// Copyright 2010 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "bootstrapper.h" #include "codegen-inl.h" #include "compiler.h" #include "debug.h" #include "ic-inl.h" #include "jsregexp.h" #include "parser.h" #include "regexp-macro-assembler.h" #include "regexp-stack.h" #include "register-allocator-inl.h" #include "runtime.h" #include "scopes.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm_) // ------------------------------------------------------------------------- // Platform-specific DeferredCode functions. void DeferredCode::SaveRegisters() { for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) { int action = registers_[i]; if (action == kPush) { __ push(RegisterAllocator::ToRegister(i)); } else if (action != kIgnore && (action & kSyncedFlag) == 0) { __ mov(Operand(ebp, action), RegisterAllocator::ToRegister(i)); } } } void DeferredCode::RestoreRegisters() { // Restore registers in reverse order due to the stack. for (int i = RegisterAllocator::kNumRegisters - 1; i >= 0; i--) { int action = registers_[i]; if (action == kPush) { __ pop(RegisterAllocator::ToRegister(i)); } else if (action != kIgnore) { action &= ~kSyncedFlag; __ mov(RegisterAllocator::ToRegister(i), Operand(ebp, action)); } } } // ------------------------------------------------------------------------- // CodeGenState implementation. CodeGenState::CodeGenState(CodeGenerator* owner) : owner_(owner), destination_(NULL), previous_(NULL) { owner_->set_state(this); } CodeGenState::CodeGenState(CodeGenerator* owner, ControlDestination* destination) : owner_(owner), destination_(destination), previous_(owner->state()) { owner_->set_state(this); } CodeGenState::~CodeGenState() { ASSERT(owner_->state() == this); owner_->set_state(previous_); } // ------------------------------------------------------------------------- // CodeGenerator implementation CodeGenerator::CodeGenerator(MacroAssembler* masm) : deferred_(8), masm_(masm), info_(NULL), frame_(NULL), allocator_(NULL), state_(NULL), loop_nesting_(0), function_return_is_shadowed_(false), in_spilled_code_(false) { } Scope* CodeGenerator::scope() { return info_->function()->scope(); } // Calling conventions: // ebp: caller's frame pointer // esp: stack pointer // edi: called JS function // esi: callee's context void CodeGenerator::Generate(CompilationInfo* info) { // Record the position for debugging purposes. CodeForFunctionPosition(info->function()); // Initialize state. info_ = info; ASSERT(allocator_ == NULL); RegisterAllocator register_allocator(this); allocator_ = ®ister_allocator; ASSERT(frame_ == NULL); frame_ = new VirtualFrame(); set_in_spilled_code(false); // Adjust for function-level loop nesting. loop_nesting_ += info->loop_nesting(); JumpTarget::set_compiling_deferred_code(false); #ifdef DEBUG if (strlen(FLAG_stop_at) > 0 && info->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) { frame_->SpillAll(); __ int3(); } #endif // New scope to get automatic timing calculation. { // NOLINT HistogramTimerScope codegen_timer(&Counters::code_generation); CodeGenState state(this); // Entry: // Stack: receiver, arguments, return address. // ebp: caller's frame pointer // esp: stack pointer // edi: called JS function // esi: callee's context allocator_->Initialize(); if (info->mode() == CompilationInfo::PRIMARY) { frame_->Enter(); // Allocate space for locals and initialize them. frame_->AllocateStackSlots(); // Allocate the local context if needed. int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; if (heap_slots > 0) { Comment cmnt(masm_, "[ allocate local context"); // Allocate local context. // Get outer context and create a new context based on it. frame_->PushFunction(); Result context; if (heap_slots <= FastNewContextStub::kMaximumSlots) { FastNewContextStub stub(heap_slots); context = frame_->CallStub(&stub, 1); } else { context = frame_->CallRuntime(Runtime::kNewContext, 1); } // Update context local. frame_->SaveContextRegister(); // Verify that the runtime call result and esi agree. if (FLAG_debug_code) { __ cmp(context.reg(), Operand(esi)); __ Assert(equal, "Runtime::NewContext should end up in esi"); } } // TODO(1241774): Improve this code: // 1) only needed if we have a context // 2) no need to recompute context ptr every single time // 3) don't copy parameter operand code from SlotOperand! { Comment cmnt2(masm_, "[ copy context parameters into .context"); // Note that iteration order is relevant here! If we have the same // parameter twice (e.g., function (x, y, x)), and that parameter // needs to be copied into the context, it must be the last argument // passed to the parameter that needs to be copied. This is a rare // case so we don't check for it, instead we rely on the copying // order: such a parameter is copied repeatedly into the same // context location and thus the last value is what is seen inside // the function. for (int i = 0; i < scope()->num_parameters(); i++) { Variable* par = scope()->parameter(i); Slot* slot = par->slot(); if (slot != NULL && slot->type() == Slot::CONTEXT) { // The use of SlotOperand below is safe in unspilled code // because the slot is guaranteed to be a context slot. // // There are no parameters in the global scope. ASSERT(!scope()->is_global_scope()); frame_->PushParameterAt(i); Result value = frame_->Pop(); value.ToRegister(); // SlotOperand loads context.reg() with the context object // stored to, used below in RecordWrite. Result context = allocator_->Allocate(); ASSERT(context.is_valid()); __ mov(SlotOperand(slot, context.reg()), value.reg()); int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize; Result scratch = allocator_->Allocate(); ASSERT(scratch.is_valid()); frame_->Spill(context.reg()); frame_->Spill(value.reg()); __ RecordWrite(context.reg(), offset, value.reg(), scratch.reg()); } } } // Store the arguments object. This must happen after context // initialization because the arguments object may be stored in // the context. if (ArgumentsMode() != NO_ARGUMENTS_ALLOCATION) { StoreArgumentsObject(true); } // Initialize ThisFunction reference if present. if (scope()->is_function_scope() && scope()->function() != NULL) { frame_->Push(Factory::the_hole_value()); StoreToSlot(scope()->function()->slot(), NOT_CONST_INIT); } } else { // When used as the secondary compiler for splitting, ebp, esi, // and edi have been pushed on the stack. Adjust the virtual // frame to match this state. frame_->Adjust(3); allocator_->Unuse(edi); // Bind all the bailout labels to the beginning of the function. List<CompilationInfo::Bailout*>* bailouts = info->bailouts(); for (int i = 0; i < bailouts->length(); i++) { __ bind(bailouts->at(i)->label()); } } // Initialize the function return target after the locals are set // up, because it needs the expected frame height from the frame. function_return_.set_direction(JumpTarget::BIDIRECTIONAL); function_return_is_shadowed_ = false; // Generate code to 'execute' declarations and initialize functions // (source elements). In case of an illegal redeclaration we need to // handle that instead of processing the declarations. if (scope()->HasIllegalRedeclaration()) { Comment cmnt(masm_, "[ illegal redeclarations"); scope()->VisitIllegalRedeclaration(this); } else { Comment cmnt(masm_, "[ declarations"); ProcessDeclarations(scope()->declarations()); // Bail out if a stack-overflow exception occurred when processing // declarations. if (HasStackOverflow()) return; } if (FLAG_trace) { frame_->CallRuntime(Runtime::kTraceEnter, 0); // Ignore the return value. } CheckStack(); // Compile the body of the function in a vanilla state. Don't // bother compiling all the code if the scope has an illegal // redeclaration. if (!scope()->HasIllegalRedeclaration()) { Comment cmnt(masm_, "[ function body"); #ifdef DEBUG bool is_builtin = Bootstrapper::IsActive(); bool should_trace = is_builtin ? FLAG_trace_builtin_calls : FLAG_trace_calls; if (should_trace) { frame_->CallRuntime(Runtime::kDebugTrace, 0); // Ignore the return value. } #endif VisitStatements(info->function()->body()); // Handle the return from the function. if (has_valid_frame()) { // If there is a valid frame, control flow can fall off the end of // the body. In that case there is an implicit return statement. ASSERT(!function_return_is_shadowed_); CodeForReturnPosition(info->function()); frame_->PrepareForReturn(); Result undefined(Factory::undefined_value()); if (function_return_.is_bound()) { function_return_.Jump(&undefined); } else { function_return_.Bind(&undefined); GenerateReturnSequence(&undefined); } } else if (function_return_.is_linked()) { // If the return target has dangling jumps to it, then we have not // yet generated the return sequence. This can happen when (a) // control does not flow off the end of the body so we did not // compile an artificial return statement just above, and (b) there // are return statements in the body but (c) they are all shadowed. Result return_value; function_return_.Bind(&return_value); GenerateReturnSequence(&return_value); } } } // Adjust for function-level loop nesting. loop_nesting_ -= info->loop_nesting(); // Code generation state must be reset. ASSERT(state_ == NULL); ASSERT(loop_nesting() == 0); ASSERT(!function_return_is_shadowed_); function_return_.Unuse(); DeleteFrame(); // Process any deferred code using the register allocator. if (!HasStackOverflow()) { HistogramTimerScope deferred_timer(&Counters::deferred_code_generation); JumpTarget::set_compiling_deferred_code(true); ProcessDeferred(); JumpTarget::set_compiling_deferred_code(false); } // There is no need to delete the register allocator, it is a // stack-allocated local. allocator_ = NULL; } Operand CodeGenerator::SlotOperand(Slot* slot, Register tmp) { // Currently, this assertion will fail if we try to assign to // a constant variable that is constant because it is read-only // (such as the variable referring to a named function expression). // We need to implement assignments to read-only variables. // Ideally, we should do this during AST generation (by converting // such assignments into expression statements); however, in general // we may not be able to make the decision until past AST generation, // that is when the entire program is known. ASSERT(slot != NULL); int index = slot->index(); switch (slot->type()) { case Slot::PARAMETER: return frame_->ParameterAt(index); case Slot::LOCAL: return frame_->LocalAt(index); case Slot::CONTEXT: { // Follow the context chain if necessary. ASSERT(!tmp.is(esi)); // do not overwrite context register Register context = esi; int chain_length = scope()->ContextChainLength(slot->var()->scope()); for (int i = 0; i < chain_length; i++) { // Load the closure. // (All contexts, even 'with' contexts, have a closure, // and it is the same for all contexts inside a function. // There is no need to go to the function context first.) __ mov(tmp, ContextOperand(context, Context::CLOSURE_INDEX)); // Load the function context (which is the incoming, outer context). __ mov(tmp, FieldOperand(tmp, JSFunction::kContextOffset)); context = tmp; } // We may have a 'with' context now. Get the function context. // (In fact this mov may never be the needed, since the scope analysis // may not permit a direct context access in this case and thus we are // always at a function context. However it is safe to dereference be- // cause the function context of a function context is itself. Before // deleting this mov we should try to create a counter-example first, // though...) __ mov(tmp, ContextOperand(context, Context::FCONTEXT_INDEX)); return ContextOperand(tmp, index); } default: UNREACHABLE(); return Operand(eax); } } Operand CodeGenerator::ContextSlotOperandCheckExtensions(Slot* slot, Result tmp, JumpTarget* slow) { ASSERT(slot->type() == Slot::CONTEXT); ASSERT(tmp.is_register()); Register context = esi; for (Scope* s = scope(); s != slot->var()->scope(); s = s->outer_scope()) { if (s->num_heap_slots() > 0) { if (s->calls_eval()) { // Check that extension is NULL. __ cmp(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0)); slow->Branch(not_equal, not_taken); } __ mov(tmp.reg(), ContextOperand(context, Context::CLOSURE_INDEX)); __ mov(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset)); context = tmp.reg(); } } // Check that last extension is NULL. __ cmp(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0)); slow->Branch(not_equal, not_taken); __ mov(tmp.reg(), ContextOperand(context, Context::FCONTEXT_INDEX)); return ContextOperand(tmp.reg(), slot->index()); } // Emit code to load the value of an expression to the top of the // frame. If the expression is boolean-valued it may be compiled (or // partially compiled) into control flow to the control destination. // If force_control is true, control flow is forced. void CodeGenerator::LoadCondition(Expression* x, ControlDestination* dest, bool force_control) { ASSERT(!in_spilled_code()); int original_height = frame_->height(); { CodeGenState new_state(this, dest); Visit(x); // If we hit a stack overflow, we may not have actually visited // the expression. In that case, we ensure that we have a // valid-looking frame state because we will continue to generate // code as we unwind the C++ stack. // // It's possible to have both a stack overflow and a valid frame // state (eg, a subexpression overflowed, visiting it returned // with a dummied frame state, and visiting this expression // returned with a normal-looking state). if (HasStackOverflow() && !dest->is_used() && frame_->height() == original_height) { dest->Goto(true); } } if (force_control && !dest->is_used()) { // Convert the TOS value into flow to the control destination. ToBoolean(dest); } ASSERT(!(force_control && !dest->is_used())); ASSERT(dest->is_used() || frame_->height() == original_height + 1); } void CodeGenerator::LoadAndSpill(Expression* expression) { ASSERT(in_spilled_code()); set_in_spilled_code(false); Load(expression); frame_->SpillAll(); set_in_spilled_code(true); } void CodeGenerator::Load(Expression* expr) { #ifdef DEBUG int original_height = frame_->height(); #endif ASSERT(!in_spilled_code()); JumpTarget true_target; JumpTarget false_target; ControlDestination dest(&true_target, &false_target, true); LoadCondition(expr, &dest, false); if (dest.false_was_fall_through()) { // The false target was just bound. JumpTarget loaded; frame_->Push(Factory::false_value()); // There may be dangling jumps to the true target. if (true_target.is_linked()) { loaded.Jump(); true_target.Bind(); frame_->Push(Factory::true_value()); loaded.Bind(); } } else if (dest.is_used()) { // There is true, and possibly false, control flow (with true as // the fall through). JumpTarget loaded; frame_->Push(Factory::true_value()); if (false_target.is_linked()) { loaded.Jump(); false_target.Bind(); frame_->Push(Factory::false_value()); loaded.Bind(); } } else { // We have a valid value on top of the frame, but we still may // have dangling jumps to the true and false targets from nested // subexpressions (eg, the left subexpressions of the // short-circuited boolean operators). ASSERT(has_valid_frame()); if (true_target.is_linked() || false_target.is_linked()) { JumpTarget loaded; loaded.Jump(); // Don't lose the current TOS. if (true_target.is_linked()) { true_target.Bind(); frame_->Push(Factory::true_value()); if (false_target.is_linked()) { loaded.Jump(); } } if (false_target.is_linked()) { false_target.Bind(); frame_->Push(Factory::false_value()); } loaded.Bind(); } } ASSERT(has_valid_frame()); ASSERT(frame_->height() == original_height + 1); } void CodeGenerator::LoadGlobal() { if (in_spilled_code()) { frame_->EmitPush(GlobalObject()); } else { Result temp = allocator_->Allocate(); __ mov(temp.reg(), GlobalObject()); frame_->Push(&temp); } } void CodeGenerator::LoadGlobalReceiver() { Result temp = allocator_->Allocate(); Register reg = temp.reg(); __ mov(reg, GlobalObject()); __ mov(reg, FieldOperand(reg, GlobalObject::kGlobalReceiverOffset)); frame_->Push(&temp); } void CodeGenerator::LoadTypeofExpression(Expression* expr) { // Special handling of identifiers as subexpressions of typeof. Variable* variable = expr->AsVariableProxy()->AsVariable(); if (variable != NULL && !variable->is_this() && variable->is_global()) { // For a global variable we build the property reference // <global>.