// Copyright 2006-2008 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef V8_MARK_COMPACT_H_ #define V8_MARK_COMPACT_H_ namespace v8 { namespace internal { // Callback function, returns whether an object is alive. The heap size // of the object is returned in size. It optionally updates the offset // to the first live object in the page (only used for old and map objects). typedef bool (*IsAliveFunction)(HeapObject* obj, int* size, int* offset); // Callback function for non-live blocks in the old generation. typedef void (*DeallocateFunction)(Address start, int size_in_bytes); // Forward declarations. class RootMarkingVisitor; class MarkingVisitor; // ------------------------------------------------------------------------- // Mark-Compact collector // // All methods are static. class MarkCompactCollector: public AllStatic { public: // Type of functions to compute forwarding addresses of objects in // compacted spaces. Given an object and its size, return a (non-failure) // Object* that will be the object after forwarding. There is a separate // allocation function for each (compactable) space based on the location // of the object before compaction. typedef Object* (*AllocationFunction)(HeapObject* object, int object_size); // Type of functions to encode the forwarding address for an object. // Given the object, its size, and the new (non-failure) object it will be // forwarded to, encode the forwarding address. For paged spaces, the // 'offset' input/output parameter contains the offset of the forwarded // object from the forwarding address of the previous live object in the // page as input, and is updated to contain the offset to be used for the // next live object in the same page. For spaces using a different // encoding (ie, contiguous spaces), the offset parameter is ignored. typedef void (*EncodingFunction)(HeapObject* old_object, int object_size, Object* new_object, int* offset); // Type of functions to process non-live objects. typedef void (*ProcessNonLiveFunction)(HeapObject* object); // Set the global force_compaction flag, it must be called before Prepare // to take effect. static void SetForceCompaction(bool value) { force_compaction_ = value; } // Prepares for GC by resetting relocation info in old and map spaces and // choosing spaces to compact. static void Prepare(GCTracer* tracer); // Performs a global garbage collection. static void CollectGarbage(); // True if the last full GC performed heap compaction. static bool HasCompacted() { return compacting_collection_; } // True after the Prepare phase if the compaction is taking place. static bool IsCompacting() { #ifdef DEBUG // For the purposes of asserts we don't want this to keep returning true // after the collection is completed. return state_ != IDLE && compacting_collection_; #else return compacting_collection_; #endif } // The count of the number of objects left marked at the end of the last // completed full GC (expected to be zero). static int previous_marked_count() { return previous_marked_count_; } // During a full GC, there is a stack-allocated GCTracer that is used for // bookkeeping information. Return a pointer to that tracer. static GCTracer* tracer() { return tracer_; } #ifdef DEBUG // Checks whether performing mark-compact collection. static bool in_use() { return state_ > PREPARE_GC; } #endif // Determine type of object and emit deletion log event. static void ReportDeleteIfNeeded(HeapObject* obj); private: #ifdef DEBUG enum CollectorState { IDLE, PREPARE_GC, MARK_LIVE_OBJECTS, SWEEP_SPACES, ENCODE_FORWARDING_ADDRESSES, UPDATE_POINTERS, RELOCATE_OBJECTS, REBUILD_RSETS }; // The current stage of the collector. static CollectorState state_; #endif // Global flag that forces a compaction. static bool force_compaction_; // Global flag indicating whether spaces were compacted on the last GC. static bool compacting_collection_; // Global flag indicating whether spaces will be compacted on the next GC. static bool compact_on_next_gc_; // The number of objects left marked at the end of the last completed full // GC (expected to be zero). static int previous_marked_count_; // A pointer to the current stack-allocated GC tracer object during a full // collection (NULL before and after). static GCTracer* tracer_; // Finishes GC, performs heap verification if enabled. static void Finish(); // ----------------------------------------------------------------------- // Phase 1: Marking live objects. // // Before: The heap has been prepared for garbage collection by // MarkCompactCollector::Prepare() and is otherwise in its // normal state. // // After: Live objects are marked and non-live objects are unmarked. friend class RootMarkingVisitor; friend class MarkingVisitor; // Marking operations for objects reachable from roots. static void MarkLiveObjects(); static void MarkUnmarkedObject(HeapObject* obj); static