUsedVectorLength; i < usedVectorLength; ++i)
        storage->m_vector[i] = JSValue();

    storage->m_numValuesInVector = newUsedVectorLength;

    checkConsistency(SortConsistencyCheck);

    return numDefined;
}

void* JSArray::lazyCreationData()
{
    return m_storage->lazyCreationData;
}

void JSArray::setLazyCreationData(void* d)
{
    m_storage->lazyCreationData = d;
}

#if CHECK_ARRAY_CONSISTENCY

void JSArray::checkConsistency(ConsistencyCheckType type)
{
    ASSERT(m_storage);
    if (type == SortConsistencyCheck)
        ASSERT(!m_storage->m_sparseValueMap);

    unsigned numValuesInVector = 0;
    for (unsigned i = 0; i < m_vectorLength; ++i) {
        if (JSValue value = m_storage->m_vector[i]) {
            ASSERT(i < m_storage->m_length);
            if (type != DestructorConsistencyCheck)
                value->type(); // Likely to crash if the object was deallocated.
            ++numValuesInVector;
        } else {
            if (type == SortConsistencyCheck)
                ASSERT(i >= m_storage->m_numValuesInVector);
        }
    }
    ASSERT(numValuesInVector == m_storage->m_numValuesInVector);
    ASSERT(numValuesInVector <= m_storage->m_length);

    if (m_storage->m_sparseValueMap) {
        SparseArrayValueMap::iterator end = m_storage->m_sparseValueMap->end();
        for (SparseArrayValueMap::iterator it = m_storage->m_sparseValueMap->begin(); it != end; ++it) {
            unsigned index = it->first;
            ASSERT(index < m_storage->m_length);
            ASSERT(index >= m_vectorLength);
            ASSERT(index <= MAX_ARRAY_INDEX);
            ASSERT(it->second);
            if (type != DestructorConsistencyCheck)
                it->second->type(); // Likely to crash if the object was deallocated.
        }
    }
}

#endif

} // namespace JSC