<variable> and perform a (regular non-contextual) property // load to make sure we do not get reference errors. Slot global(variable, Slot::CONTEXT, Context::GLOBAL_INDEX); Literal key(variable->name()); Property property(&global, &key, RelocInfo::kNoPosition); Reference ref(this, &property); ref.GetValue(); } else if (variable != NULL && variable->slot() != NULL) { // For a variable that rewrites to a slot, we signal it is the immediate // subexpression of a typeof. Result result = LoadFromSlotCheckForArguments(variable->slot(), INSIDE_TYPEOF); frame()->Push(&result); } else { // Anything else can be handled normally. Load(expr); } } ArgumentsAllocationMode CodeGenerator::ArgumentsMode() { if (scope()->arguments() == NULL) return NO_ARGUMENTS_ALLOCATION; ASSERT(scope()->arguments_shadow() != NULL); // We don't want to do lazy arguments allocation for functions that // have heap-allocated contexts, because it interfers with the // uninitialized const tracking in the context objects. return (scope()->num_heap_slots() > 0) ? EAGER_ARGUMENTS_ALLOCATION : LAZY_ARGUMENTS_ALLOCATION; } Result CodeGenerator::StoreArgumentsObject(bool initial) { ArgumentsAllocationMode mode = ArgumentsMode(); ASSERT(mode != NO_ARGUMENTS_ALLOCATION); Comment cmnt(masm_, "[ store arguments object"); if (mode == LAZY_ARGUMENTS_ALLOCATION && initial) { // When using lazy arguments allocation, we store the hole value // as a sentinel indicating that the arguments object hasn't been // allocated yet. frame_->Push(Factory::the_hole_value()); } else { ArgumentsAccessStub stub(ArgumentsAccessStub::NEW_OBJECT); frame_->PushFunction(); frame_->PushReceiverSlotAddress(); frame_->Push(Smi::FromInt(scope()->num_parameters())); Result result = frame_->CallStub(&stub, 3); frame_->Push(&result); } Variable* arguments = scope()->arguments()->var(); Variable* shadow = scope()->arguments_shadow()->var(); ASSERT(arguments != NULL && arguments->slot() != NULL); ASSERT(shadow != NULL && shadow->slot() != NULL); JumpTarget done; bool skip_arguments = false; if (mode == LAZY_ARGUMENTS_ALLOCATION && !initial) { // We have to skip storing into the arguments slot if it has already // been written to. This can happen if the a function has a local // variable named 'arguments'. Result probe = LoadFromSlot(arguments->slot(), NOT_INSIDE_TYPEOF); if (probe.is_constant()) { // We have to skip updating the arguments object if it has // been assigned a proper value. skip_arguments = !probe.handle()->IsTheHole(); } else { __ cmp(Operand(probe.reg()), Immediate(Factory::the_hole_value())); probe.Unuse(); done.Branch(not_equal); } } if (!skip_arguments) { StoreToSlot(arguments->slot(), NOT_CONST_INIT); if (mode == LAZY_ARGUMENTS_ALLOCATION) done.Bind(); } StoreToSlot(shadow->slot(), NOT_CONST_INIT); return frame_->Pop(); } //------------------------------------------------------------------------------ // CodeGenerator implementation of variables, lookups, and stores. Reference::Reference(CodeGenerator* cgen, Expression* expression, bool persist_after_get) : cgen_(cgen), expression_(expression), type_(ILLEGAL), persist_after_get_(persist_after_get) { cgen->LoadReference(this); } Reference::~Reference() { ASSERT(is_unloaded() || is_illegal()); } void CodeGenerator::LoadReference(Reference* ref) { // References are loaded from both spilled and unspilled code. Set the // state to unspilled to allow that (and explicitly spill after // construction at the construction sites). bool was_in_spilled_code = in_spilled_code_; in_spilled_code_ = false; Comment cmnt(masm_, "[ LoadReference"); Expression* e = ref->expression(); Property* property = e->AsProperty(); Variable* var = e->AsVariableProxy()->AsVariable(); if (property != NULL) { // The expression is either a property or a variable proxy that rewrites // to a property. Load(property->obj()); if (property->key()->IsPropertyName()) { ref->set_type(Reference::NAMED); } else { Load(property->key()); ref->set_type(Reference::KEYED); } } else if (var != NULL) { // The expression is a variable proxy that does not rewrite to a // property. Global variables are treated as named property references. if (var->is_global()) { // If eax is free, the register allocator prefers it. Thus the code // generator will load the global object into eax, which is where // LoadIC wants it. Most uses of Reference call LoadIC directly // after the reference is created. frame_->Spill(eax); LoadGlobal(); ref->set_type(Reference::NAMED); } else { ASSERT(var->slot() != NULL); ref->set_type(Reference::SLOT); } } else { // Anything else is a runtime error. Load(e); frame_->CallRuntime(Runtime::kThrowReferenceError, 1); } in_spilled_code_ = was_in_spilled_code; } void CodeGenerator::UnloadReference(Reference* ref) { // Pop a reference from the stack while preserving TOS. Comment cmnt(masm_, "[ UnloadReference"); frame_->Nip(ref->size()); ref->set_unloaded(); } // ECMA-262, section 9.2, page 30: ToBoolean(). Pop the top of stack and // convert it to a boolean in the condition code register or jump to // 'false_target'/'true_target' as appropriate. void CodeGenerator::ToBoolean(ControlDestination* dest) { Comment cmnt(masm_, "[ ToBoolean"); // The value to convert should be popped from the frame. Result value = frame_->Pop(); value.ToRegister(); if (value.is_number()) { Comment cmnt(masm_, "ONLY_NUMBER"); // Fast case if NumberInfo indicates only numbers. if (FLAG_debug_code) { __ AbortIfNotNumber(value.reg(), "ToBoolean operand is not a number."); } // Smi => false iff zero. ASSERT(kSmiTag == 0); __ test(value.reg(), Operand(value.reg())); dest->false_target()->Branch(zero); __ test(value.reg(), Immediate(kSmiTagMask)); dest->true_target()->Branch(zero); __ fldz(); __ fld_d(FieldOperand(value.reg(), HeapNumber::kValueOffset)); __ FCmp(); value.Unuse(); dest->Split(not_zero); } else { // Fast case checks. // 'false' => false. __ cmp(value.reg(), Factory::false_value()); dest->false_target()->Branch(equal); // 'true' => true. __ cmp(value.reg(), Factory::true_value()); dest->true_target()->Branch(equal); // 'undefined' => false. __ cmp(value.reg(), Factory::undefined_value()); dest->false_target()->Branch(equal); // Smi => false iff zero. ASSERT(kSmiTag == 0); __ test(value.reg(), Operand(value.reg())); dest->false_target()->Branch(zero); __ test(value.reg(), Immediate(kSmiTagMask)); dest->true_target()->Branch(zero); // Call the stub for all other cases. frame_->Push(&value); // Undo the Pop() from above. ToBooleanStub stub; Result temp = frame_->CallStub(&stub, 1); // Convert the result to a condition code. __ test(temp.reg(), Operand(temp.reg())); temp.Unuse(); dest->Split(not_equal); } } class FloatingPointHelper : public AllStatic { public: enum ArgLocation { ARGS_ON_STACK, ARGS_IN_REGISTERS }; // Code pattern for loading a floating point value. Input value must // be either a smi or a heap number object (fp value). Requirements: // operand in register number. Returns operand as floating point number // on FPU stack. static void LoadFloatOperand(MacroAssembler* masm, Register number); // Code pattern for loading floating point values. Input values must // be either smi or heap number objects (fp values). Requirements: // operand_1 on TOS+1 or in edx, operand_2 on TOS+2 or in eax. // Returns operands as floating point numbers on FPU stack. static void LoadFloatOperands(MacroAssembler* masm, Register scratch, ArgLocation arg_location = ARGS_ON_STACK); // Similar to LoadFloatOperand but assumes that both operands are smis. // Expects operands in edx, eax. static void LoadFloatSmis(MacroAssembler* masm, Register scratch); // Test if operands are smi or number objects (fp). Requirements: // operand_1 in eax, operand_2 in edx; falls through on float // operands, jumps to the non_float label otherwise. static void CheckFloatOperands(MacroAssembler* masm, Label* non_float, Register scratch); // Takes the operands in edx and eax and loads them as integers in eax // and ecx. static void LoadAsIntegers(MacroAssembler* masm, bool use_sse3, Label* operand_conversion_failure); // Test if operands are smis or heap numbers and load them // into xmm0 and xmm1 if they are. Operands are in edx and eax. // Leaves operands unchanged. static void LoadSSE2Operands(MacroAssembler* masm); // Test if operands are numbers (smi or HeapNumber objects), and load // them into xmm0 and xmm1 if they are. Jump to label not_numbers if // either operand is not a number. Operands are in edx and eax. // Leaves operands unchanged. static void LoadSSE2Operands(MacroAssembler* masm, Label* not_numbers); // Similar to LoadSSE2Operands but assumes that both operands are smis. // Expects operands in edx, eax. static void LoadSSE2Smis(MacroAssembler* masm, Register scratch); }; const char* GenericBinaryOpStub::GetName() { if (name_ != NULL) return name_; const int kMaxNameLength = 100; name_ = Bootstrapper::AllocateAutoDeletedArray(kMaxNameLength); if (name_ == NULL) return "OOM"; const char* op_name = Token::Name(op_); const char* overwrite_name; switch (mode_) { case NO_OVERWRITE: overwrite_name = "Alloc"; break; case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break; case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break; default: overwrite_name = "UnknownOverwrite"; break; } OS::SNPrintF(Vector<char>(name_, kMaxNameLength), "GenericBinaryOpStub_%s_%s%s_%s%s_%s", op_name, overwrite_name, (flags_ & NO_SMI_CODE_IN_STUB) ? "_NoSmiInStub" : "", args_in_registers_ ? "RegArgs" : "StackArgs", args_reversed_ ? "_R" : "", NumberInfo::ToString(operands_type_)); return name_; } // Call the specialized stub for a binary operation. class DeferredInlineBinaryOperation: public DeferredCode { public: DeferredInlineBinaryOperation(Token::Value op, Register dst, Register left, Register right, OverwriteMode mode) : op_(op), dst_(dst), left_(left), right_(right), mode_(mode) { set_comment("[ DeferredInlineBinaryOperation"); } virtual void Generate(); private: Token::Value op_; Register dst_; Register left_; Register right_; OverwriteMode mode_; }; void DeferredInlineBinaryOperation::Generate() { Label done; if (CpuFeatures::IsSupported(SSE2) && ((op_ == Token::ADD) || (op_ ==Token::SUB) || (op_ == Token::MUL) || (op_ == Token::DIV))) { CpuFeatures::Scope use_sse2(SSE2); Label call_runtime, after_alloc_failure; Label left_smi, right_smi, load_right, do_op; __ test(left_, Immediate(kSmiTagMask)); __ j(zero, &left_smi); __ cmp(FieldOperand(left_, HeapObject::kMapOffset), Factory::heap_number_map()); __ j(not_equal, &call_runtime); __ movdbl(xmm0, FieldOperand(left_, HeapNumber::kValueOffset)); if (mode_ == OVERWRITE_LEFT) { __ mov(dst_, left_); } __ jmp(&load_right); __ bind(&left_smi); __ SmiUntag(left_); __ cvtsi2sd(xmm0, Operand(left_)); __ SmiTag(left_); if (mode_ == OVERWRITE_LEFT) { Label alloc_failure; __ push(left_); __ AllocateHeapNumber(dst_, left_, no_reg, &after_alloc_failure); __ pop(left_); } __ bind(&load_right); __ test(right_, Immediate(kSmiTagMask)); __ j(zero, &right_smi); __ cmp(FieldOperand(right_, HeapObject::kMapOffset), Factory::heap_number_map()); __ j(not_equal, &call_runtime); __ movdbl(xmm1, FieldOperand(right_, HeapNumber::kValueOffset)); if (mode_ == OVERWRITE_RIGHT) { __ mov(dst_, right_); } else if (mode_ == NO_OVERWRITE) { Label alloc_failure; __ push(left_); __ AllocateHeapNumber(dst_, left_, no_reg, &after_alloc_failure); __ pop(left_); } __ jmp(&do_op); __ bind(&right_smi); __ SmiUntag(right_); __ cvtsi2sd(xmm1, Operand(right_)); __ SmiTag(right_); if (mode_ == OVERWRITE_RIGHT || mode_ == NO_OVERWRITE) { Label alloc_failure; __ push(left_); __ AllocateHeapNumber(dst_, left_, no_reg, &after_alloc_failure); __ pop(left_); } __ bind(&do_op); switch (op_) { case Token::ADD: __ addsd(xmm0, xmm1); break; case Token::SUB: __ subsd(xmm0, xmm1); break; case Token::MUL: __ mulsd(xmm0, xmm1); break; case Token::DIV: __ divsd(xmm0, xmm1); break; default: UNREACHABLE(); } __ movdbl(FieldOperand(dst_, HeapNumber::kValueOffset), xmm0); __ jmp(&done); __ bind(&after_alloc_failure); __ pop(left_); __ bind(&call_runtime); } GenericBinaryOpStub stub(op_, mode_, NO_SMI_CODE_IN_STUB); stub.GenerateCall(masm_, left_, right_); if (!dst_.is(eax)) __ mov(dst_, eax); __ bind(&done); } void CodeGenerator::GenericBinaryOperation(Token::Value op, StaticType* type, OverwriteMode overwrite_mode) { Comment cmnt(masm_, "[ BinaryOperation"); Comment cmnt_token(masm_, Token::String(op)); if (op == Token::COMMA) { // Simply discard left value. frame_->Nip(1); return; } Result right = frame_->Pop(); Result left = frame_->Pop(); if (op == Token::ADD) { bool left_is_string = left.is_constant() && left.handle()->IsString(); bool right_is_string = right.is_constant() && right.handle()->IsString(); if (left_is_string || right_is_string) { frame_->Push(&left); frame_->Push(&right); Result answer; if (left_is_string) { if (right_is_string) { // TODO(lrn): if both are constant strings // -- do a compile time cons, if allocation during codegen is allowed. answer = frame_->CallRuntime(Runtime::kStringAdd, 2); } else { answer = frame_->InvokeBuiltin(Builtins::STRING_ADD_LEFT, CALL_FUNCTION, 2); } } else if (right_is_string) { answer = frame_->InvokeBuiltin(Builtins::STRING_ADD_RIGHT, CALL_FUNCTION, 2); } frame_->Push(&answer); return; } // Neither operand is known to be a string. } bool left_is_smi_constant = left.is_constant() && left.handle()->IsSmi(); bool left_is_non_smi_constant = left.is_constant() && !left.handle()->IsSmi(); bool right_is_smi_constant = right.is_constant() && right.handle()->IsSmi(); bool right_is_non_smi_constant = right.is_constant() && !right.handle()->IsSmi(); if (left_is_smi_constant && right_is_smi_constant) { // Compute the constant result at compile time, and leave it on the frame. int left_int = Smi::cast(*left.handle())->value(); int right_int = Smi::cast(*right.handle())->value(); if (FoldConstantSmis(op, left_int, right_int)) return; } // Get number type of left and right sub-expressions. NumberInfo::Type operands_type = NumberInfo::Combine(left.number_info(), right.number_info()); Result answer; if (left_is_non_smi_constant || right_is_non_smi_constant) { // Go straight to the slow case, with no smi code. GenericBinaryOpStub stub(op, overwrite_mode, NO_SMI_CODE_IN_STUB, operands_type); answer = stub.GenerateCall(masm_, frame_, &left, &right); } else if (right_is_smi_constant) { answer = ConstantSmiBinaryOperation(op, &left, right.handle(), type, false, overwrite_mode); } else if (left_is_smi_constant) { answer = ConstantSmiBinaryOperation(op, &right, left.handle(), type, true, overwrite_mode); } else { // Set the flags based on the operation, type and loop nesting level. // Bit operations always assume they likely operate on Smis. Still only // generate the inline Smi check code if this operation is part of a loop. // For all other operations only inline the Smi check code for likely smis // if the operation is part of a loop. if (loop_nesting() > 0 && (Token::IsBitOp(op) || type->IsLikelySmi())) { answer = LikelySmiBinaryOperation(op, &left, &right, overwrite_mode); } else { GenericBinaryOpStub stub(op, overwrite_mode, NO_GENERIC_BINARY_FLAGS, operands_type); answer = stub.GenerateCall(masm_, frame_, &left, &right); } } // Set NumberInfo of result according to the operation performed. // Rely on the fact that smis have a 31 bit payload on ia32. ASSERT(kSmiValueSize == 31); NumberInfo::Type result_type = NumberInfo::kUnknown; switch (op) { case Token::COMMA: result_type = right.number_info(); break; case Token::OR: case Token::AND: // Result type can be either of the two input types. result_type = operands_type; break; case Token::BIT_OR: case Token::BIT_XOR: case Token::BIT_AND: // Result is always a number. Smi property of inputs is preserved. result_type = (operands_type == NumberInfo::kSmi) ? NumberInfo::kSmi : NumberInfo::kNumber; break; case Token::SAR: // Result is a smi if we shift by a constant >= 1, otherwise a number. result_type = (right.is_constant() && right.handle()->IsSmi() && Smi::cast(*right.handle())->value() >= 1) ? NumberInfo::kSmi : NumberInfo::kNumber; break; case Token::SHR: // Result is a smi if we shift by a constant >= 2, otherwise a number. result_type = (right.is_constant() && right.handle()->IsSmi() && Smi::cast(*right.handle())->value() >= 2) ? NumberInfo::kSmi : NumberInfo::kNumber; break; case Token::ADD: // Result could be a string or a number. Check types of inputs. result_type = NumberInfo::IsNumber(operands_type) ? NumberInfo::kNumber : NumberInfo::kUnknown; break; case Token::SHL: case Token::SUB: case Token::MUL: case Token::DIV: case Token::MOD: // Result is always a number. result_type = NumberInfo::kNumber; break; default: UNREACHABLE(); } answer.set_number_info(result_type); frame_->Push(&answer); } bool CodeGenerator::FoldConstantSmis(Token::Value op, int left, int right) { Object* answer_object = Heap::undefined_value(); switch (op) { case Token::ADD: if (Smi::IsValid(left + right)) { answer_object = Smi::FromInt(left + right); } break; case Token::SUB: if (Smi::IsValid(left - right)) { answer_object = Smi::FromInt(left - right); } break; case Token::MUL: { double answer = static_cast<double>(left) * right; if (answer >= Smi::kMinValue && answer <= Smi::kMaxValue) { // If the product is zero and the non-zero factor is negative, // the spec requires us to return floating point negative zero. if (answer != 0 || (left >= 0 && right >= 0)) { answer_object = Smi::FromInt(static_cast<int>(answer)); } } } break; case Token::DIV: case Token::MOD: break; case Token::BIT_OR: answer_object = Smi::FromInt(left | right); break; case Token::BIT_AND: answer_object = Smi::FromInt(left & right); break; case Token::BIT_XOR: answer_object = Smi::FromInt(left ^ right); break; case Token::SHL: { int shift_amount = right & 0x1F; if (Smi::IsValid(left << shift_amount)) { answer_object = Smi::FromInt(left << shift_amount); } break; } case Token::SHR: { int shift_amount = right & 0x1F; unsigned int unsigned_left = left; unsigned_left >>= shift_amount; if (unsigned_left <= static_cast<unsigned int>(Smi::kMaxValue)) { answer_object = Smi::FromInt(unsigned_left); } break; } case Token::SAR: { int shift_amount = right & 0x1F; unsigned int unsigned_left = left; if (left < 0) { // Perform arithmetic shift of a negative number by // complementing number, logical shifting, complementing again. unsigned_left = ~unsigned_left; unsigned_left >>= shift_amount; unsigned_left = ~unsigned_left; } else { unsigned_left >>= shift_amount; } ASSERT(Smi::IsValid(unsigned_left)); // Converted to signed. answer_object = Smi::FromInt(unsigned_left); // Converted to signed. break; } default: UNREACHABLE(); break; } if (answer_object == Heap::undefined_value()) { return false; } frame_->Push(Handle<Object>(answer_object)); return true; } // Implements a binary operation using a deferred code object and some // inline code to operate on smis quickly. Result CodeGenerator::LikelySmiBinaryOperation(Token::Value op, Result* left, Result* right, OverwriteMode overwrite_mode) { Result answer; // Special handling of div and mod because they use fixed registers. if (op == Token::DIV || op == Token::MOD) { // We need eax as the quotient register, edx as the remainder // register, neither left nor right in eax or edx, and left copied // to eax. Result quotient; Result remainder; bool left_is_in_eax = false; // Step 1: get eax for quotient. if ((left->is_register() && left->reg().is(eax)) || (right->is_register() && right->reg().is(eax))) { // One or both is in eax. Use a fresh non-edx register for // them. Result fresh = allocator_->Allocate(); ASSERT(fresh.is_valid()); if (fresh.reg().is(edx)) { remainder = fresh; fresh = allocator_->Allocate(); ASSERT(fresh.is_valid()); } if (left->is_register() && left->reg().is(eax)) { quotient = *left; *left = fresh; left_is_in_eax = true; } if (right->is_register() && right->reg().is(eax)) { quotient = *right; *right = fresh; } __ mov(fresh.reg(), eax); } else { // Neither left nor right is in eax. quotient = allocator_->Allocate(eax); } ASSERT(quotient.is_register() && quotient.reg().is(eax)); ASSERT(!(left->is_register() && left->reg().is(eax))); ASSERT(!(right->is_register() && right->reg().is(eax))); // Step 2: get edx for remainder if necessary. if (!remainder.is_valid()) { if ((left->is_register() && left->reg().is(edx)) || (right->is_register() && right->reg().is(edx))) { Result fresh = allocator_->Allocate(); ASSERT(fresh.is_valid()); if (left->is_register() && left->reg().is(edx)) { remainder = *left; *left = fresh; } if (right->is_register() && right->reg().is(edx)) { remainder = *right; *right = fresh; } __ mov(fresh.reg(), edx); } else { // Neither left nor right is in edx. remainder = allocator_->Allocate(edx); } } ASSERT(remainder.is_register() && remainder.reg().is(edx)); ASSERT(!(left->is_register() && left->reg().is(edx))); ASSERT(!