inline void MarkObject(HeapObject* obj) { if (!obj->IsMarked()) MarkUnmarkedObject(obj); } static inline void SetMark(HeapObject* obj) { tracer_->increment_marked_count(); #ifdef DEBUG UpdateLiveObjectCount(obj); #endif obj->SetMark(); } // Creates back pointers for all map transitions, stores them in // the prototype field. The original prototype pointers are restored // in ClearNonLiveTransitions(). All JSObject maps // connected by map transitions have the same prototype object, which // is why we can use this field temporarily for back pointers. static void CreateBackPointers(); // Mark a Map and its DescriptorArray together, skipping transitions. static void MarkMapContents(Map* map); static void MarkDescriptorArray(DescriptorArray* descriptors); // Mark the heap roots and all objects reachable from them. static void MarkRoots(RootMarkingVisitor* visitor); // Mark the symbol table specially. References to symbols from the // symbol table are weak. static void MarkSymbolTable(); // Mark objects in object groups that have at least one object in the // group marked. static void MarkObjectGroups(); // Mark all objects in an object group with at least one marked // object, then all objects reachable from marked objects in object // groups, and repeat. static void ProcessObjectGroups(MarkingVisitor* visitor); // Mark objects reachable (transitively) from objects in the marking stack // or overflowed in the heap. static void ProcessMarkingStack(MarkingVisitor* visitor); // Mark objects reachable (transitively) from objects in the marking // stack. This function empties the marking stack, but may leave // overflowed objects in the heap, in which case the marking stack's // overflow flag will be set. static void EmptyMarkingStack(MarkingVisitor* visitor); // Refill the marking stack with overflowed objects from the heap. This // function either leaves the marking stack full or clears the overflow // flag on the marking stack. static void RefillMarkingStack(); // Callback function for telling whether the object *p is an unmarked // heap object. static bool IsUnmarkedHeapObject(Object** p); #ifdef DEBUG static void UpdateLiveObjectCount(HeapObject* obj); #endif // We sweep the large object space in the same way whether we are // compacting or not, because the large object space is never compacted. static void SweepLargeObjectSpace(); // Test whether a (possibly marked) object is a Map. static inline bool SafeIsMap(HeapObject* object); // Map transitions from a live map to a dead map must be killed. // We replace them with a null descriptor, with the same key. static void ClearNonLiveTransitions(); // ----------------------------------------------------------------------- // Phase 2: Sweeping to clear mark bits and free non-live objects for // a non-compacting collection, or else computing and encoding // forwarding addresses for a compacting collection. // // Before: Live objects are marked and non-live objects are unmarked. // // After: (Non-compacting collection.) Live objects are unmarked, // non-live regions have been added to their space's free // list. // // After: (Compacting collection.) The forwarding address of live // objects in the paged spaces is encoded in their map word // along with their (non-forwarded) map pointer. // // The forwarding address of live objects in the new space is // written to their map word's offset in the inactive // semispace. // // Bookkeeping data is written to the remembered-set are of // eached paged-space page that contains live objects after // compaction: // // The 3rd word of the page (first word of the remembered // set) contains the relocation top address, the address of // the first word after the end of the last live object in // the page after compaction. // // The 4th word contains the zero-based index of the page in // its space. This word is only used for map space pages, in // order to encode the map addresses in 21 bits to free 11 // bits per map word for the forwarding address. // // The 5th word contains the (nonencoded) forwarding address // of the first live object in the page. // // In both the new space and the paged spaces, a linked list // of live regions is constructructed (linked through // pointers in the non-live region immediately following each // live region) to speed further passes of the collector. // Encodes forwarding addresses of objects in compactable parts of the // heap. static void EncodeForwardingAddresses(); // Encodes the forwarding addresses of objects in new space. static void EncodeForwardingAddressesInNewSpace(); // Function template to encode the forwarding addresses of objects in // paged spaces, parameterized by allocation and non-live processing // functions. template<AllocationFunction Alloc, ProcessNonLiveFunction ProcessNonLive> static void EncodeForwardingAddressesInPagedSpace(PagedSpace* space); // Iterates