// Copyright 2006-2008 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include <stdlib.h> #include "v8.h" #include "global-handles.h" #include "snapshot.h" #include "top.h" #include "cctest.h" using namespace v8::internal; static v8::Persistent<v8::Context> env; static void InitializeVM() { if (env.IsEmpty()) env = v8::Context::New(); v8::HandleScope scope; env->Enter(); } TEST(MarkingStack) { int mem_size = 20 * kPointerSize; byte* mem = NewArray<byte>(20*kPointerSize); Address low = reinterpret_cast<Address>(mem); Address high = low + mem_size; MarkingStack s; s.Initialize(low, high); Address address = NULL; while (!s.is_full()) { s.Push(HeapObject::FromAddress(address)); address += kPointerSize; } while (!s.is_empty()) { Address value = s.Pop()->address(); address -= kPointerSize; CHECK_EQ(address, value); } CHECK_EQ(NULL, address); DeleteArray(mem); } TEST(Promotion) { // Ensure that we get a compacting collection so that objects are promoted // from new space. FLAG_gc_global = true; FLAG_always_compact = true; Heap::ConfigureHeap(2*256*KB, 4*MB); InitializeVM(); v8::HandleScope sc; // Allocate a fixed array in the new space. int array_size = (Heap::MaxObjectSizeInPagedSpace() - FixedArray::kHeaderSize) / (kPointerSize * 4); Object* obj = Heap::AllocateFixedArray(array_size); CHECK(!obj->IsFailure()); Handle<FixedArray> array(FixedArray::cast(obj)); // Array should be in the new space. CHECK(Heap::InSpace(*array, NEW_SPACE)); // Call the m-c collector, so array becomes an old object. CHECK(Heap::CollectGarbage(0, OLD_POINTER_SPACE)); // Array now sits in the old space CHECK(Heap::InSpace(*array, OLD_POINTER_SPACE)); } TEST(NoPromotion) { Heap::ConfigureHeap(2*256*KB, 4*MB); // Test the situation that some objects in new space are promoted to // the old space InitializeVM(); v8::HandleScope sc; // Do a mark compact GC to shrink the heap. CHECK(Heap::CollectGarbage(0, OLD_POINTER_SPACE)); // Allocate a big Fixed array in the new space. int size = (Heap::MaxObjectSizeInPagedSpace() - FixedArray::kHeaderSize) / kPointerSize; Object* obj = Heap::AllocateFixedArray(size); Handle<FixedArray> array(FixedArray::cast(obj)); // Array still stays in the new space. CHECK(Heap::InSpace(*array, NEW_SPACE)); // Allocate objects in the old space until out of memory. FixedArray* host = *array; while (true) { Object* obj = Heap::AllocateFixedArray(100, TENURED); if (obj->IsFailure()) break; host->set(0, obj); host = FixedArray::cast(obj); } // Call mark compact GC, and it should pass. CHECK(Heap::CollectGarbage(0, OLD_POINTER_SPACE)); // array should not be promoted because the old space is full. CHECK(Heap::InSpace(*array, NEW_SPACE)); } TEST(MarkCompactCollector) { InitializeVM(); v8::HandleScope sc; // call mark-compact when heap is empty CHECK(Heap::CollectGarbage(0, OLD_POINTER_SPACE)); // keep allocating garbage in new space until it fails const int ARRAY_SIZE = 100; Object* array; do { array = Heap::AllocateFixedArray(ARRAY_SIZE); } while (!array->IsFailure()); CHECK(Heap::CollectGarbage(0, NEW_SPACE)); array = Heap::AllocateFixedArray(ARRAY_SIZE); CHECK(!array->IsFailure()); // keep allocating maps until it fails Object* mapp; do { mapp = Heap::AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize); } while (!mapp->IsFailure()); CHECK(Heap::CollectGarbage(0, MAP_SPACE)); mapp = Heap::AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize); CHECK(!mapp->IsFailure()); // allocate a garbage String* func_name = String::cast(Heap::LookupAsciiSymbol("theFunction")); SharedFunctionInfo* function_share = SharedFunctionInfo::cast(Heap::AllocateSharedFunctionInfo(func_name)); JSFunction* function = JSFunction::cast(Heap::AllocateFunction(*Top::function_map(), function_share, Heap::undefined_value())); Map* initial_map = Map::cast(Heap::AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize)); function->set_initial_map(initial_map); Top::context()->global()->SetProperty(func_name, function, NONE); JSObject* obj = JSObject::cast(Heap::AllocateJSObject(function)); CHECK(Heap::CollectGarbage(0, OLD_POINTER_SPACE)); func_name = String::cast(Heap::LookupAsciiSymbol("theFunction")); CHECK(Top::context()->global()->HasLocalProperty(func_name)); Object* func_value = Top::context()->global()->GetProperty(func_name); CHECK(func_value->IsJSFunction()); function = JSFunction::cast(func_value); obj = JSObject::cast(Heap::AllocateJSObject(function)); String* obj_name = String::cast(Heap::LookupAsciiSymbol("theObject")); Top::context()->global()->SetProperty(obj_name, obj, NONE); String* prop_name = String::cast(Heap::LookupAsciiSymbol("theSlot")); obj->SetProperty(prop_name, Smi::FromInt(23), NONE); CHECK(Heap::CollectGarbage(0, OLD_POINTER_SPACE)); obj_name = String::cast(Heap::LookupAsciiSymbol("theObject")); CHECK(Top::context()->global()->HasLocalProperty(obj_name)); CHECK(Top::context()->global()->GetProperty(obj_name)->IsJSObject()); obj = JSObject::cast(Top::context()->global()->GetProperty(obj_name)); prop_name = String::cast(Heap::LookupAsciiSymbol("theSlot")); CHECK(obj->GetProperty(prop_name) == Smi::FromInt(23)); } static Handle<Map> CreateMap() { return Factory::NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize); } TEST(MapCompact) { FLAG_max_map_space_pages = 16; InitializeVM(); { v8::HandleScope sc; // keep allocating maps while pointers are still encodable and thus // mark compact is permitted. Handle<JSObject> root = Factory::NewJSObjectFromMap(CreateMap()); do { Handle<Map> map = CreateMap(); map->set_prototype(*root); root = Factory::NewJSObjectFromMap(map); } while (Heap::map_space()->MapPointersEncodable()); } // Now, as we don't have any handles to just allocated maps, we should // be able to trigger map compaction. // To give an additional chance to fail, try to force compaction which // should be impossible right now. Heap::CollectAllGarbage(true); // And now map pointers should be encodable again. CHECK(Heap::map_space()->MapPointersEncodable()); } static int gc_starts = 0; static int gc_ends = 0; static void GCPrologueCallbackFunc() { CHECK(gc_starts == gc_ends); gc_starts++; } static void GCEpilogueCallbackFunc() { CHECK(gc_starts == gc_ends + 1); gc_ends++; } TEST(GCCallback) { InitializeVM(); Heap::SetGlobalGCPrologueCallback(&GCPrologueCallbackFunc); Heap::SetGlobalGCEpilogueCallback(&GCEpilogueCallbackFunc); // Scavenge does not call GC callback functions. Heap::PerformScavenge(); CHECK_EQ(0, gc_starts); CHECK_EQ(gc_ends, gc_starts); CHECK(Heap::CollectGarbage(0, OLD_POINTER_SPACE)); CHECK_EQ(1, gc_starts); CHECK_EQ(gc_ends, gc_starts); } static int NumberOfWeakCalls = 0; static void WeakPointerCallback(v8::Persistent<v8::Value> handle, void* id) { NumberOfWeakCalls++; } TEST(ObjectGroups) { InitializeVM(); NumberOfWeakCalls = 0; v8::HandleScope handle_scope; Handle<Object> g1s1 = GlobalHandles::Create(Heap::AllocateFixedArray(1)); Handle<Object> g1s2 = GlobalHandles::Create(Heap::AllocateFixedArray(1)); GlobalHandles::MakeWeak(g1s1.location(), reinterpret_cast<void*>(1234), &WeakPointerCallback); GlobalHandles::MakeWeak(g1s2.location(), reinterpret_cast<void*>(1234), &WeakPointerCallback); Handle<Object> g2s1 = GlobalHandles::Create(Heap::AllocateFixedArray(1)); Handle<Object> g2s2 = GlobalHandles::Create(Heap::AllocateFixedArray(1)); GlobalHandles::MakeWeak(g2s1.location(), reinterpret_cast<void*>(1234), &WeakPointerCallback); GlobalHandles::MakeWeak(g2s2.location(), reinterpret_cast<void*>(1234), &WeakPointerCallback); Handle<Object> root = GlobalHandles::Create(*g1s1); // make a root. // Connect group 1 and 2, make a cycle. Handle<FixedArray>::cast(g1s2)->set(0, *g2s2); Handle<FixedArray>::cast(g2s1)->set(0, *g1s1); { Object** g1_objects[] = { g1s1.location(), g1s2.location() }; Object** g2_objects[] = { g2s1.location(), g2s2.location() }; GlobalHandles::AddGroup(g1_objects, 2); GlobalHandles::AddGroup(g2_objects, 2); } // Do a full GC CHECK(Heap::CollectGarbage(0, OLD_POINTER_SPACE)); // All object should be alive. CHECK_EQ(0, NumberOfWeakCalls); // Weaken the root. GlobalHandles::MakeWeak(root.location(), reinterpret_cast<void*>(1234), &WeakPointerCallback); // Groups are deleted, rebuild groups. { Object** g1_objects[] = { g1s1.location(), g1s2.location() }; Object** g2_objects[] = { g2s1.location(), g2s2.location() }; GlobalHandles::AddGroup(g1_objects, 2); GlobalHandles::AddGroup(g2_objects, 2); } CHECK(Heap::CollectGarbage(0, OLD_POINTER_SPACE)); // All objects should be gone. 5 global handles in total. CHECK_EQ(5, NumberOfWeakCalls); }