(right->is_register() && right->reg().is(edx))); left->ToRegister(); right->ToRegister(); frame_->Spill(eax); frame_->Spill(edx); // Check that left and right are smi tagged. DeferredInlineBinaryOperation* deferred = new DeferredInlineBinaryOperation(op, (op == Token::DIV) ? eax : edx, left->reg(), right->reg(), overwrite_mode); if (left->reg().is(right->reg())) { __ test(left->reg(), Immediate(kSmiTagMask)); } else { // Use the quotient register as a scratch for the tag check. if (!left_is_in_eax) __ mov(eax, left->reg()); left_is_in_eax = false; // About to destroy the value in eax. __ or_(eax, Operand(right->reg())); ASSERT(kSmiTag == 0); // Adjust test if not the case. __ test(eax, Immediate(kSmiTagMask)); } deferred->Branch(not_zero); if (!left_is_in_eax) __ mov(eax, left->reg()); // Sign extend eax into edx:eax. __ cdq(); // Check for 0 divisor. __ test(right->reg(), Operand(right->reg())); deferred->Branch(zero); // Divide edx:eax by the right operand. __ idiv(right->reg()); // Complete the operation. if (op == Token::DIV) { // Check for negative zero result. If result is zero, and divisor // is negative, return a floating point negative zero. The // virtual frame is unchanged in this block, so local control flow // can use a Label rather than a JumpTarget. Label non_zero_result; __ test(left->reg(), Operand(left->reg())); __ j(not_zero, &non_zero_result); __ test(right->reg(), Operand(right->reg())); deferred->Branch(negative); __ bind(&non_zero_result); // Check for the corner case of dividing the most negative smi by // -1. We cannot use the overflow flag, since it is not set by // idiv instruction. ASSERT(kSmiTag == 0 && kSmiTagSize == 1); __ cmp(eax, 0x40000000); deferred->Branch(equal); // Check that the remainder is zero. __ test(edx, Operand(edx)); deferred->Branch(not_zero); // Tag the result and store it in the quotient register. __ SmiTag(eax); deferred->BindExit(); left->Unuse(); right->Unuse(); answer = quotient; } else { ASSERT(op == Token::MOD); // Check for a negative zero result. If the result is zero, and // the dividend is negative, return a floating point negative // zero. The frame is unchanged in this block, so local control // flow can use a Label rather than a JumpTarget. Label non_zero_result; __ test(edx, Operand(edx)); __ j(not_zero, &non_zero_result, taken); __ test(left->reg(), Operand(left->reg())); deferred->Branch(negative); __ bind(&non_zero_result); deferred->BindExit(); left->Unuse(); right->Unuse(); answer = remainder; } ASSERT(answer.is_valid()); return answer; } // Special handling of shift operations because they use fixed // registers. if (op == Token::SHL || op == Token::SHR || op == Token::SAR) { // Move left out of ecx if necessary. if (left->is_register() && left->reg().is(ecx)) { *left = allocator_->Allocate(); ASSERT(left->is_valid()); __ mov(left->reg(), ecx); } right->ToRegister(ecx); left->ToRegister(); ASSERT(left->is_register() && !left->reg().is(ecx)); ASSERT(right->is_register() && right->reg().is(ecx)); // We will modify right, it must be spilled. frame_->Spill(ecx); // Use a fresh answer register to avoid spilling the left operand. answer = allocator_->Allocate(); ASSERT(answer.is_valid()); // Check that both operands are smis using the answer register as a // temporary. DeferredInlineBinaryOperation* deferred = new DeferredInlineBinaryOperation(op, answer.reg(), left->reg(), ecx, overwrite_mode); __ mov(answer.reg(), left->reg()); __ or_(answer.reg(), Operand(ecx)); __ test(answer.reg(), Immediate(kSmiTagMask)); deferred->Branch(not_zero); // Untag both operands. __ mov(answer.reg(), left->reg()); __ SmiUntag(answer.reg()); __ SmiUntag(ecx); // Perform the operation. switch (op) { case Token::SAR: __ sar_cl(answer.reg()); // No checks of result necessary break; case Token::SHR: { Label result_ok; __ shr_cl(answer.reg()); // Check that the *unsigned* result fits in a smi. Neither of // the two high-order bits can be set: // * 0x80000000: high bit would be lost when smi tagging. // * 0x40000000: this number would convert to negative when smi // tagging. // These two cases can only happen with shifts by 0 or 1 when // handed a valid smi. If the answer cannot be represented by a // smi, restore the left and right arguments, and jump to slow // case. The low bit of the left argument may be lost, but only // in a case where it is dropped anyway. __ test(answer.reg(), Immediate(0xc0000000)); __ j(zero, &result_ok); __ SmiTag(ecx); deferred->Jump(); __ bind(&result_ok); break; } case Token::SHL: { Label result_ok; __ shl_cl(answer.reg()); // Check that the *signed* result fits in a smi. __ cmp(answer.reg(), 0xc0000000); __ j(positive, &result_ok); __ SmiTag(ecx); deferred->Jump(); __ bind(&result_ok); break; } default: UNREACHABLE(); } // Smi-tag the result in answer. __ SmiTag(answer.reg()); deferred->BindExit(); left->Unuse(); right->Unuse(); ASSERT(answer.is_valid()); return answer; } // Handle the other binary operations. left->ToRegister(); right->ToRegister(); // A newly allocated register answer is used to hold the answer. The // registers containing left and right are not modified so they don't // need to be spilled in the fast case. answer = allocator_->Allocate(); ASSERT(answer.is_valid()); // Perform the smi tag check. DeferredInlineBinaryOperation* deferred = new DeferredInlineBinaryOperation(op, answer.reg(), left->reg(), right->reg(), overwrite_mode); if (left->reg().is(right->reg())) { __ test(left->reg(), Immediate(kSmiTagMask)); } else { __ mov(answer.reg(), left->reg()); __ or_(answer.reg(), Operand(right->reg())); ASSERT(kSmiTag == 0); // Adjust test if not the case. __ test(answer.reg(), Immediate(kSmiTagMask)); } deferred->Branch(not_zero); __ mov(answer.reg(), left->reg()); switch (op) { case Token::ADD: __ add(answer.reg(), Operand(right->reg())); deferred->Branch(overflow); break; case Token::SUB: __ sub(answer.reg(), Operand(right->reg())); deferred->Branch(overflow); break; case Token::MUL: { // If the smi tag is 0 we can just leave the tag on one operand. ASSERT(kSmiTag == 0); // Adjust code below if not the case. // Remove smi tag from the left operand (but keep sign). // Left-hand operand has been copied into answer. __ SmiUntag(answer.reg()); // Do multiplication of smis, leaving result in answer. __ imul(answer.reg(), Operand(right->reg())); // Go slow on overflows. deferred->Branch(overflow); // Check for negative zero result. If product is zero, and one // argument is negative, go to slow case. The frame is unchanged // in this block, so local control flow can use a Label rather // than a JumpTarget. Label non_zero_result; __ test(answer.reg(), Operand(answer.reg())); __ j(not_zero, &non_zero_result, taken); __ mov(answer.reg(), left->reg()); __ or_(answer.reg(), Operand(right->reg())); deferred->Branch(negative); __ xor_(answer.reg(), Operand(answer.reg())); // Positive 0 is correct. __ bind(&non_zero_result); break; } case Token::BIT_OR: __ or_(answer.reg(), Operand(right->reg())); break; case Token::BIT_AND: __ and_(answer.reg(), Operand(right->reg())); break; case Token::BIT_XOR: __ xor_(answer.reg(), Operand(right->reg())); break; default: UNREACHABLE(); break; } deferred->BindExit(); left->Unuse(); right->Unuse(); ASSERT(answer.is_valid()); return answer; } // Call the appropriate binary operation stub to compute src op value // and leave the result in dst. class DeferredInlineSmiOperation: public DeferredCode { public: DeferredInlineSmiOperation(Token::Value op, Register dst, Register src, Smi* value, OverwriteMode overwrite_mode) : op_(op), dst_(dst), src_(src), value_(value), overwrite_mode_(overwrite_mode) { set_comment("[ DeferredInlineSmiOperation"); } virtual void Generate(); private: Token::Value op_; Register dst_; Register src_; Smi* value_; OverwriteMode overwrite_mode_; }; void DeferredInlineSmiOperation::Generate() { // For mod we don't generate all the Smi code inline. GenericBinaryOpStub stub( op_, overwrite_mode_, (op_ == Token::MOD) ? NO_GENERIC_BINARY_FLAGS : NO_SMI_CODE_IN_STUB); stub.GenerateCall(masm_, src_, value_); if (!dst_.is(eax)) __ mov(dst_, eax); } // Call the appropriate binary operation stub to compute value op src // and leave the result in dst. class DeferredInlineSmiOperationReversed: public DeferredCode { public: DeferredInlineSmiOperationReversed(Token::Value op, Register dst, Smi* value, Register src, OverwriteMode overwrite_mode) : op_(op), dst_(dst), value_(value), src_(src), overwrite_mode_(overwrite_mode) { set_comment("[ DeferredInlineSmiOperationReversed"); } virtual void Generate(); private: Token::Value op_; Register dst_; Smi* value_; Register src_; OverwriteMode overwrite_mode_; }; void DeferredInlineSmiOperationReversed::Generate() { GenericBinaryOpStub igostub(op_, overwrite_mode_, NO_SMI_CODE_IN_STUB); igostub.GenerateCall(masm_, value_, src_); if (!dst_.is(eax)) __ mov(dst_, eax); } // The result of src + value is in dst. It either overflowed or was not // smi tagged. Undo the speculative addition and call the appropriate // specialized stub for add. The result is left in dst. class DeferredInlineSmiAdd: public DeferredCode { public: DeferredInlineSmiAdd(Register dst, Smi* value, OverwriteMode overwrite_mode) : dst_(dst), value_(value), overwrite_mode_(overwrite_mode) { set_comment("[ DeferredInlineSmiAdd"); } virtual void Generate(); private: Register dst_; Smi* value_; OverwriteMode overwrite_mode_; }; void DeferredInlineSmiAdd::Generate() { // Undo the optimistic add operation and call the shared stub. __ sub(Operand(dst_), Immediate(value_)); GenericBinaryOpStub igostub(Token::ADD, overwrite_mode_, NO_SMI_CODE_IN_STUB); igostub.GenerateCall(masm_, dst_, value_); if (!dst_.is(eax)) __ mov(dst_, eax); } // The result of value + src is in dst. It either overflowed or was not // smi tagged. Undo the speculative addition and call the appropriate // specialized stub for add. The result is left in dst. class DeferredInlineSmiAddReversed: public DeferredCode { public: DeferredInlineSmiAddReversed(Register dst, Smi* value, OverwriteMode overwrite_mode) : dst_(dst), value_(value), overwrite_mode_(overwrite_mode) { set_comment("[ DeferredInlineSmiAddReversed"); } virtual void Generate(); private: Register dst_; Smi* value_; OverwriteMode overwrite_mode_; }; void DeferredInlineSmiAddReversed::Generate() { // Undo the optimistic add operation and call the shared stub. __ sub(Operand(dst_), Immediate(value_)); GenericBinaryOpStub igostub(Token::ADD, overwrite_mode_, NO_SMI_CODE_IN_STUB); igostub.GenerateCall(masm_, value_, dst_); if (!dst_.is(eax)) __ mov(dst_, eax); } // The result of src - value is in dst. It either overflowed or was not // smi tagged. Undo the speculative subtraction and call the // appropriate specialized stub for subtract. The result is left in // dst. class DeferredInlineSmiSub: public DeferredCode { public: DeferredInlineSmiSub(Register dst, Smi* value, OverwriteMode overwrite_mode) : dst_(dst), value_(value), overwrite_mode_(overwrite_mode) { set_comment("[ DeferredInlineSmiSub"); } virtual void Generate(); private: Register dst_; Smi* value_; OverwriteMode overwrite_mode_; }; void DeferredInlineSmiSub::Generate() { // Undo the optimistic sub operation and call the shared stub. __ add(Operand(dst_), Immediate(value_)); GenericBinaryOpStub igostub(Token::SUB, overwrite_mode_, NO_SMI_CODE_IN_STUB); igostub.GenerateCall(masm_, dst_, value_); if (!dst_.is(eax)) __ mov(dst_, eax); } Result CodeGenerator::ConstantSmiBinaryOperation(Token::Value op, Result* operand, Handle<Object> value, StaticType* type, bool reversed, OverwriteMode overwrite_mode) { // NOTE: This is an attempt to inline (a bit) more of the code for // some possible smi operations (like + and -) when (at least) one // of the operands is a constant smi. // Consumes the argument "operand". // TODO(199): Optimize some special cases of operations involving a // smi literal (multiply by 2, shift by 0, etc.). if (IsUnsafeSmi(value)) { Result unsafe_operand(value); if (reversed) { return LikelySmiBinaryOperation(op, &unsafe_operand, operand, overwrite_mode); } else { return LikelySmiBinaryOperation(op, operand, &unsafe_operand, overwrite_mode); } } // Get the literal value. Smi* smi_value = Smi::cast(*value); int int_value = smi_value->value(); Result answer; switch (op) { case Token::ADD: { operand->ToRegister(); frame_->Spill(operand->reg()); // Optimistically add. Call the specialized add stub if the // result is not a smi or overflows. DeferredCode* deferred = NULL; if (reversed) { deferred = new DeferredInlineSmiAddReversed(operand->reg(), smi_value, overwrite_mode); } else { deferred = new DeferredInlineSmiAdd(operand->reg(), smi_value, overwrite_mode); } __ add(Operand(operand->reg()), Immediate(value)); deferred->Branch(overflow); __ test(operand->reg(), Immediate(kSmiTagMask)); deferred->Branch(not_zero); deferred->BindExit(); answer = *operand; break; } case Token::SUB: { DeferredCode* deferred = NULL; if (reversed) { // The reversed case is only hit when the right operand is not a // constant. ASSERT(operand->is_register()); answer = allocator()->Allocate(); ASSERT(answer.is_valid()); __ Set(answer.reg(), Immediate(value)); deferred = new DeferredInlineSmiOperationReversed(op, answer.reg(), smi_value, operand->reg(), overwrite_mode); __ sub(answer.reg(), Operand(operand->reg())); } else { operand->ToRegister(); frame_->Spill(operand->reg()); answer = *operand; deferred = new DeferredInlineSmiSub(operand->reg(), smi_value, overwrite_mode); __ sub(Operand(operand->reg()), Immediate(value)); } deferred->Branch(overflow); __ test(answer.reg(), Immediate(kSmiTagMask)); deferred->Branch(not_zero); deferred->BindExit(); operand->Unuse(); break; } case Token::SAR: if (reversed) { Result constant_operand(value); answer = LikelySmiBinaryOperation(op, &constant_operand, operand, overwrite_mode); } else { // Only the least significant 5 bits of the shift value are used. // In the slow case, this masking is done inside the runtime call. int shift_value = int_value & 0x1f; operand->ToRegister(); frame_->Spill(operand->reg()); DeferredInlineSmiOperation* deferred = new DeferredInlineSmiOperation(op, operand->reg(), operand->reg(), smi_value, overwrite_mode); __ test(operand->reg(), Immediate(kSmiTagMask)); deferred->Branch(not_zero); if (shift_value > 0) { __ sar(operand->reg(), shift_value); __ and_(operand->reg(), ~kSmiTagMask); } deferred->BindExit(); answer = *operand; } break; case Token::SHR: if (reversed) { Result constant_operand(value); answer = LikelySmiBinaryOperation(op, &constant_operand, operand, overwrite_mode); } else { // Only the least significant 5 bits of the shift value are used. // In the slow case, this masking is done inside the runtime call. int shift_value = int_value & 0x1f; operand->ToRegister(); answer = allocator()->Allocate(); ASSERT(answer.is_valid()); DeferredInlineSmiOperation* deferred = new DeferredInlineSmiOperation(op, answer.reg(), operand->reg(), smi_value, overwrite_mode); __ test(operand->reg(), Immediate(kSmiTagMask)); deferred->Branch(not_zero); __ mov(answer.reg(), operand->reg()); __ SmiUntag(answer.reg()); __ shr(answer.reg(), shift_value); // A negative Smi shifted right two is in the positive Smi range. if (shift_value < 2) { __ test(answer.reg(), Immediate(0xc0000000)); deferred->Branch(not_zero); } operand->Unuse(); __ SmiTag(answer.reg()); deferred->BindExit(); } break; case Token::SHL: if (reversed) { Result right; Result right_copy_in_ecx; // Make sure to get a copy of the right operand into ecx. This // allows us to modify it without having to restore it in the // deferred code. operand->ToRegister(); if (operand->reg().is(ecx)) { right = allocator()->Allocate(); __ mov(right.reg(), ecx); frame_->Spill(ecx); right_copy_in_ecx = *operand; } else { right_copy_in_ecx = allocator()->Allocate(ecx); __ mov(ecx, operand->reg()); right = *operand; } operand->Unuse(); answer = allocator()->Allocate(); DeferredInlineSmiOperationReversed* deferred = new DeferredInlineSmiOperationReversed(op, answer.reg(), smi_value, right.reg(), overwrite_mode); __ mov(answer.reg(), Immediate(int_value)); __ sar(ecx, kSmiTagSize); deferred->Branch(carry); __ shl_cl(answer.reg()); __ cmp(answer.reg(), 0xc0000000); deferred->Branch(sign); __ SmiTag(answer.reg()); deferred->BindExit(); } else { // Only the least significant 5 bits of the shift value are used. // In the slow case, this masking is done inside the runtime call. int shift_value = int_value & 0x1f; operand->ToRegister(); if (shift_value == 0) { // Spill operand so it can be overwritten in the slow case. frame_->Spill(operand->reg()); DeferredInlineSmiOperation* deferred = new DeferredInlineSmiOperation(op, operand->reg(), operand->reg(), smi_value, overwrite_mode); __ test(operand->reg(), Immediate(kSmiTagMask)); deferred->Branch(not_zero); deferred->BindExit(); answer = *operand; } else { // Use a fresh temporary for nonzero shift values. answer = allocator()->Allocate(); ASSERT(answer.is_valid()); DeferredInlineSmiOperation* deferred = new DeferredInlineSmiOperation(op, answer.reg(), operand->reg(), smi_value, overwrite_mode); __ test(operand->reg(), Immediate(kSmiTagMask)); deferred->Branch(not_zero); __ mov(answer.reg(), operand->reg()); ASSERT(kSmiTag == 0); // adjust code if not the case // We do no shifts, only the Smi conversion, if shift_value is 1. if (shift_value > 1) { __ shl(answer.reg(), shift_value - 1); } // Convert int result to Smi, checking that it is in int range. ASSERT(kSmiTagSize == 1); // adjust code if not the case __ add(answer.reg(), Operand(answer.reg())); deferred->Branch(overflow); deferred->BindExit(); operand->Unuse(); } } break; case Token::BIT_OR: case Token::BIT_XOR: case Token::BIT_AND: { operand->ToRegister(); frame_->Spill(operand->reg()); DeferredCode* deferred = NULL; if (reversed) { deferred = new DeferredInlineSmiOperationReversed(op, operand->reg(), smi_value, operand->reg(), overwrite_mode); } else { deferred = new DeferredInlineSmiOperation(op, operand->reg(), operand->reg(), smi_value, overwrite_mode); } __ test(operand->reg(), Immediate(kSmiTagMask)); deferred->Branch(not_zero); if (op == Token::BIT_AND) { __ and_(Operand(operand->reg()), Immediate(value)); } else if (op == Token::BIT_XOR) { if (int_value != 0) { __ xor_(Operand(operand->reg()), Immediate(value)); } } else { ASSERT(op == Token::BIT_OR); if (int_value != 0) { __ or_(Operand(operand->reg()), Immediate(value)); } } deferred->BindExit(); answer = *operand; break; } case Token::DIV: if (!reversed && int_value == 2) { operand->ToRegister(); frame_->Spill(operand->reg()); DeferredInlineSmiOperation* deferred = new DeferredInlineSmiOperation(op, operand->reg(), operand->reg(), smi_value, overwrite_mode); // Check that lowest log2(value) bits of operand are zero, and test // smi tag at the same time. ASSERT_EQ(0, kSmiTag); ASSERT_EQ(1, kSmiTagSize); __ test(operand->reg(), Immediate(3)); deferred->Branch(not_zero); // Branch if non-smi or odd smi. __ sar(operand->reg(), 1); deferred->BindExit(); answer = *operand; } else { // Cannot fall through MOD to default case, so we duplicate the // default case here. Result constant_operand(value); if (reversed) { answer = LikelySmiBinaryOperation(op, &constant_operand, operand, overwrite_mode); } else { answer = LikelySmiBinaryOperation(op, operand, &constant_operand, overwrite_mode); } } break; // Generate inline code for mod of powers of 2 and negative powers of 2. case Token::MOD: if (!reversed && int_value != 0 && (IsPowerOf2(int_value) || IsPowerOf2(-int_value))) { operand->ToRegister(); frame_->Spill(operand->reg()); DeferredCode* deferred = new DeferredInlineSmiOperation(op, operand->reg(), operand->reg(), smi_value, overwrite_mode); // Check for negative or non-Smi left hand side. __ test(operand->reg(), Immediate(kSmiTagMask | 0x80000000)); deferred->Branch(not_zero); if (int_value < 0) int_value = -int_value; if (int_value == 1) { __ mov(operand->reg(), Immediate(Smi::FromInt(0))); } else { __ and_(operand->reg(), (int_value << kSmiTagSize) - 1); } deferred->BindExit(); answer = *operand; break; } // Fall through if we did not find a power of 2 on the right hand side! default: { Result constant_operand(value); if (reversed) { answer = LikelySmiBinaryOperation(op, &constant_operand, operand, overwrite_mode); } else { answer = LikelySmiBinaryOperation(op, operand, &constant_operand, overwrite_mode); } break; } } ASSERT(answer.is_valid()); return answer; } static bool CouldBeNaN(const Result& result) { if (!result.is_constant()) return true; if (!result.handle()->IsHeapNumber()) return false; return isnan(HeapNumber::cast(*result.handle())->value()); } void CodeGenerator::Comparison(AstNode* node, Condition cc, bool strict, ControlDestination* dest) { // Strict only makes sense for equality comparisons. ASSERT(!strict || cc == equal); Result left_side; Result right_side; // Implement '>' and '<=' by reversal to obtain ECMA-262 conversion order. if (cc == greater || cc == less_equal) { cc = ReverseCondition(cc); left_side = frame_->Pop(); right_side = frame_->Pop(); } else { right_side = frame_->Pop(); left_side = frame_->Pop(); } ASSERT(cc == less || cc == equal || cc == greater_equal); // If either side is a constant of some sort, we can probably optimize the // comparison. bool left_side_constant_smi = false; bool left_side_constant_null = false; bool left_side_constant_1_char_string = false; if (left_side.is_constant()) { left_side_constant_smi = left_side.handle()->IsSmi(); left_side_constant_null = left_side.handle()->IsNull(); left_side_constant_1_char_string = (left_side.handle()->IsString() && (String::cast(*left_side.handle())->length() == 1)); } bool right_side_constant_smi = false; bool right_side_constant_null = false; bool right_side_constant_1_char_string = false; if (right_side.is_constant()) { right_side_constant_smi = right_side.handle()->IsSmi(); right_side_constant_null = right_side.handle()->IsNull(); right_side_constant_1_char_string = (right_side.handle()->IsString() && (String::cast(*right_side.handle())->length() == 1)); } if (left_side_constant_smi || right_side_constant_smi) { if (left_side_constant_smi && right_side_constant_smi) { // Trivial case, comparing two constants. int left_value = Smi::cast(*left_side.handle())->value(); int right_value = Smi::cast(*right_side.handle())->value(); switch (cc) { case less: dest->Goto(left_value < right_value); break; case equal: dest->Goto(left_value == right_value); break; case greater_equal: dest->Goto(left_value >= right_value); break; default: UNREACHABLE(); } } else { // Only one side is a constant Smi. // If left side is a constant Smi, reverse the operands. // Since one side is a constant Smi, conversion order does not matter. if (left_side_constant_smi) { Result temp = left_side; left_side = right_side; right_side = temp; cc = ReverseCondition(cc); // This may reintroduce greater or less_equal as the value of cc. // CompareStub and the inline code both support all values of cc. } // Implement comparison against a constant Smi, inlining the case // where both sides are Smis. left_side.ToRegister(); Register left_reg = left_side.reg(); Handle<Object> right_val = right_side.handle(); // Here we split control flow to the stub call and inlined cases // before finally splitting it to the control destination. We use // a jump target and branching to duplicate the virtual frame at // the first split. We manually handle the off-frame references // by reconstituting them on the non-fall-through path. JumpTarget is_smi; __ test(left_side.reg(), Immediate(kSmiTagMask)); is_smi.Branch(zero, taken); bool is_for_loop_compare = (node->AsCompareOperation() != NULL) && node->AsCompareOperation()->is_for_loop_condition(); if (!is_for_loop_compare && CpuFeatures::IsSupported(SSE2) && right_val->IsSmi()) { // Right side is a constant smi and left side has been checked // not to be a smi. CpuFeatures::Scope use_sse2(SSE2); JumpTarget not_number; __ cmp(FieldOperand(left_reg, HeapObject::kMapOffset), Immediate(Factory::heap_number_map())); not_number.Branch(not_equal, &left_side); __ movdbl(xmm1, FieldOperand(left_reg, HeapNumber::kValueOffset)); int value = Smi::cast(*right_val)->value(); if (value == 0) { __ xorpd(xmm0, xmm0); } else { Result temp = allocator()->Allocate(); __ mov(temp.reg(), Immediate(value)); __ cvtsi2sd(xmm0, Operand(temp.reg())); temp.Unuse(); } __ comisd(xmm1, xmm0); // Jump to builtin for NaN. not_number.Branch(parity_even, &left_side); left_side.Unuse(); Condition double_cc = cc; switch (cc) { case less: double_cc = below; break; case equal: double_cc = equal; break; case less_equal: double_cc = below_equal; break; case greater: double_cc = above; break; case greater_equal: double_cc = above_equal; break; default: UNREACHABLE(); } dest->true_target()->Branch(double_cc); dest->false_target()->Jump(); not_number.Bind(&left_side); } // Setup and call the compare stub. CompareStub stub(cc, strict, kCantBothBeNaN); Result result = frame_->CallStub(&stub, &left_side, &right_side); result.ToRegister(); __ cmp(result.reg(), 0); result.Unuse(); dest->true_target()->Branch(cc); dest->false_target()->Jump(); is_smi.Bind(); left_side = Result(left_reg); right_side = Result(right_val); // Test smi equality and comparison by signed int comparison. if (IsUnsafeSmi(right_side.handle())) { right_side.ToRegister(); __ cmp(left_side.reg(), Operand(right_side.reg())); } else { __ cmp(Operand(left_side.reg()), Immediate(right_side.handle())); } left_side.Unuse(); right_side.Unuse(); dest->Split(cc); } } else if (cc == equal && (left_side_constant_null || right_side_constant_null)) { // To make null checks efficient, we check if either the left side or // the right side is the constant 'null'. // If so, we optimize the code by inlining a null check instead of // calling the (very) general runtime routine for checking equality. Result operand = left_side_constant_null ? right_side : left_side; right_side.Unuse(); left_side.Unuse(); operand.ToRegister(); __ cmp(operand.reg(), Factory::null_value()); if (strict) { operand.Unuse(); dest->Split(equal); } else { // The 'null' value is only equal to 'undefined' if using non-strict // comparisons. dest->true_target()->Branch(equal); __ cmp(operand.reg(), Factory::undefined_value()); dest->true_target()->Branch(equal); __ test(operand.reg(), Immediate(kSmiTagMask)); dest->false_target()->Branch(equal); // It can be an undetectable object. // Use a scratch register in preference to spilling operand.reg(). Result temp = allocator()->Allocate(); ASSERT(temp.is_valid()); __ mov(temp.reg(), FieldOperand(operand.reg(), HeapObject::kMapOffset)); __ movzx_b(temp.reg(), FieldOperand(temp.reg(), Map::kBitFieldOffset)); __ test(temp.reg(), Immediate(1 << Map::kIsUndetectable)); temp.Unuse(); operand.Unuse(); dest->Split(not_zero); } } else if (left_side_constant_1_char_string || right_side_constant_1_char_string) { if (left_side_constant_1_char_string && right_side_constant_1_char_string) { // Trivial case, comparing two constants. int left_value = String::cast(*left_side.handle())->Get(0); int right_value = String::cast(*right_side.handle())->Get(0); switch (cc) { case less: dest->Goto(left_value < right_value); break; case equal: dest->Goto(left_value == right_value); break; case greater_equal: dest->Goto(left_value >= right_value); break; default: UNREACHABLE(); } } else { // Only one side is a constant 1 character string. // If left side is a constant 1-character string, reverse the operands. // Since one side is a constant string, conversion order does not matter. if (left_side_constant_1_char_string) { Result temp = left_side; left_side = right_side; right_side = temp; cc = ReverseCondition(cc); // This may reintroduce greater or less_equal as the value of cc. // CompareStub and the inline code both support all values of cc. } // Implement comparison against a constant string, inlining the case // where both sides are strings. left_side.ToRegister(); // Here we split control flow to the stub call and inlined cases // before finally splitting it to the control destination. We use // a jump target and branching to duplicate the virtual frame at // the first split. We manually handle the off-frame references // by reconstituting them on the non-fall-through path. JumpTarget is_not_string, is_string; Register left_reg = left_side.reg(); Handle<Object> right_val = right_side.handle(); __ test(left_side.reg(), Immediate(kSmiTagMask)); is_not_string.Branch(zero, &left_side); Result temp = allocator_->Allocate(); ASSERT(temp.is_valid()); __ mov(temp.reg(), FieldOperand(left_side.reg(), HeapObject::kMapOffset)); __ movzx_b(temp.reg(), FieldOperand(temp.reg(), Map::kInstanceTypeOffset)); // If we are testing for equality then make use of the symbol shortcut. // Check if the right left hand side has the same type as the left hand // side (which is always a symbol). if (cc == equal) { Label not_a_symbol; ASSERT(kSymbolTag != 0); // Ensure that no non-strings have the symbol bit set. ASSERT(kNotStringTag + kIsSymbolMask > LAST_TYPE); __ test(temp.reg(), Immediate(kIsSymbolMask)); // Test the symbol bit. __ j(zero, ¬_a_symbol); // They are symbols, so do identity compare. __ cmp(left_side.reg(), right_side.handle()); dest->true_target()->Branch(equal); dest->false_target()->Branch(not_equal); __ bind(¬_a_symbol); } // If the receiver is not a string of the type we handle call the stub. __ and_(temp.reg(), kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask); __ cmp(temp.reg(), kStringTag | kSeqStringTag | kAsciiStringTag); temp.Unuse(); is_string.Branch(equal, &left_side); // Setup and call the compare stub. is_not_string.Bind(&left_side); CompareStub stub(cc, strict, kCantBothBeNaN); Result result = frame_->CallStub(&stub, &left_side, &right_side); result.ToRegister(); __ cmp(result.reg(), 0); result.Unuse(); dest->true_target()->Branch(cc); dest->false_target()->Jump(); is_string.Bind(&left_side); // Here we know we have a sequential ASCII string. left_side = Result(left_reg); right_side = Result(right_val); Result temp2 = allocator_->Allocate(); ASSERT(temp2.is_valid()); // Test string equality and comparison. if (cc == equal) { Label comparison_done; __ cmp(FieldOperand(left_side.reg(), String::kLengthOffset), Immediate(1)); __ j(not_equal, &comparison_done); uint8_t char_value = static_cast<uint8_t>(String::cast(*right_side.handle())->Get(0)); __ cmpb(FieldOperand(left_side.reg(), SeqAsciiString::kHeaderSize), char_value); __ bind(&comparison_done); } else { __ mov(temp2.reg(), FieldOperand(left_side.reg(), String::kLengthOffset)); __ sub(Operand(temp2.reg()), Immediate(1)); Label comparison; // If the length is 0 then our subtraction gave -1 which compares less // than any character. __ j(negative, &comparison); // Otherwise load the first character. __ movzx_b(temp2.reg(), FieldOperand(left_side.reg(), SeqAsciiString::kHeaderSize)); __ bind(&comparison); // Compare the first character of the string with out constant // 1-character string. uint8_t char_value = static_cast<uint8_t>(String::cast(*right_side.handle())->Get(0)); __ cmp(Operand(temp2.reg()), Immediate(char_value)); Label characters_were_different; __ j(not_equal, &characters_were_different); // If the first character is the same then the long string sorts after // the short one. __ cmp(FieldOperand(left_side.reg(), String::kLengthOffset), Immediate(1)); __ bind(&characters_were_different); } temp2.Unuse(); left_side.Unuse(); right_side.Unuse(); dest->Split(cc); } } else { // Neither side is a constant Smi or null. // If either side is a non-smi constant, skip the smi check. bool known_non_smi = (left_side.is_constant() && !left_side.handle()->IsSmi()) || (right_side.is_constant() && !right_side.handle()->IsSmi()); NaNInformation nan_info = (CouldBeNaN(left_side) && CouldBeNaN(right_side)) ? kBothCouldBeNaN : kCantBothBeNaN; left_side.ToRegister(); right_side.ToRegister(); if (known_non_smi) { // When non-smi, call out to the compare stub. CompareStub stub(cc, strict, nan_info); Result answer = frame_->CallStub(&stub, &left_side, &right_side); if (cc == equal) { __ test(answer.reg(), Operand(answer.reg())); } else { __ cmp(answer.reg(), 0); } answer.Unuse(); dest->Split(cc); } else { // Here we split control flow to the stub call and inlined cases // before finally splitting it to the control destination. We use // a jump target and branching to duplicate the virtual frame at // the first split. We manually handle the off-frame references // by reconstituting them on the non-fall-through path. JumpTarget is_smi; Register left_reg = left_side.reg(); Register right_reg = right_side.reg(); Result temp = allocator_->Allocate(); ASSERT(temp.is_valid()); __ mov(temp.reg(), left_side.reg()); __ or_(temp.reg(), Operand(right_side.reg())); __ test(temp.reg(), Immediate(kSmiTagMask)); temp.Unuse(); is_smi.Branch(zero, taken); // When non-smi, call out to the compare stub. CompareStub stub(cc, strict, nan_info); Result answer = frame_->CallStub(&stub, &left_side, &right_side); if (cc == equal) { __ test(answer.reg(), Operand(answer.reg())); } else { __ cmp(answer.reg(), 0); } answer.Unuse(); dest->true_target()->Branch(cc); dest->false_target()->Jump(); is_smi.Bind(); left_side = Result(left_reg); right_side = Result(right_reg); __ cmp(left_side.reg(), Operand(right_side.reg())); right_side.Unuse(); left_side.Unuse(); dest->Split(cc); } } } // Call the function just below TOS on the stack with the given // arguments. The receiver is the TOS. void CodeGenerator::CallWithArguments(ZoneList<Expression*>* args, CallFunctionFlags flags, int position) { // Push the arguments ("left-to-right") on the stack. int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { Load(args->at(i)); } // Record the position for debugging purposes. CodeForSourcePosition(position); // Use the shared code stub to call the function. InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; CallFunctionStub call_function(arg_count, in_loop, flags); Result answer = frame_->CallStub(&call_function, arg_count + 1); // Restore context and replace function on the stack with the // result of the stub invocation. frame_->RestoreContextRegister(); frame_->SetElementAt(0, &answer); } void CodeGenerator::CallApplyLazy(Expression* applicand, Expression* receiver, VariableProxy* arguments, int position) { // An optimized implementation of expressions of the form // x.apply(y, arguments). // If the arguments object of the scope has not been allocated, // and x.apply is Function.prototype.apply, this optimization // just copies y and the arguments of the current function on the // stack, as receiver and arguments, and calls x. // In the implementation comments, we call x the applicand // and y the receiver. ASSERT(ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION); ASSERT(arguments->IsArguments()); // Load applicand.apply onto the stack. This will usually // give us a megamorphic load site. Not super, but it works. Load(applicand); frame()->Dup(); Handle<String> name = Factory::LookupAsciiSymbol("apply"); frame()->Push(name); Result answer = frame()->CallLoadIC(RelocInfo::CODE_TARGET); __ nop(); frame()->Push(&answer); // Load the receiver and the existing arguments object onto the // expression stack. Avoid allocating the arguments object here. Load(receiver); Result existing_args = LoadFromSlot(scope()->arguments()->var()->slot(), NOT_INSIDE_TYPEOF); frame()->Push(&existing_args); // Emit the source position information after having loaded the // receiver and the arguments. CodeForSourcePosition(position); // Contents of frame at this point: // Frame[0]: arguments object of the current function or the hole. // Frame[1]: receiver // Frame[2]: applicand.apply // Frame[3]: applicand. // Check if the arguments object has been lazily allocated // already. If so, just use that instead of copying the arguments // from the stack. This also deals with cases where a local variable // named 'arguments' has been introduced. frame_->Dup(); Result probe = frame_->Pop(); { VirtualFrame::SpilledScope spilled_scope; Label slow, done; bool try_lazy = true; if (probe.is_constant()) { try_lazy = probe.handle()->IsTheHole(); } else { __ cmp(Operand(probe.reg()), Immediate(Factory::the_hole_value())); probe.Unuse(); __ j(not_equal, &slow); } if (try_lazy) { Label build_args; // Get rid of the arguments object probe. frame_->Drop(); // Can be called on a spilled frame. // Stack now has 3 elements on it. // Contents of stack at this point: // esp[0]: receiver // esp[1]: applicand.apply // esp[2]: applicand. // Check that the receiver really is a JavaScript object. __ mov(eax, Operand(esp, 0)); __ test(eax, Immediate(kSmiTagMask)); __ j(zero, &build_args); // We allow all JSObjects including JSFunctions. As long as // JS_FUNCTION_TYPE is the last instance type and it is right // after LAST_JS_OBJECT_TYPE, we do not have to check the upper // bound. ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1); __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ecx); __ j(below, &build_args); // Check that applicand.apply is Function.prototype.apply. __ mov(eax, Operand(esp, kPointerSize)); __ test(eax, Immediate(kSmiTagMask)); __ j(zero, &build_args); __ CmpObjectType(eax, JS_FUNCTION_TYPE, ecx); __ j(not_equal, &build_args); __ mov(ecx, FieldOperand(eax, JSFunction::kSharedFunctionInfoOffset)); Handle<Code> apply_code(Builtins::builtin(Builtins::FunctionApply)); __ cmp(FieldOperand(ecx, SharedFunctionInfo::kCodeOffset), Immediate(apply_code)); __ j(not_equal, &build_args); // Check that applicand is a function. __ mov(edi, Operand(esp, 2 * kPointerSize)); __ test(edi, Immediate(kSmiTagMask)); __ j(zero, &build_args); __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx); __ j(not_equal, &build_args); // Copy the arguments to this function possibly from the // adaptor frame below it. Label invoke, adapted; __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset)); __ cmp(Operand(ecx), Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ j(equal, &adapted); // No arguments adaptor frame. Copy fixed number of arguments. __ mov(eax, Immediate(scope()->num_parameters())); for (int i = 0; i < scope()->num_parameters(); i++) { __ push(frame_->ParameterAt(i)); } __ jmp(&invoke); // Arguments adaptor frame present. Copy arguments from there, but // avoid copying too many arguments to avoid stack overflows. __ bind(&adapted); static const uint32_t kArgumentsLimit = 1 * KB; __ mov(eax, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ SmiUntag(eax); __ mov(ecx, Operand(eax)); __ cmp(eax, kArgumentsLimit); __ j(above, &build_args); // Loop through the arguments pushing them onto the execution // stack. We don't inform the virtual frame of the push, so we don't // have to worry about getting rid of the elements from the virtual // frame. Label loop; // ecx is a small non-negative integer, due to the test above. __ test(ecx, Operand(ecx)); __ j(zero, &invoke); __ bind(&loop); __ push(Operand(edx, ecx, times_pointer_size, 1 * kPointerSize)); __ dec(ecx); __ j(not_zero, &loop); // Invoke the function. __ bind(&invoke); ParameterCount actual(eax); __ InvokeFunction(edi, actual, CALL_FUNCTION); // Drop applicand.apply and applicand from the stack, and push // the result of the function call, but leave the spilled frame // unchanged, with 3 elements, so it is correct when we compile the // slow-case code. __ add(Operand(esp), Immediate(2 * kPointerSize)); __ push(eax); // Stack now has 1 element: // esp[0]: result __ jmp(&done); // Slow-case: Allocate the arguments object since we know it isn't // there, and fall-through to the slow-case where we call // applicand.apply. __ bind(&build_args); // Stack now has 3 elements, because we have jumped from where: // esp[0]: receiver // esp[1]: applicand.apply // esp[2]: applicand. // StoreArgumentsObject requires a correct frame, and may modify it. Result arguments_object = StoreArgumentsObject(false); frame_->SpillAll(); arguments_object.ToRegister(); frame_->EmitPush(arguments_object.reg()); arguments_object.Unuse(); // Stack and frame now have 4 elements. __ bind(&slow); } // Generic computation of x.apply(y, args) with no special optimization. // Flip applicand.apply and applicand on the stack, so // applicand looks like the receiver of the applicand.apply call. // Then process it as a normal function call. __ mov(eax, Operand(esp, 3 * kPointerSize)); __ mov(ebx, Operand(esp, 2 * kPointerSize)); __ mov(Operand(esp, 2 * kPointerSize), eax); __ mov(Operand(esp, 3 * kPointerSize), ebx); CallFunctionStub call_function(2, NOT_IN_LOOP, NO_CALL_FUNCTION_FLAGS); Result res = frame_->CallStub(&call_function, 3); // The function and its two arguments have been dropped. frame_->Drop(1); // Drop the receiver as well. res.ToRegister(); frame_->EmitPush(res.reg()); // Stack now has 1 element: // esp[0]: result if (try_lazy) __ bind(&done); } // End of spilled scope. // Restore the context register after a call. frame_->RestoreContextRegister(); } class DeferredStackCheck: public DeferredCode { public: DeferredStackCheck() { set_comment("[ DeferredStackCheck"); } virtual void Generate(); }; void DeferredStackCheck::Generate() { StackCheckStub stub; __ CallStub(&stub); } void CodeGenerator::CheckStack() { DeferredStackCheck* deferred = new DeferredStackCheck; ExternalReference stack_limit = ExternalReference::address_of_stack_limit(); __ cmp(esp, Operand::StaticVariable(stack_limit)); deferred->Branch(below); deferred->BindExit(); } void CodeGenerator::VisitAndSpill(Statement* statement) { ASSERT(in_spilled_code()); set_in_spilled_code(false); Visit(statement); if (frame_ != NULL) { frame_->SpillAll(); } set_in_spilled_code(true); } void CodeGenerator::VisitStatementsAndSpill(ZoneList<Statement*>* statements) { ASSERT(in_spilled_code()); set_in_spilled_code(false); VisitStatements(statements); if (frame_ != NULL) { frame_->SpillAll(); } set_in_spilled_code(true); } void CodeGenerator::VisitStatements(ZoneList<Statement*>* statements) { ASSERT(!in_spilled_code()); for (int i = 0; has_valid_frame() && i < statements->length(); i++) { Visit(statements->at(i)); } } void CodeGenerator::VisitBlock(Block* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ Block"); CodeForStatementPosition(node); node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); VisitStatements(node->statements()); if (node->break_target()->is_linked()) { node->break_target()->Bind(); } node->break_target()->Unuse(); } void CodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) { // Call the runtime to declare the globals. The inevitable call // will sync frame elements to memory anyway, so we do it eagerly to // allow us to push the arguments directly into place. frame_->SyncRange(0, frame_->element_count() - 1); frame_->EmitPush(esi); // The context is the first argument. frame_->EmitPush(Immediate(pairs)); frame_->EmitPush(Immediate(Smi::FromInt(is_eval() ? 1 : 0))); Result ignored = frame_->CallRuntime(Runtime::kDeclareGlobals, 3); // Return value is ignored. } void CodeGenerator::VisitDeclaration(Declaration* node) { Comment cmnt(masm_, "[ Declaration"); Variable* var = node->proxy()->var(); ASSERT(var != NULL); // must have been resolved Slot* slot = var->slot(); // If it was not possible to allocate the variable at compile time, // we need to "declare" it at runtime to make sure it actually // exists in the local context. if (slot != NULL && slot->type() == Slot::LOOKUP) { // Variables with a "LOOKUP" slot were introduced as non-locals // during variable resolution and must have mode DYNAMIC. ASSERT(var->is_dynamic()); // For now, just do a runtime call. Sync the virtual frame eagerly // so we can simply push the arguments into place. frame_->SyncRange(0, frame_->element_count() - 1); frame_->EmitPush(esi); frame_->EmitPush(Immediate(var->name())); // Declaration nodes are always introduced in one of two modes. ASSERT(node->mode() == Variable::VAR || node->mode() == Variable::CONST); PropertyAttributes attr = node->mode() == Variable::VAR ? NONE : READ_ONLY; frame_->EmitPush(Immediate(Smi::FromInt(attr))); // Push initial value, if any. // Note: For variables we must not push an initial value (such as // 'undefined') because we may have a (legal) redeclaration and we // must not destroy the current value. if (node->mode() == Variable::CONST) { frame_->EmitPush(Immediate(Factory::the_hole_value())); } else if (node->fun() != NULL) { Load(node->fun()); } else { frame_->EmitPush(Immediate(Smi::FromInt(0))); // no initial value! } Result ignored = frame_->CallRuntime(Runtime::kDeclareContextSlot, 4); // Ignore the return value (declarations are statements). return; } ASSERT(!var->is_global()); // If we have a function or a constant, we need to initialize the variable. Expression* val = NULL; if (node->mode() == Variable::CONST) { val = new Literal(Factory::the_hole_value()); } else { val = node->fun(); // NULL if we don't have a function } if (val != NULL) { { // Set the initial value. Reference target(this, node->proxy()); Load(val); target.SetValue(NOT_CONST_INIT); // The reference is removed from the stack (preserving TOS) when // it goes out of scope. } // Get rid of the assigned value (declarations are statements). frame_->Drop(); } } void CodeGenerator::VisitExpressionStatement(ExpressionStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ ExpressionStatement"); CodeForStatementPosition(node); Expression* expression = node->expression(); expression->MarkAsStatement(); Load(expression); // Remove the lingering expression result from the top of stack. frame_->Drop(); } void CodeGenerator::VisitEmptyStatement(EmptyStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "// EmptyStatement"); CodeForStatementPosition(node); // nothing to do } void CodeGenerator::VisitIfStatement(IfStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ IfStatement"); // Generate different code depending on which parts of the if statement // are present or not. bool has_then_stm = node->HasThenStatement(); bool has_else_stm = node->HasElseStatement(); CodeForStatementPosition(node); JumpTarget exit; if (has_then_stm && has_else_stm) { JumpTarget then; JumpTarget else_; ControlDestination dest(&then, &else_, true); LoadCondition(node->condition(), &dest, true); if (dest.false_was_fall_through()) { // The else target was bound, so we compile the else part first. Visit(node->else_statement()); // We may have dangling jumps to the then part. if (then.is_linked()) { if (has_valid_frame()) exit.Jump(); then.Bind(); Visit(node->then_statement()); } } else { // The then target was bound, so we compile the then part first. Visit(node->then_statement()); if (else_.is_linked()) { if (has_valid_frame()) exit.Jump(); else_.Bind(); Visit(node->else_statement()); } } } else if (has_then_stm) { ASSERT(!has_else_stm); JumpTarget then; ControlDestination dest(&then, &exit, true); LoadCondition(node->condition(), &dest, true); if (dest.false_was_fall_through()) { // The exit label was bound. We may have dangling jumps to the // then part. if (then.is_linked()) { exit.Unuse(); exit.Jump(); then.Bind(); Visit(node->then_statement()); } } else { // The then label was bound. Visit(node->then_statement()); } } else if (has_else_stm) { ASSERT(!has_then_stm); JumpTarget else_; ControlDestination dest(&exit, &else_, false); LoadCondition(node->condition(), &dest, true); if (dest.true_was_fall_through()) { // The exit label was bound. We may have dangling jumps to the // else part. if (else_.is_linked()) { exit.Unuse(); exit.Jump(); else_.Bind(); Visit(node->else_statement()); } } else { // The else label was bound. Visit(node->else_statement()); } } else { ASSERT(!has_then_stm && !has_else_stm); // We only care about the condition's side effects (not its value // or control flow effect). LoadCondition is called without // forcing control flow. ControlDestination dest(&exit, &exit, true); LoadCondition(node->condition(), &dest, false); if (!dest.is_used()) { // We got a value on the frame rather than (or in addition to) // control flow. frame_->Drop(); } } if (exit.is_linked()) { exit.Bind(); } } void CodeGenerator::VisitContinueStatement(ContinueStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ ContinueStatement"); CodeForStatementPosition(node); node->target()->continue_target()->Jump(); } void CodeGenerator::VisitBreakStatement(BreakStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ BreakStatement"); CodeForStatementPosition(node); node->target()->break_target()->Jump(); } void CodeGenerator::VisitReturnStatement(ReturnStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ ReturnStatement"); CodeForStatementPosition(node); Load(node->expression()); Result return_value = frame_->Pop(); masm()->WriteRecordedPositions(); if (function_return_is_shadowed_) { function_return_.Jump(&return_value); } else { frame_->PrepareForReturn(); if (function_return_.is_bound()) { // If the function return label is already bound we reuse the // code by jumping to the return site. function_return_.Jump(&return_value); } else { function_return_.Bind(&return_value); GenerateReturnSequence(&return_value); } } } void CodeGenerator::GenerateReturnSequence(Result* return_value) { // The return value is a live (but not currently reference counted) // reference to eax. This is safe because the current frame does not // contain a reference to eax (it is prepared for the return by spilling // all registers). if (FLAG_trace) { frame_->Push(return_value); *return_value = frame_->CallRuntime(Runtime::kTraceExit, 1); } return_value->ToRegister(eax); // Add a label for checking the size of the code used for returning. Label check_exit_codesize; masm_->bind(&check_exit_codesize); // Leave the frame and return popping the arguments and the // receiver. frame_->Exit(); masm_->ret((scope()->num_parameters() + 1) * kPointerSize); DeleteFrame(); #ifdef ENABLE_DEBUGGER_SUPPORT // Check that the size of the code used for returning matches what is // expected by the debugger. ASSERT_EQ(Assembler::kJSReturnSequenceLength, masm_->SizeOfCodeGeneratedSince(&check_exit_codesize)); #endif } void CodeGenerator::VisitWithEnterStatement(WithEnterStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ WithEnterStatement"); CodeForStatementPosition(node); Load(node->expression()); Result context; if (node->is_catch_block()) { context = frame_->CallRuntime(Runtime::kPushCatchContext, 1); } else { context = frame_->CallRuntime(Runtime::kPushContext, 1); } // Update context local. frame_->SaveContextRegister(); // Verify that the runtime call result and esi agree. if (FLAG_debug_code) { __ cmp(context.reg(), Operand(esi)); __ Assert(equal, "Runtime::NewContext should end up in esi"); } } void CodeGenerator::VisitWithExitStatement(WithExitStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ WithExitStatement"); CodeForStatementPosition(node); // Pop context. __ mov(esi, ContextOperand(esi, Context::PREVIOUS_INDEX)); // Update context local. frame_->SaveContextRegister(); } void CodeGenerator::VisitSwitchStatement(SwitchStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ SwitchStatement"); CodeForStatementPosition(node); node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); // Compile the switch value. Load(node->tag()); ZoneList<CaseClause*>* cases = node->cases(); int length = cases->length(); CaseClause* default_clause = NULL; JumpTarget next_test; // Compile the case label expressions and comparisons. Exit early // if a comparison is unconditionally true. The target next_test is // bound before the loop in order to indicate control flow to the // first comparison. next_test.Bind(); for (int i = 0; i < length && !next_test.is_unused(); i++) { CaseClause* clause = cases->at(i); // The default is not a test, but remember it for later. if (clause->is_default()) { default_clause = clause; continue; } Comment cmnt(masm_, "[ Case comparison"); // We recycle the same target next_test for each test. Bind it if // the previous test has not done so and then unuse it for the // loop. if (next_test.is_linked()) { next_test.Bind(); } next_test.Unuse(); // Duplicate the switch value. frame_->Dup(); // Compile the label expression. Load(clause->label()); // Compare and branch to the body if true or the next test if // false. Prefer the next test as a fall through. ControlDestination dest(clause->body_target(), &next_test, false); Comparison(node, equal, true, &dest); // If the comparison fell through to the true target, jump to the // actual body. if (dest.true_was_fall_through()) { clause->body_target()->Unuse(); clause->body_target()->Jump(); } } // If there was control flow to a next test from the last one // compiled, compile a jump to the default or break target. if (!next_test.is_unused()) { if (next_test.is_linked()) { next_test.Bind(); } // Drop the switch value. frame_->Drop(); if (default_clause != NULL) { default_clause->body_target()->Jump(); } else { node->break_target()->Jump(); } } // The last instruction emitted was a jump, either to the default // clause or the break target, or else to a case body from the loop // that compiles the tests. ASSERT(!has_valid_frame()); // Compile case bodies as needed. for (int i = 0; i < length; i++) { CaseClause* clause = cases->at(i); // There are two ways to reach the body: from the corresponding // test or as the fall through of the previous body. if (clause->body_target()->is_linked() || has_valid_frame()) { if (clause->body_target()->is_linked()) { if (has_valid_frame()) { // If we have both a jump to the test and a fall through, put // a jump on the fall through path to avoid the dropping of // the switch value on the test path. The exception is the // default which has already had the switch value dropped. if (clause->is_default()) { clause->body_target()->Bind(); } else { JumpTarget body; body.Jump(); clause->body_target()->Bind(); frame_->Drop(); body.Bind(); } } else { // No fall through to worry about. clause->body_target()->Bind(); if (!clause->is_default()) { frame_->Drop(); } } } else { // Otherwise, we have only fall through. ASSERT(has_valid_frame()); } // We are now prepared to compile the body. Comment cmnt(masm_, "[ Case body"); VisitStatements(clause->statements()); } clause->body_target()->Unuse(); } // We may not have a valid frame here so bind the break target only // if needed. if (node->break_target()->is_linked()) { node->break_target()->Bind(); } node->break_target()->Unuse(); } void CodeGenerator::VisitDoWhileStatement(DoWhileStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ DoWhileStatement"); CodeForStatementPosition(node); node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); JumpTarget body(JumpTarget::BIDIRECTIONAL); IncrementLoopNesting(); ConditionAnalysis info = AnalyzeCondition(node->cond()); // Label the top of the loop for the backward jump if necessary. switch (info) { case ALWAYS_TRUE: // Use the continue target. node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL); node->continue_target()->Bind(); break; case ALWAYS_FALSE: // No need to label it. node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); break; case DONT_KNOW: // Continue is the test, so use the backward body target. node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); body.Bind(); break; } CheckStack(); // TODO(1222600): ignore if body contains calls. Visit(node->body()); // Compile the test. switch (info) { case ALWAYS_TRUE: // If control flow can fall off the end of the body, jump back to // the top and bind the break target at the exit. if (has_valid_frame()) { node->continue_target()->Jump(); } if (node->break_target()->is_linked()) { node->break_target()->Bind(); } break; case ALWAYS_FALSE: // We may have had continues or breaks in the body. if (node->continue_target()->is_linked()) { node->continue_target()->Bind(); } if (node->break_target()->is_linked()) { node->break_target()->Bind(); } break; case DONT_KNOW: // We have to compile the test expression if it can be reached by // control flow falling out of the body or via continue. if (node->continue_target()->is_linked()) { node->continue_target()->Bind(); } if (has_valid_frame()) { Comment cmnt(masm_, "[ DoWhileCondition"); CodeForDoWhileConditionPosition(node); ControlDestination dest(&body, node->break_target(), false); LoadCondition(node->cond(), &dest, true); } if (node->break_target()->is_linked()) { node->break_target()->Bind(); } break; } DecrementLoopNesting(); } void CodeGenerator::VisitWhileStatement(WhileStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ WhileStatement"); CodeForStatementPosition(node); // If the condition is always false and has no side effects, we do not // need to compile anything. ConditionAnalysis info = AnalyzeCondition(node->cond()); if (info == ALWAYS_FALSE) return; // Do not duplicate conditions that may have function