live objects in a space, passes live objects // to a callback function which returns the heap size of the object. // Returns the number of live objects iterated. static int IterateLiveObjects(NewSpace* space, HeapObjectCallback size_f); static int IterateLiveObjects(PagedSpace* space, HeapObjectCallback size_f); // Iterates the live objects between a range of addresses, returning the // number of live objects. static int IterateLiveObjectsInRange(Address start, Address end, HeapObjectCallback size_func); // Callback functions for deallocating non-live blocks in the old // generation. static void DeallocateOldPointerBlock(Address start, int size_in_bytes); static void DeallocateOldDataBlock(Address start, int size_in_bytes); static void DeallocateCodeBlock(Address start, int size_in_bytes); static void DeallocateMapBlock(Address start, int size_in_bytes); static void DeallocateCellBlock(Address start, int size_in_bytes); // If we are not compacting the heap, we simply sweep the spaces except // for the large object space, clearing mark bits and adding unmarked // regions to each space's free list. static void SweepSpaces(); // ----------------------------------------------------------------------- // Phase 3: Updating pointers in live objects. // // Before: Same as after phase 2 (compacting collection). // // After: All pointers in live objects, including encoded map // pointers, are updated to point to their target's new // location. The remembered set area of each paged-space // page containing live objects still contains bookkeeping // information. friend class UpdatingVisitor; // helper for updating visited objects // Updates pointers in all spaces. static void UpdatePointers(); // Updates pointers in an object in new space. // Returns the heap size of the object. static int UpdatePointersInNewObject(HeapObject* obj); // Updates pointers in an object in old spaces. // Returns the heap size of the object. static int UpdatePointersInOldObject(HeapObject* obj); // Calculates the forwarding address of an object in an old space. static Address GetForwardingAddressInOldSpace(HeapObject* obj); // ----------------------------------------------------------------------- // Phase 4: Relocating objects. // // Before: Pointers to live objects are updated to point to their // target's new location. The remembered set area of each // paged-space page containing live objects still contains // bookkeeping information. // // After: Objects have been moved to their new addresses. The // remembered set area of each paged-space page containing // live objects still contains bookkeeping information. // Relocates objects in all spaces. static void RelocateObjects(); // Converts a code object's inline target to addresses, convention from // address to target happens in the marking phase. static int ConvertCodeICTargetToAddress(HeapObject* obj); // Relocate a map object. static int RelocateMapObject(HeapObject* obj); // Relocates an old object. static int RelocateOldPointerObject(HeapObject* obj); static int RelocateOldDataObject(HeapObject* obj); // Relocate a property cell object. static int RelocateCellObject(HeapObject* obj); // Helper function. static inline int RelocateOldNonCodeObject(HeapObject* obj, PagedSpace* space); // Relocates an object in the code space. static int RelocateCodeObject(HeapObject* obj); // Copy a new object. static int RelocateNewObject(HeapObject* obj); // ----------------------------------------------------------------------- // Phase 5: Rebuilding remembered sets. // // Before: The heap is in a normal state except that remembered sets // in the paged spaces are not correct. // // After: The heap is in a normal state. // Rebuild remembered set in old and map spaces. static void RebuildRSets(); #ifdef DEBUG // ----------------------------------------------------------------------- // Debugging variables, functions and classes // Counters used for debugging the marking phase of mark-compact or // mark-sweep collection. // Number of live objects in Heap::to_space_. static int live_young_objects_; // Number of live objects in Heap::old_pointer_space_. static int live_old_pointer_objects_; // Number of live objects in Heap::old_data_space_. static int live_old_data_objects_; // Number of live objects in Heap::code_space_. static int live_code_objects_; // Number of live objects in Heap::map_space_. static int live_map_objects_; // Number of live objects in Heap::cell_space_. static int live_cell_objects_; // Number of live objects in Heap::lo_space_. static int live_lo_objects_; // Number of live bytes in this collection. static int live_bytes_; friend class MarkObjectVisitor; static void VisitObject(HeapObject* obj); friend class UnmarkObjectVisitor; static void UnmarkObject(HeapObject* obj); #endif }; } } // namespace v8::internal #endif // V8_MARK_COMPACT_H_