// Copyright 2009 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef V8_REGEXP_STACK_H_ #define V8_REGEXP_STACK_H_ namespace v8 { namespace internal { // Maintains a per-v8thread stack area that can be used by irregexp // implementation for its backtracking stack. // Since there is only one stack area, the Irregexp implementation is not // re-entrant. I.e., no regular expressions may be executed in the same thread // during a preempted Irregexp execution. class RegExpStack { public: // Number of allocated locations on the stack below the limit. // No sequence of pushes must be longer that this without doing a stack-limit // check. static const int kStackLimitSlack = 32; // Create and delete an instance to control the life-time of a growing stack. RegExpStack(); // Initializes the stack memory area if necessary. ~RegExpStack(); // Releases the stack if it has grown. // Gives the top of the memory used as stack. static Address stack_base() { ASSERT(thread_local_.memory_size_ != 0); return thread_local_.memory_ + thread_local_.memory_size_; } // The total size of the memory allocated for the stack. static size_t stack_capacity() { return thread_local_.memory_size_; } // If the stack pointer gets below the limit, we should react and // either grow the stack or report an out-of-stack exception. // There is only a limited number of locations below the stack limit, // so users of the stack should check the stack limit during any // sequence of pushes longer that this. static Address* limit_address() { return &(thread_local_.limit_); } // Ensures that there is a memory area with at least the specified size. // If passing zero, the default/minimum size buffer is allocated. static Address EnsureCapacity(size_t size); // Thread local archiving. static int ArchiveSpacePerThread() { return static_cast<int>(sizeof(thread_local_)); } static char* ArchiveStack(char* to); static char* RestoreStack(char* from); static void FreeThreadResources() { thread_local_.Free(); } private: // Artificial limit used when no memory has been allocated. static const uintptr_t kMemoryTop = static_cast<uintptr_t>(-1); // Minimal size of allocated stack area. static const size_t kMinimumStackSize = 1 * KB; // Maximal size of allocated stack area. static const size_t kMaximumStackSize = 64 * MB; // Structure holding the allocated memory, size and limit. struct ThreadLocal { ThreadLocal() : memory_(NULL), memory_size_(0), limit_(reinterpret_cast<Address>(kMemoryTop)) {} // If memory_size_ > 0 then memory_ must be non-NULL. Address memory_; size_t memory_size_; Address limit_; void Free(); }; // Address of allocated memory. static Address memory_address() { return reinterpret_cast<Address>(&thread_local_.memory_); } // Address of size of allocated memory. static Address memory_size_address() { return reinterpret_cast<Address>(&thread_local_.memory_size_); } // Resets the buffer if it has grown beyond the default/minimum size. // After this, the buffer is either the default size, or it is empty, so // you have to call EnsureCapacity before using it again. static void Reset(); static ThreadLocal thread_local_; friend class ExternalReference; }; }} // namespace v8::internal #endif // V8_REGEXP_STACK_H_