literal // subexpressions. This can cause us to compile the function literal // twice. bool test_at_bottom = !node->may_have_function_literal(); node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); IncrementLoopNesting(); JumpTarget body; if (test_at_bottom) { body.set_direction(JumpTarget::BIDIRECTIONAL); } // Based on the condition analysis, compile the test as necessary. switch (info) { case ALWAYS_TRUE: // We will not compile the test expression. Label the top of the // loop with the continue target. node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL); node->continue_target()->Bind(); break; case DONT_KNOW: { if (test_at_bottom) { // Continue is the test at the bottom, no need to label the test // at the top. The body is a backward target. node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); } else { // Label the test at the top as the continue target. The body // is a forward-only target. node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL); node->continue_target()->Bind(); } // Compile the test with the body as the true target and preferred // fall-through and with the break target as the false target. ControlDestination dest(&body, node->break_target(), true); LoadCondition(node->cond(), &dest, true); if (dest.false_was_fall_through()) { // If we got the break target as fall-through, the test may have // been unconditionally false (if there are no jumps to the // body). if (!body.is_linked()) { DecrementLoopNesting(); return; } // Otherwise, jump around the body on the fall through and then // bind the body target. node->break_target()->Unuse(); node->break_target()->Jump(); body.Bind(); } break; } case ALWAYS_FALSE: UNREACHABLE(); break; } CheckStack(); // TODO(1222600): ignore if body contains calls. Visit(node->body()); // Based on the condition analysis, compile the backward jump as // necessary. switch (info) { case ALWAYS_TRUE: // The loop body has been labeled with the continue target. if (has_valid_frame()) { node->continue_target()->Jump(); } break; case DONT_KNOW: if (test_at_bottom) { // If we have chosen to recompile the test at the bottom, then // it is the continue target. if (node->continue_target()->is_linked()) { node->continue_target()->Bind(); } if (has_valid_frame()) { // The break target is the fall-through (body is a backward // jump from here and thus an invalid fall-through). ControlDestination dest(&body, node->break_target(), false); LoadCondition(node->cond(), &dest, true); } } else { // If we have chosen not to recompile the test at the bottom, // jump back to the one at the top. if (has_valid_frame()) { node->continue_target()->Jump(); } } break; case ALWAYS_FALSE: UNREACHABLE(); break; } // The break target may be already bound (by the condition), or there // may not be a valid frame. Bind it only if needed. if (node->break_target()->is_linked()) { node->break_target()->Bind(); } DecrementLoopNesting(); } void CodeGenerator::VisitForStatement(ForStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ ForStatement"); CodeForStatementPosition(node); // Compile the init expression if present. if (node->init() != NULL) { Visit(node->init()); } // If the condition is always false and has no side effects, we do not // need to compile anything else. ConditionAnalysis info = AnalyzeCondition(node->cond()); if (info == ALWAYS_FALSE) return; // Do not duplicate conditions that may have function literal // subexpressions. This can cause us to compile the function literal // twice. bool test_at_bottom = !node->may_have_function_literal(); node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); IncrementLoopNesting(); // Target for backward edge if no test at the bottom, otherwise // unused. JumpTarget loop(JumpTarget::BIDIRECTIONAL); // Target for backward edge if there is a test at the bottom, // otherwise used as target for test at the top. JumpTarget body; if (test_at_bottom) { body.set_direction(JumpTarget::BIDIRECTIONAL); } // Based on the condition analysis, compile the test as necessary. switch (info) { case ALWAYS_TRUE: // We will not compile the test expression. Label the top of the // loop. if (node->next() == NULL) { // Use the continue target if there is no update expression. node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL); node->continue_target()->Bind(); } else { // Otherwise use the backward loop target. node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); loop.Bind(); } break; case DONT_KNOW: { if (test_at_bottom) { // Continue is either the update expression or the test at the // bottom, no need to label the test at the top. node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); } else if (node->next() == NULL) { // We are not recompiling the test at the bottom and there is no // update expression. node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL); node->continue_target()->Bind(); } else { // We are not recompiling the test at the bottom and there is an // update expression. node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); loop.Bind(); } // Compile the test with the body as the true target and preferred // fall-through and with the break target as the false target. ControlDestination dest(&body, node->break_target(), true); LoadCondition(node->cond(), &dest, true); if (dest.false_was_fall_through()) { // If we got the break target as fall-through, the test may have // been unconditionally false (if there are no jumps to the // body). if (!body.is_linked()) { DecrementLoopNesting(); return; } // Otherwise, jump around the body on the fall through and then // bind the body target. node->break_target()->Unuse(); node->break_target()->Jump(); body.Bind(); } break; } case ALWAYS_FALSE: UNREACHABLE(); break; } CheckStack(); // TODO(1222600): ignore if body contains calls. Visit(node->body()); // If there is an update expression, compile it if necessary. if (node->next() != NULL) { if (node->continue_target()->is_linked()) { node->continue_target()->Bind(); } // Control can reach the update by falling out of the body or by a // continue. if (has_valid_frame()) { // Record the source position of the statement as this code which // is after the code for the body actually belongs to the loop // statement and not the body. CodeForStatementPosition(node); Visit(node->next()); } } // Based on the condition analysis, compile the backward jump as // necessary. switch (info) { case ALWAYS_TRUE: if (has_valid_frame()) { if (node->next() == NULL) { node->continue_target()->Jump(); } else { loop.Jump(); } } break; case DONT_KNOW: if (test_at_bottom) { if (node->continue_target()->is_linked()) { // We can have dangling jumps to the continue target if there // was no update expression. node->continue_target()->Bind(); } // Control can reach the test at the bottom by falling out of // the body, by a continue in the body, or from the update // expression. if (has_valid_frame()) { // The break target is the fall-through (body is a backward // jump from here). ControlDestination dest(&body, node->break_target(), false); LoadCondition(node->cond(), &dest, true); } } else { // Otherwise, jump back to the test at the top. if (has_valid_frame()) { if (node->next() == NULL) { node->continue_target()->Jump(); } else { loop.Jump(); } } } break; case ALWAYS_FALSE: UNREACHABLE(); break; } // The break target may be already bound (by the condition), or // there may not be a valid frame. Bind it only if needed. if (node->break_target()->is_linked()) { node->break_target()->Bind(); } DecrementLoopNesting(); } void CodeGenerator::VisitForInStatement(ForInStatement* node) { ASSERT(!in_spilled_code()); VirtualFrame::SpilledScope spilled_scope; Comment cmnt(masm_, "[ ForInStatement"); CodeForStatementPosition(node); JumpTarget primitive; JumpTarget jsobject; JumpTarget fixed_array; JumpTarget entry(JumpTarget::BIDIRECTIONAL); JumpTarget end_del_check; JumpTarget exit; // Get the object to enumerate over (converted to JSObject). LoadAndSpill(node->enumerable()); // Both SpiderMonkey and kjs ignore null and undefined in contrast // to the specification. 12.6.4 mandates a call to ToObject. frame_->EmitPop(eax); // eax: value to be iterated over __ cmp(eax, Factory::undefined_value()); exit.Branch(equal); __ cmp(eax, Factory::null_value()); exit.Branch(equal); // Stack layout in body: // [iteration counter (smi)] <- slot 0 // [length of array] <- slot 1 // [FixedArray] <- slot 2 // [Map or 0] <- slot 3 // [Object] <- slot 4 // Check if enumerable is already a JSObject // eax: value to be iterated over __ test(eax, Immediate(kSmiTagMask)); primitive.Branch(zero); __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset)); __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); __ cmp(ecx, FIRST_JS_OBJECT_TYPE); jsobject.Branch(above_equal); primitive.Bind(); frame_->EmitPush(eax); frame_->InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION, 1); // function call returns the value in eax, which is where we want it below jsobject.Bind(); // Get the set of properties (as a FixedArray or Map). // eax: value to be iterated over frame_->EmitPush(eax); // Push the object being iterated over. // Check cache validity in generated code. This is a fast case for // the JSObject::IsSimpleEnum cache validity checks. If we cannot // guarantee cache validity, call the runtime system to check cache // validity or get the property names in a fixed array. JumpTarget call_runtime; JumpTarget loop(JumpTarget::BIDIRECTIONAL); JumpTarget check_prototype; JumpTarget use_cache; __ mov(ecx, eax); loop.Bind(); // Check that there are no elements. __ mov(edx, FieldOperand(ecx, JSObject::kElementsOffset)); __ cmp(Operand(edx), Immediate(Factory::empty_fixed_array())); call_runtime.Branch(not_equal); // Check that instance descriptors are not empty so that we can // check for an enum cache. Leave the map in ebx for the subsequent // prototype load. __ mov(ebx, FieldOperand(ecx, HeapObject::kMapOffset)); __ mov(edx, FieldOperand(ebx, Map::kInstanceDescriptorsOffset)); __ cmp(Operand(edx), Immediate(Factory::empty_descriptor_array())); call_runtime.Branch(equal); // Check that there in an enum cache in the non-empty instance // descriptors. This is the case if the next enumeration index // field does not contain a smi. __ mov(edx, FieldOperand(edx, DescriptorArray::kEnumerationIndexOffset)); __ test(edx, Immediate(kSmiTagMask)); call_runtime.Branch(zero); // For all objects but the receiver, check that the cache is empty. __ cmp(ecx, Operand(eax)); check_prototype.Branch(equal); __ mov(edx, FieldOperand(edx, DescriptorArray::kEnumCacheBridgeCacheOffset)); __ cmp(Operand(edx), Immediate(Factory::empty_fixed_array())); call_runtime.Branch(not_equal); check_prototype.Bind(); // Load the prototype from the map and loop if non-null. __ mov(ecx, FieldOperand(ebx, Map::kPrototypeOffset)); __ cmp(Operand(ecx), Immediate(Factory::null_value())); loop.Branch(not_equal); // The enum cache is valid. Load the map of the object being // iterated over and use the cache for the iteration. __ mov(eax, FieldOperand(eax, HeapObject::kMapOffset)); use_cache.Jump(); call_runtime.Bind(); // Call the runtime to get the property names for the object. frame_->EmitPush(eax); // push the Object (slot 4) for the runtime call frame_->CallRuntime(Runtime::kGetPropertyNamesFast, 1); // If we got a map from the runtime call, we can do a fast // modification check. Otherwise, we got a fixed array, and we have // to do a slow check. // eax: map or fixed array (result from call to // Runtime::kGetPropertyNamesFast) __ mov(edx, Operand(eax)); __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset)); __ cmp(ecx, Factory::meta_map()); fixed_array.Branch(not_equal); use_cache.Bind(); // Get enum cache // eax: map (either the result from a call to // Runtime::kGetPropertyNamesFast or has been fetched directly from // the object) __ mov(ecx, Operand(eax)); __ mov(ecx, FieldOperand(ecx, Map::kInstanceDescriptorsOffset)); // Get the bridge array held in the enumeration index field. __ mov(ecx, FieldOperand(ecx, DescriptorArray::kEnumerationIndexOffset)); // Get the cache from the bridge array. __ mov(edx, FieldOperand(ecx, DescriptorArray::kEnumCacheBridgeCacheOffset)); frame_->EmitPush(eax); // <- slot 3 frame_->EmitPush(edx); // <- slot 2 __ mov(eax, FieldOperand(edx, FixedArray::kLengthOffset)); __ SmiTag(eax); frame_->EmitPush(eax); // <- slot 1 frame_->EmitPush(Immediate(Smi::FromInt(0))); // <- slot 0 entry.Jump(); fixed_array.Bind(); // eax: fixed array (result from call to Runtime::kGetPropertyNamesFast) frame_->EmitPush(Immediate(Smi::FromInt(0))); // <- slot 3 frame_->EmitPush(eax); // <- slot 2 // Push the length of the array and the initial index onto the stack. __ mov(eax, FieldOperand(eax, FixedArray::kLengthOffset)); __ SmiTag(eax); frame_->EmitPush(eax); // <- slot 1 frame_->EmitPush(Immediate(Smi::FromInt(0))); // <- slot 0 // Condition. entry.Bind(); // Grab the current frame's height for the break and continue // targets only after all the state is pushed on the frame. node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); __ mov(eax, frame_->ElementAt(0)); // load the current count __ cmp(eax, frame_->ElementAt(1)); // compare to the array length node->break_target()->Branch(above_equal); // Get the i'th entry of the array. __ mov(edx, frame_->ElementAt(2)); __ mov(ebx, Operand(edx, eax, times_2, FixedArray::kHeaderSize - kHeapObjectTag)); // Get the expected map from the stack or a zero map in the // permanent slow case eax: current iteration count ebx: i'th entry // of the enum cache __ mov(edx, frame_->ElementAt(3)); // Check if the expected map still matches that of the enumerable. // If not, we have to filter the key. // eax: current iteration count // ebx: i'th entry of the enum cache // edx: expected map value __ mov(ecx, frame_->ElementAt(4)); __ mov(ecx, FieldOperand(ecx, HeapObject::kMapOffset)); __ cmp(ecx, Operand(edx)); end_del_check.Branch(equal); // Convert the entry to a string (or null if it isn't a property anymore). frame_->EmitPush(frame_->ElementAt(4)); // push enumerable frame_->EmitPush(ebx); // push entry frame_->InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION, 2); __ mov(ebx, Operand(eax)); // If the property has been removed while iterating, we just skip it. __ cmp(ebx, Factory::null_value()); node->continue_target()->Branch(equal); end_del_check.Bind(); // Store the entry in the 'each' expression and take another spin in the // loop. edx: i'th entry of the enum cache (or string there of) frame_->EmitPush(ebx); { Reference each(this, node->each()); // Loading a reference may leave the frame in an unspilled state. frame_->SpillAll(); if (!each.is_illegal()) { if (each.size() > 0) { frame_->EmitPush(frame_->ElementAt(each.size())); each.SetValue(NOT_CONST_INIT); frame_->Drop(2); } else { // If the reference was to a slot we rely on the convenient property // that it doesn't matter whether a value (eg, ebx pushed above) is // right on top of or right underneath a zero-sized reference. each.SetValue(NOT_CONST_INIT); frame_->Drop(); } } } // Unloading a reference may leave the frame in an unspilled state. frame_->SpillAll(); // Body. CheckStack(); // TODO(1222600): ignore if body contains calls. VisitAndSpill(node->body()); // Next. Reestablish a spilled frame in case we are coming here via // a continue in the body. node->continue_target()->Bind(); frame_->SpillAll(); frame_->EmitPop(eax); __ add(Operand(eax), Immediate(Smi::FromInt(1))); frame_->EmitPush(eax); entry.Jump(); // Cleanup. No need to spill because VirtualFrame::Drop is safe for // any frame. node->break_target()->Bind(); frame_->Drop(5); // Exit. exit.Bind(); node->continue_target()->Unuse(); node->break_target()->Unuse(); } void CodeGenerator::VisitTryCatchStatement(TryCatchStatement* node) { ASSERT(!in_spilled_code()); VirtualFrame::SpilledScope spilled_scope; Comment cmnt(masm_, "[ TryCatchStatement"); CodeForStatementPosition(node); JumpTarget try_block; JumpTarget exit; try_block.Call(); // --- Catch block --- frame_->EmitPush(eax); // Store the caught exception in the catch variable. Variable* catch_var = node->catch_var()->var(); ASSERT(catch_var != NULL && catch_var->slot() != NULL); StoreToSlot(catch_var->slot(), NOT_CONST_INIT); // Remove the exception from the stack. frame_->Drop(); VisitStatementsAndSpill(node->catch_block()->statements()); if (has_valid_frame()) { exit.Jump(); } // --- Try block --- try_block.Bind(); frame_->PushTryHandler(TRY_CATCH_HANDLER); int handler_height = frame_->height(); // Shadow the jump targets for all escapes from the try block, including // returns. During shadowing, the original target is hidden as the // ShadowTarget and operations on the original actually affect the // shadowing target. // // We should probably try to unify the escaping targets and the return // target. int nof_escapes = node->escaping_targets()->length(); List<ShadowTarget*> shadows(1 + nof_escapes); // Add the shadow target for the function return. static const int kReturnShadowIndex = 0; shadows.Add(new ShadowTarget(&function_return_)); bool function_return_was_shadowed = function_return_is_shadowed_; function_return_is_shadowed_ = true; ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_); // Add the remaining shadow targets. for (int i = 0; i < nof_escapes; i++) { shadows.Add(new ShadowTarget(node->escaping_targets()->at(i))); } // Generate code for the statements in the try block. VisitStatementsAndSpill(node->try_block()->statements()); // Stop the introduced shadowing and count the number of required unlinks. // After shadowing stops, the original targets are unshadowed and the // ShadowTargets represent the formerly shadowing targets. bool has_unlinks = false; for (int i = 0; i < shadows.length(); i++) { shadows[i]->StopShadowing(); has_unlinks = has_unlinks || shadows[i]->is_linked(); } function_return_is_shadowed_ = function_return_was_shadowed; // Get an external reference to the handler address. ExternalReference handler_address(Top::k_handler_address); // Make sure that there's nothing left on the stack above the // handler structure. if (FLAG_debug_code) { __ mov(eax, Operand::StaticVariable(handler_address)); __ cmp(esp, Operand(eax)); __ Assert(equal, "stack pointer should point to top handler"); } // If we can fall off the end of the try block, unlink from try chain. if (has_valid_frame()) { // The next handler address is on top of the frame. Unlink from // the handler list and drop the rest of this handler from the // frame. ASSERT(StackHandlerConstants::kNextOffset == 0); frame_->EmitPop(Operand::StaticVariable(handler_address)); frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); if (has_unlinks) { exit.Jump(); } } // Generate unlink code for the (formerly) shadowing targets that // have been jumped to. Deallocate each shadow target. Result return_value; for (int i = 0; i < shadows.length(); i++) { if (shadows[i]->is_linked()) { // Unlink from try chain; be careful not to destroy the TOS if // there is one. if (i == kReturnShadowIndex) { shadows[i]->Bind(&return_value); return_value.ToRegister(eax); } else { shadows[i]->Bind(); } // Because we can be jumping here (to spilled code) from // unspilled code, we need to reestablish a spilled frame at // this block. frame_->SpillAll(); // Reload sp from the top handler, because some statements that we // break from (eg, for...in) may have left stuff on the stack. __ mov(esp, Operand::StaticVariable(handler_address)); frame_->Forget(frame_->height() - handler_height); ASSERT(StackHandlerConstants::kNextOffset == 0); frame_->EmitPop(Operand::StaticVariable(handler_address)); frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); if (i == kReturnShadowIndex) { if (!function_return_is_shadowed_) frame_->PrepareForReturn(); shadows[i]->other_target()->Jump(&return_value); } else { shadows[i]->other_target()->Jump(); } } } exit.Bind(); } void CodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* node) { ASSERT(!in_spilled_code()); VirtualFrame::SpilledScope spilled_scope; Comment cmnt(masm_, "[ TryFinallyStatement"); CodeForStatementPosition(node); // State: Used to keep track of reason for entering the finally // block. Should probably be extended to hold information for // break/continue from within the try block. enum { FALLING, THROWING, JUMPING }; JumpTarget try_block; JumpTarget finally_block; try_block.Call(); frame_->EmitPush(eax); // In case of thrown exceptions, this is where we continue. __ Set(ecx, Immediate(Smi::FromInt(THROWING))); finally_block.Jump(); // --- Try block --- try_block.Bind(); frame_->PushTryHandler(TRY_FINALLY_HANDLER); int handler_height = frame_->height(); // Shadow the jump targets for all escapes from the try block, including // returns. During shadowing, the original target is hidden as the // ShadowTarget and operations on the original actually affect the // shadowing target. // // We should probably try to unify the escaping targets and the return // target. int nof_escapes = node->escaping_targets()->length(); List<ShadowTarget*> shadows(1 + nof_escapes); // Add the shadow target for the function return. static const int kReturnShadowIndex = 0; shadows.Add(new ShadowTarget(&function_return_)); bool function_return_was_shadowed = function_return_is_shadowed_; function_return_is_shadowed_ = true; ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_); // Add the remaining shadow targets. for (int i = 0; i < nof_escapes; i++) { shadows.Add(new ShadowTarget(node->escaping_targets()->at(i))); } // Generate code for the statements in the try block. VisitStatementsAndSpill(node->try_block()->statements()); // Stop the introduced shadowing and count the number of required unlinks. // After shadowing stops, the original targets are unshadowed and the // ShadowTargets represent the formerly shadowing targets. int nof_unlinks = 0; for (int i = 0; i < shadows.length(); i++) { shadows[i]->StopShadowing(); if (shadows[i]->is_linked()) nof_unlinks++; } function_return_is_shadowed_ = function_return_was_shadowed; // Get an external reference to the handler address. ExternalReference handler_address(Top::k_handler_address); // If we can fall off the end of the try block, unlink from the try // chain and set the state on the frame to FALLING. if (has_valid_frame()) { // The next handler address is on top of the frame. ASSERT(StackHandlerConstants::kNextOffset == 0); frame_->EmitPop(Operand::StaticVariable(handler_address)); frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); // Fake a top of stack value (unneeded when FALLING) and set the // state in ecx, then jump around the unlink blocks if any. frame_->EmitPush(Immediate(Factory::undefined_value())); __ Set(ecx, Immediate(Smi::FromInt(FALLING))); if (nof_unlinks > 0) { finally_block.Jump(); } } // Generate code to unlink and set the state for the (formerly) // shadowing targets that have been jumped to. for (int i = 0; i < shadows.length(); i++) { if (shadows[i]->is_linked()) { // If we have come from the shadowed return, the return value is // on the virtual frame. We must preserve it until it is // pushed. if (i == kReturnShadowIndex) { Result return_value; shadows[i]->Bind(&return_value); return_value.ToRegister(eax); } else { shadows[i]->Bind(); } // Because we can be jumping here (to spilled code) from // unspilled code, we need to reestablish a spilled frame at // this block. frame_->SpillAll(); // Reload sp from the top handler, because some statements that // we break from (eg, for...in) may have left stuff on the // stack. __ mov(esp, Operand::StaticVariable(handler_address)); frame_->Forget(frame_->height() - handler_height); // Unlink this handler and drop it from the frame. ASSERT(StackHandlerConstants::kNextOffset == 0); frame_->EmitPop(Operand::StaticVariable(handler_address)); frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); if (i == kReturnShadowIndex) { // If this target shadowed the function return, materialize // the return value on the stack. frame_->EmitPush(eax); } else { // Fake TOS for targets that shadowed breaks and continues. frame_->EmitPush(Immediate(Factory::undefined_value())); } __ Set(ecx, Immediate(Smi::FromInt(JUMPING + i))); if (--nof_unlinks > 0) { // If this is not the last unlink block, jump around the next. finally_block.Jump(); } } } // --- Finally block --- finally_block.Bind(); // Push the state on the stack. frame_->EmitPush(ecx); // We keep two elements on the stack - the (possibly faked) result // and the state - while evaluating the finally block. // // Generate code for the statements in the finally block. VisitStatementsAndSpill(node->finally_block()->statements()); if (has_valid_frame()) { // Restore state and return value or faked TOS. frame_->EmitPop(ecx); frame_->EmitPop(eax); } // Generate code to jump to the right destination for all used // formerly shadowing targets. Deallocate each shadow target. for (int i = 0; i < shadows.length(); i++) { if (has_valid_frame() && shadows[i]->is_bound()) { BreakTarget* original = shadows[i]->other_target(); __ cmp(Operand(ecx), Immediate(Smi::FromInt(JUMPING + i))); if (i == kReturnShadowIndex) { // The return value is (already) in eax. Result return_value = allocator_->Allocate(eax); ASSERT(return_value.is_valid()); if (function_return_is_shadowed_) { original->Branch(equal, &return_value); } else { // Branch around the preparation for return which may emit // code. JumpTarget skip; skip.Branch(not_equal); frame_->PrepareForReturn(); original->Jump(&return_value); skip.Bind(); } } else { original->Branch(equal); } } } if (has_valid_frame()) { // Check if we need to rethrow the exception. JumpTarget exit; __ cmp(Operand(ecx), Immediate(Smi::FromInt(THROWING))); exit.Branch(not_equal); // Rethrow exception. frame_->EmitPush(eax); // undo pop from above frame_->CallRuntime(Runtime::kReThrow, 1); // Done. exit.Bind(); } } void CodeGenerator::VisitDebuggerStatement(DebuggerStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ DebuggerStatement"); CodeForStatementPosition(node); #ifdef ENABLE_DEBUGGER_SUPPORT // Spill everything, even constants, to the frame. frame_->SpillAll(); frame_->DebugBreak(); // Ignore the return value. #endif } Result CodeGenerator::InstantiateBoilerplate(Handle<JSFunction> boilerplate) { ASSERT(boilerplate->IsBoilerplate()); // The inevitable call will sync frame elements to memory anyway, so // we do it eagerly to allow us to push the arguments directly into // place. frame()->SyncRange(0, frame()->element_count() - 1); // Use the fast case closure allocation code that allocates in new // space for nested functions that don't need literals cloning. if (scope()->is_function_scope() && boilerplate->NumberOfLiterals() == 0) { FastNewClosureStub stub; frame()->EmitPush(Immediate(boilerplate)); return frame()->CallStub(&stub, 1); } else { // Call the runtime to instantiate the function boilerplate // object. frame()->EmitPush(esi); frame()->EmitPush(Immediate(boilerplate)); return frame()->CallRuntime(Runtime::kNewClosure, 2); } } void CodeGenerator::VisitFunctionLiteral(FunctionLiteral* node) { Comment cmnt(masm_, "[ FunctionLiteral"); // Build the function boilerplate and instantiate it. Handle<JSFunction> boilerplate = Compiler::BuildBoilerplate(node, script(), this); // Check for stack-overflow exception. if (HasStackOverflow()) return; Result result = InstantiateBoilerplate(boilerplate); frame()->Push(&result); } void CodeGenerator::VisitFunctionBoilerplateLiteral( FunctionBoilerplateLiteral* node) { Comment cmnt(masm_, "[ FunctionBoilerplateLiteral"); Result result = InstantiateBoilerplate(node->boilerplate()); frame()->Push(&result); } void CodeGenerator::VisitConditional(Conditional* node) { Comment cmnt(masm_, "[ Conditional"); JumpTarget then; JumpTarget else_; JumpTarget exit; ControlDestination dest(&then, &else_, true); LoadCondition(node->condition(), &dest, true); if (dest.false_was_fall_through()) { // The else target was bound, so we compile the else part first. Load(node->else_expression()); if (then.is_linked()) { exit.Jump(); then.Bind(); Load(node->then_expression()); } } else { // The then target was bound, so we compile the then part first. Load(node->then_expression()); if (else_.is_linked()) { exit.Jump(); else_.Bind(); Load(node->else_expression()); } } exit.Bind(); } Result CodeGenerator::LoadFromSlot(Slot* slot, TypeofState typeof_state) { Result result; if (slot->type() == Slot::LOOKUP) { ASSERT(slot->var()->is_dynamic()); JumpTarget slow; JumpTarget done; // Generate fast-case code for variables that might be shadowed by // eval-introduced variables. Eval is used a lot without // introducing variables. In those cases, we do not want to // perform a runtime call for all variables in the scope // containing the eval. if (slot->var()->mode() == Variable::DYNAMIC_GLOBAL) { result = LoadFromGlobalSlotCheckExtensions(slot, typeof_state, &slow); // If there was no control flow to slow, we can exit early. if (!slow.is_linked()) return result; done.Jump(&result); } else if (slot->var()->mode() == Variable::DYNAMIC_LOCAL) { Slot* potential_slot = slot->var()->local_if_not_shadowed()->slot(); // Only generate the fast case for locals that rewrite to slots. // This rules out argument loads. if (potential_slot != NULL) { // Allocate a fresh register to use as a temp in // ContextSlotOperandCheckExtensions and to hold the result // value. result = allocator()->Allocate(); ASSERT(result.is_valid()); __ mov(result.reg(), ContextSlotOperandCheckExtensions(potential_slot, result, &slow)); if (potential_slot->var()->mode() == Variable::CONST) { __ cmp(result.reg(), Factory::the_hole_value()); done.Branch(not_equal, &result); __ mov(result.reg(), Factory::undefined_value()); } // There is always control flow to slow from // ContextSlotOperandCheckExtensions so we have to jump around // it. done.Jump(&result); } } slow.Bind(); // A runtime call is inevitable. We eagerly sync frame elements // to memory so that we can push the arguments directly into place // on top of the frame. frame()->SyncRange(0, frame()->element_count() - 1); frame()->EmitPush(esi); frame()->EmitPush(Immediate(slot->var()->name())); if (typeof_state == INSIDE_TYPEOF) { result = frame()->CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2); } else { result = frame()->CallRuntime(Runtime::kLoadContextSlot, 2); } done.Bind(&result); return result; } else if (slot->var()->mode() == Variable::CONST) { // Const slots may contain 'the hole' value (the constant hasn't been // initialized yet) which needs to be converted into the 'undefined' // value. // // We currently spill the virtual frame because constants use the // potentially unsafe direct-frame access of SlotOperand. VirtualFrame::SpilledScope spilled_scope; Comment cmnt(masm_, "[ Load const"); Label exit; __ mov(ecx, SlotOperand(slot, ecx)); __ cmp(ecx, Factory::the_hole_value()); __ j(not_equal, &exit); __ mov(ecx, Factory::undefined_value()); __ bind(&exit); return Result(ecx); } else if (slot->type() == Slot::PARAMETER) { frame()->PushParameterAt(slot->index()); return frame()->Pop(); } else if (slot->type() == Slot::LOCAL) { frame()->PushLocalAt(slot->index()); return frame()->Pop(); } else { // The other remaining slot types (LOOKUP and GLOBAL) cannot reach // here. // // The use of SlotOperand below is safe for an unspilled frame // because it will always be a context slot. ASSERT(slot->type() == Slot::CONTEXT); result = allocator()->Allocate(); ASSERT(result.is_valid()); __ mov(result.reg(), SlotOperand(slot, result.reg())); return result; } } Result CodeGenerator::LoadFromSlotCheckForArguments(Slot* slot, TypeofState state) { Result result = LoadFromSlot(slot, state); // Bail out quickly if we're not using lazy arguments allocation. if (ArgumentsMode() != LAZY_ARGUMENTS_ALLOCATION) return result; // ... or if the slot isn't a non-parameter arguments slot. if (slot->type() == Slot::PARAMETER || !slot->is_arguments()) return result; // If the loaded value is a constant, we know if the arguments // object has been lazily loaded yet. if (result.is_constant()) { if (result.handle()->IsTheHole()) { result.Unuse(); return StoreArgumentsObject(false); } else { return result; } } // The loaded value is in a register. If it is the sentinel that // indicates that we haven't loaded the arguments object yet, we // need to do it now. JumpTarget exit; __ cmp(Operand(result.reg()), Immediate(Factory::the_hole_value())); exit.Branch(not_equal, &result); result.Unuse(); result = StoreArgumentsObject(false); exit.Bind(&result); return result; } Result CodeGenerator::LoadFromGlobalSlotCheckExtensions( Slot* slot, TypeofState typeof_state, JumpTarget* slow) { // Check that no extension objects have been created by calls to // eval from the current scope to the global scope. Register context = esi; Result tmp = allocator_->Allocate(); ASSERT(tmp.is_valid()); // All non-reserved registers were available. Scope* s = scope(); while (s != NULL) { if (s->num_heap_slots() > 0) { if (s->calls_eval()) { // Check that extension is NULL. __ cmp(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0)); slow->Branch(not_equal, not_taken); } // Load next context in chain. __ mov(tmp.reg(), ContextOperand(context, Context::CLOSURE_INDEX)); __ mov(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset)); context = tmp.reg(); } // If no outer scope calls eval, we do not need to check more // context extensions. If we have reached an eval scope, we check // all extensions from this point. if (!s->outer_scope_calls_eval() || s->is_eval_scope()) break; s = s->outer_scope(); } if (s != NULL && s->is_eval_scope()) { // Loop up the context chain. There is no frame effect so it is // safe to use raw labels here. Label next, fast; if (!context.is(tmp.reg())) { __ mov(tmp.reg(), context); } __ bind(&next); // Terminate at global context. __ cmp(FieldOperand(tmp.reg(), HeapObject::kMapOffset), Immediate(Factory::global_context_map())); __ j(equal, &fast); // Check that extension is NULL. __ cmp(ContextOperand(tmp.reg(), Context::EXTENSION_INDEX), Immediate(0)); slow->Branch(not_equal, not_taken); // Load next context in chain. __ mov(tmp.reg(), ContextOperand(tmp.reg(), Context::CLOSURE_INDEX)); __ mov(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset)); __ jmp(&next); __ bind(&fast); } tmp.Unuse(); // All extension objects were empty and it is safe to use a global // load IC call. // The register allocator prefers eax if it is free, so the code generator // will load the global object directly into eax, which is where the LoadIC // expects it. frame_->Spill(eax); LoadGlobal(); frame_->Push(slot->var()->name()); RelocInfo::Mode mode = (typeof_state == INSIDE_TYPEOF) ? RelocInfo::CODE_TARGET : RelocInfo::CODE_TARGET_CONTEXT; Result answer = frame_->CallLoadIC(mode); // A test eax instruction following the call signals that the inobject // property case was inlined. Ensure that there is not a test eax // instruction here. __ nop(); return answer; } void CodeGenerator::StoreToSlot(Slot* slot, InitState init_state) { if (slot->type() == Slot::LOOKUP) { ASSERT(slot->var()->is_dynamic()); // For now, just do a runtime call. Since the call is inevitable, // we eagerly sync the virtual frame so we can directly push the // arguments into place. frame_->SyncRange(0, frame_->element_count() - 1); frame_->EmitPush(esi); frame_->EmitPush(Immediate(slot->var()->name())); Result value; if (init_state == CONST_INIT) { // Same as the case for a normal store, but ignores attribute // (e.g. READ_ONLY) of context slot so that we can initialize const // properties (introduced via eval("const foo = (some expr);")). Also, // uses the current function context instead of the top context. // // Note that we must declare the foo upon entry of eval(), via a // context slot declaration, but we cannot initialize it at the same // time, because the const declaration may be at the end of the eval // code (sigh...) and the const variable may have been used before // (where its value is 'undefined'). Thus, we can only do the // initialization when we actually encounter the expression and when // the expression operands are defined and valid, and thus we need the // split into 2 operations: declaration of the context slot followed // by initialization. value = frame_->CallRuntime(Runtime::kInitializeConstContextSlot, 3); } else { value = frame_->CallRuntime(Runtime::kStoreContextSlot, 3); } // Storing a variable must keep the (new) value on the expression // stack. This is necessary for compiling chained assignment // expressions. frame_->Push(&value); } else { ASSERT(!slot->var()->is_dynamic()); JumpTarget exit; if (init_state == CONST_INIT) { ASSERT(slot->var()->mode() == Variable::CONST); // Only the first const initialization must be executed (the slot // still contains 'the hole' value). When the assignment is executed, // the code is identical to a normal store (see below). // // We spill the frame in the code below because the direct-frame // access of SlotOperand is potentially unsafe with an unspilled // frame. VirtualFrame::SpilledScope spilled_scope; Comment cmnt(masm_, "[ Init const"); __ mov(ecx, SlotOperand(slot, ecx)); __ cmp(ecx, Factory::the_hole_value()); exit.Branch(not_equal); } // We must execute the store. Storing a variable must keep the (new) // value on the stack. This is necessary for compiling assignment // expressions. // // Note: We will reach here even with slot->var()->mode() == // Variable::CONST because of const declarations which will initialize // consts to 'the hole' value and by doing so, end up calling this code. if (slot->type() == Slot::PARAMETER) { frame_->StoreToParameterAt(slot->index()); } else if (slot->type() == Slot::LOCAL) { frame_->StoreToLocalAt(slot->index()); } else { // The other slot types (LOOKUP and GLOBAL) cannot reach here. // // The use of SlotOperand below is safe for an unspilled frame // because the slot is a context slot. ASSERT(slot->type() == Slot::CONTEXT); frame_->Dup(); Result value = frame_->Pop(); value.ToRegister(); Result start = allocator_->Allocate(); ASSERT(start.is_valid()); __ mov(SlotOperand(slot, start.reg()), value.reg()); // RecordWrite may destroy the value registers. // // TODO(204): Avoid actually spilling when the value is not // needed (probably the common case). frame_->Spill(value.reg()); int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize; Result temp = allocator_->Allocate(); ASSERT(temp.is_valid()); __ RecordWrite(start.reg(), offset, value.reg(), temp.reg()); // The results start, value, and temp are unused by going out of // scope. } exit.Bind(); } } void CodeGenerator::VisitSlot(Slot* node) { Comment cmnt(masm_, "[ Slot"); Result result = LoadFromSlotCheckForArguments(node, NOT_INSIDE_TYPEOF); frame()->Push(&result); } void CodeGenerator::VisitVariableProxy(VariableProxy* node) { Comment cmnt(masm_, "[ VariableProxy"); Variable* var = node->var(); Expression* expr = var->rewrite(); if (expr != NULL) { Visit(expr); } else { ASSERT(var->is_global()); Reference ref(this, node); ref.GetValue(); } } void CodeGenerator::VisitLiteral(Literal* node) { Comment cmnt(masm_, "[ Literal"); frame_->Push(node->handle()); } void CodeGenerator::PushUnsafeSmi(Handle<Object> value) { ASSERT(value->IsSmi()); int bits = reinterpret_cast<int>(*value); __ push(Immediate(bits & 0x0000FFFF)); __ or_(Operand(esp, 0), Immediate(bits & 0xFFFF0000)); } void CodeGenerator::StoreUnsafeSmiToLocal(int offset, Handle<Object> value) { ASSERT(value->IsSmi()); int bits = reinterpret_cast<int>(*value); __ mov(Operand(ebp, offset), Immediate(bits & 0x0000FFFF)); __ or_(Operand(ebp, offset), Immediate(bits & 0xFFFF0000)); } void CodeGenerator::MoveUnsafeSmi(Register target, Handle<Object> value) { ASSERT(target.is_valid()); ASSERT(value->IsSmi()); int bits = reinterpret_cast<int>(*value); __ Set(target, Immediate(bits & 0x0000FFFF)); __ or_(target, bits & 0xFFFF0000); } bool CodeGenerator::IsUnsafeSmi(Handle<Object> value) { if (!value->IsSmi()) return false; int int_value = Smi::cast(*value)->value(); return !is_intn(int_value, kMaxSmiInlinedBits); } // Materialize the regexp literal 'node' in the literals array // 'literals' of the function. Leave the regexp boilerplate in // 'boilerplate'. class DeferredRegExpLiteral: public DeferredCode { public: DeferredRegExpLiteral(Register boilerplate, Register literals, RegExpLiteral* node) : boilerplate_(boilerplate), literals_(literals), node_(node) { set_comment("[ DeferredRegExpLiteral"); } void Generate(); private: Register boilerplate_; Register literals_; RegExpLiteral* node_; }; void DeferredRegExpLiteral::Generate() { // Since the entry is undefined we call the runtime system to // compute the literal. // Literal array (0). __ push(literals_); // Literal index (1). __ push(Immediate(Smi::FromInt(node_->literal_index()))); // RegExp pattern (2). __ push(Immediate(node_->pattern())); // RegExp flags (3). __ push(Immediate(node_->flags())); __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4); if (!boilerplate_.is(eax)) __ mov(boilerplate_, eax); } void CodeGenerator::VisitRegExpLiteral(RegExpLiteral* node) { Comment cmnt(masm_, "[ RegExp Literal"); // Retrieve the literals array and check the allocated entry. Begin // with a writable copy of the function of this activation in a // register. frame_->PushFunction(); Result literals = frame_->Pop(); literals.ToRegister(); frame_->Spill(literals.reg()); // Load the literals array of the function. __ mov(literals.reg(), FieldOperand(literals.reg(), JSFunction::kLiteralsOffset)); // Load the literal at the ast saved index. Result boilerplate = allocator_->Allocate(); ASSERT(boilerplate.is_valid()); int literal_offset = FixedArray::kHeaderSize + node->literal_index() * kPointerSize; __ mov(boilerplate.reg(), FieldOperand(literals.reg(), literal_offset)); // Check whether we need to materialize the RegExp object. If so, // jump to the deferred code passing the literals array. DeferredRegExpLiteral* deferred = new DeferredRegExpLiteral(boilerplate.reg(), literals.reg(), node); __ cmp(boilerplate.reg(), Factory::undefined_value()); deferred->Branch(equal); deferred->BindExit(); literals.Unuse(); // Push the boilerplate object. frame_->Push(&boilerplate); } void CodeGenerator::VisitObjectLiteral(ObjectLiteral* node) { Comment cmnt(masm_, "[ ObjectLiteral"); // Load a writable copy of the function of this activation in a // register. frame_->PushFunction(); Result literals = frame_->Pop(); literals.ToRegister(); frame_->Spill(literals.reg()); // Load the literals array of the function. __ mov(literals.reg(), FieldOperand(literals.reg(), JSFunction::kLiteralsOffset)); // Literal array. frame_->Push(&literals); // Literal index. frame_->Push(Smi::FromInt(node->literal_index())); // Constant properties. frame_->Push(node->constant_properties()); Result clone; if (node->depth() > 1) { clone = frame_->CallRuntime(Runtime::kCreateObjectLiteral, 3); } else { clone = frame_->CallRuntime(Runtime::kCreateObjectLiteralShallow, 3); } frame_->Push(&clone); for (int i = 0; i < node->properties()->length(); i++) { ObjectLiteral::Property* property = node->properties()->at(i); switch (property->kind()) { case ObjectLiteral::Property::CONSTANT: break; case ObjectLiteral::Property::MATERIALIZED_LITERAL: if (CompileTimeValue::IsCompileTimeValue(property->value())) break; // else fall through. case ObjectLiteral::Property::COMPUTED: { Handle<Object> key(property->key()->handle()); if (key->IsSymbol()) { // Duplicate the object as the IC receiver. frame_->Dup(); Load(property->value()); Result dummy = frame_->CallStoreIC(Handle<String>::cast(key), false); dummy.Unuse(); break; } // Fall through } case ObjectLiteral::Property::PROTOTYPE: { // Duplicate the object as an argument to the runtime call. frame_->Dup(); Load(property->key()); Load(property->value()); Result ignored = frame_->CallRuntime(Runtime::kSetProperty, 3); // Ignore the result. break; } case ObjectLiteral::Property::SETTER: { // Duplicate the object as an argument to the runtime call. frame_->Dup(); Load(property->key()); frame_->Push(Smi::FromInt(1)); Load(property->value()); Result ignored = frame_->CallRuntime(Runtime::kDefineAccessor, 4); // Ignore the result. break; } case ObjectLiteral::Property::GETTER: { // Duplicate the object as an argument to the runtime call. frame_->Dup(); Load(property->key()); frame_->Push(Smi::FromInt(0)); Load(property->value()); Result ignored = frame_->CallRuntime(Runtime::kDefineAccessor, 4); // Ignore the result. break; } default: UNREACHABLE(); } } } void CodeGenerator::VisitArrayLiteral(ArrayLiteral* node) { Comment cmnt(masm_, "[ ArrayLiteral"); // Load a writable copy of the function of this activation in a // register. frame_->PushFunction(); Result literals = frame_->Pop(); literals.ToRegister(); frame_->Spill(literals.reg()); // Load the literals array of the function. __ mov(literals.reg(), FieldOperand(literals.reg(), JSFunction::kLiteralsOffset)); frame_->Push(&literals); frame_->Push(Smi::FromInt(node->literal_index())); frame_->Push(node->constant_elements()); int length = node->values()->length(); Result clone; if (node->depth() > 1) { clone = frame_->CallRuntime(Runtime::kCreateArrayLiteral, 3); } else if (length > FastCloneShallowArrayStub::kMaximumLength) { clone = frame_->CallRuntime(Runtime::kCreateArrayLiteralShallow, 3); } else { FastCloneShallowArrayStub stub(length); clone = frame_->CallStub(&stub, 3); } frame_->Push(&clone); // Generate code to set the elements in the array that are not // literals. for (int i = 0; i < length; i++) { Expression* value = node->values()->at(i); // If value is a literal the property value is already set in the // boilerplate object. if (value->AsLiteral() != NULL) continue; // If value is a materialized literal the property value is already set // in the boilerplate object if it is simple. if (CompileTimeValue::IsCompileTimeValue(value)) continue; // The property must be set by generated code. Load(value); // Get the property value off the stack. Result prop_value = frame_->Pop(); prop_value.ToRegister(); // Fetch the array literal while leaving a copy on the stack and // use it to get the elements array. frame_->Dup(); Result elements = frame_->Pop(); elements.ToRegister(); frame_->Spill(elements.reg()); // Get the elements array. __ mov(elements.reg(), FieldOperand(elements.reg(), JSObject::kElementsOffset)); // Write to the indexed properties array. int offset = i * kPointerSize + FixedArray::kHeaderSize; __ mov(FieldOperand(elements.reg(), offset), prop_value.reg()); // Update the write barrier for the array address. frame_->Spill(prop_value.reg()); // Overwritten by the write barrier. Result scratch = allocator_->Allocate(); ASSERT(scratch.is_valid()); __ RecordWrite(elements.reg(), offset, prop_value.reg(), scratch.reg()); } } void CodeGenerator::VisitCatchExtensionObject(CatchExtensionObject* node) { ASSERT(!in_spilled_code()); // Call runtime routine to allocate the catch extension object and // assign the exception value to the catch variable. Comment cmnt(masm_, "[ CatchExtensionObject"); Load(node->key()); Load(node->value()); Result result = frame_->CallRuntime(Runtime::kCreateCatchExtensionObject, 2); frame_->Push(&result); } void CodeGenerator::EmitSlotAssignment(Assignment* node) { #ifdef DEBUG int original_height = frame()->height(); #endif Comment cmnt(masm(), "[ Variable Assignment"); Variable* var = node->target()->AsVariableProxy()->AsVariable(); ASSERT(var != NULL); Slot* slot = var->slot(); ASSERT(slot != NULL); // Evaluate the right-hand side. if (node->is_compound()) { Result result = LoadFromSlotCheckForArguments(slot, NOT_INSIDE_TYPEOF); frame()->Push(&result); Load(node->value()); bool overwrite_value = (node->value()->AsBinaryOperation() != NULL && node->value()->AsBinaryOperation()->ResultOverwriteAllowed()); GenericBinaryOperation(node->binary_op(), node->type(), overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE); } else { Load(node->value()); } // Perform the assignment. if (var->mode() != Variable::CONST || node->op() == Token::INIT_CONST) { CodeForSourcePosition(node->position()); StoreToSlot(slot, node->op() == Token::INIT_CONST ? CONST_INIT : NOT_CONST_INIT); } ASSERT(frame()->height() == original_height + 1); } void CodeGenerator::EmitNamedPropertyAssignment(Assignment* node) { #ifdef DEBUG int original_height = frame()->height(); #endif Comment cmnt(masm(), "[ Named Property Assignment"); Variable* var = node->target()->AsVariableProxy()->AsVariable(); Property* prop = node->target()->AsProperty(); ASSERT(var == NULL || (prop == NULL && var->is_global())); // Initialize name and evaluate the receiver subexpression if necessary. Handle<String> name; bool is_trivial_receiver = false; if (var != NULL) { name = var->name(); } else { Literal* lit = prop->key()->AsLiteral(); ASSERT_NOT_NULL(lit); name = Handle<String>::cast(lit->handle()); // Do not materialize the receiver on the frame if it is trivial. is_trivial_receiver = prop->obj()->IsTrivial(); if (!is_trivial_receiver) Load(prop->obj()); } if (node->starts_initialization_block()) { ASSERT_EQ(NULL, var); // Change to slow case in the beginning of an initialization block to // avoid the quadratic behavior of repeatedly adding fast properties. if (is_trivial_receiver) { frame()->Push(prop->obj()); } else { frame()->Dup(); } Result ignored = frame()->CallRuntime(Runtime::kToSlowProperties, 1); } if (node->ends_initialization_block() && !is_trivial_receiver) { // Add an extra copy of the receiver to the frame, so that it can be // converted back to fast case after the assignment. frame()->Dup(); } // Evaluate the right-hand side. if (node->is_compound()) { if (is_trivial_receiver) { frame()->Push(prop->obj()); } else if (var != NULL) { // The LoadIC stub expects the object in eax. // Freeing eax causes the code generator to load the global into it. frame_->Spill(eax); LoadGlobal(); } else { frame()->Dup(); } Result value = EmitNamedLoad(name, var != NULL); frame()->Push(&value); Load(node->value()); bool overwrite_value = (node->value()->AsBinaryOperation() != NULL && node->value()->AsBinaryOperation()->ResultOverwriteAllowed()); GenericBinaryOperation(node->binary_op(), node->type(), overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE); } else { Load(node->value()); } // Perform the assignment. It is safe to ignore constants here. ASSERT(var == NULL || var->mode() != Variable::CONST); ASSERT_NE(Token::INIT_CONST, node->op()); if (is_trivial_receiver) { Result value = frame()->Pop(); frame()->Push(prop->obj()); frame()->Push(&value); } CodeForSourcePosition(node->position()); bool is_contextual = (var != NULL); Result answer = EmitNamedStore(name, is_contextual); frame()->Push(&answer); if (node->ends_initialization_block()) { ASSERT_EQ(NULL, var); // The argument to the runtime call is the receiver. if (is_trivial_receiver) { frame()->Push(prop->obj()); } else { // A copy of the receiver is below the value of the assignment. Swap // the receiver and the value of the assignment expression. Result result = frame()->Pop(); Result receiver = frame()->Pop(); frame()->Push(&result); frame()->Push(&receiver); } Result ignored = frame_->CallRuntime(Runtime::kToFastProperties, 1); } ASSERT_EQ(frame()->height(), original_height + 1); } void CodeGenerator::EmitKeyedPropertyAssignment(Assignment* node) { #ifdef DEBUG int original_height = frame()->height(); #endif Comment cmnt(masm_, "[ Named Property Assignment"); Property* prop = node->target()->AsProperty(); ASSERT_NOT_NULL(prop); // Evaluate the receiver subexpression. Load(prop->obj()); if (node->starts_initialization_block()) { // Change to slow case in the beginning of an initialization block to // avoid the quadratic behavior of repeatedly adding fast properties. frame_->Dup(); Result ignored = frame_->CallRuntime(Runtime::kToSlowProperties, 1); } if (node->ends_initialization_block()) { // Add an extra copy of the receiver to the frame, so that it can be // converted back to fast case after the assignment. frame_->Dup(); } // Evaluate the key subexpression. Load(prop->key()); // Evaluate the right-hand side. if (node->is_compound()) { // Duplicate receiver and key. frame()->PushElementAt(1); frame()->PushElementAt(1); Result value = EmitKeyedLoad(); frame()->Push(&value); Load(node->value()); bool overwrite_value = (node->value()->AsBinaryOperation() != NULL && node->value()->AsBinaryOperation()->ResultOverwriteAllowed()); GenericBinaryOperation(node->binary_op(), node->type(), overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE); } else { Load(node->value()); } // Perform the assignment. It is safe to ignore constants here. ASSERT(node->op() != Token::INIT_CONST); CodeForSourcePosition(node->position()); Result answer = EmitKeyedStore(prop->key()->type()); frame()->Push(&answer); if (node->ends_initialization_block()) { // The argument to the runtime call is the extra copy of the receiver, // which is below the value of the assignment. Swap the receiver and // the value of the assignment expression. Result result = frame()->Pop(); Result receiver = frame()->Pop(); frame()->Push(&result); frame()->Push(&receiver); Result ignored = frame_->CallRuntime(Runtime::kToFastProperties, 1); } ASSERT(frame()->height() == original_height + 1); } void CodeGenerator::VisitAssignment(Assignment* node) { #ifdef DEBUG int original_height = frame()->height(); #endif Variable* var = node->target()->AsVariableProxy()->AsVariable(); Property* prop = node->target()->AsProperty(); if (var != NULL && !var->is_global()) { EmitSlotAssignment(node); } else if ((prop != NULL && prop->key()->IsPropertyName()) || (var != NULL && var->is_global())) { // Properties whose keys are property names and global variables are // treated as named property references. We do not need to consider // global 'this' because it is not a valid left-hand side. EmitNamedPropertyAssignment(node); } else if (prop != NULL) { // Other properties (including rewritten parameters for a function that // uses arguments) are keyed property assignments. EmitKeyedPropertyAssignment(node); } else { // Invalid left-hand side. Load(node->target()); Result result = frame()->CallRuntime(Runtime::kThrowReferenceError, 1); // The runtime call doesn't actually return but the code generator will // still generate code and expects a certain frame height. frame()->Push(&result); } ASSERT(frame()->height() == original_height + 1); } void CodeGenerator::VisitThrow(Throw* node) { Comment cmnt(masm_, "[ Throw"); Load(node->exception()); Result result = frame_->CallRuntime(Runtime::kThrow, 1); frame_->Push(&result); } void CodeGenerator::VisitProperty(Property* node) { Comment cmnt(masm_, "[ Property"); Reference property(this, node); property.GetValue(); } void CodeGenerator::VisitCall(Call* node) { Comment cmnt(masm_, "[ Call"); Expression* function = node->expression(); ZoneList<Expression*>* args = node->arguments(); // Check if the function is a variable or a property. Variable* var = function->AsVariableProxy()->AsVariable(); Property* property = function->AsProperty(); // ------------------------------------------------------------------------ // Fast-case: Use inline caching. // --- // According to ECMA-262, section 11.2.3, page 44, the function to call // must be resolved after the arguments have been evaluated. The IC code // automatically handles this by loading the arguments before the function // is resolved in cache misses (this also holds for megamorphic calls). // ------------------------------------------------------------------------ if (var != NULL && var->is_possibly_eval()) { // ---------------------------------- // JavaScript example: 'eval(arg)' // eval is not known to be shadowed // ---------------------------------- // In a call to eval, we first call %ResolvePossiblyDirectEval to // resolve the function we need to call and the receiver of the // call. Then we call the resolved function using the given // arguments. // Prepare the stack for the call to the resolved function. Load(function); // Allocate a frame slot for the receiver. frame_->Push(Factory::undefined_value()); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { Load(args->at(i)); } // Prepare the stack for the call to ResolvePossiblyDirectEval. frame_->PushElementAt(arg_count + 1); if (arg_count > 0) { frame_->PushElementAt(arg_count); } else { frame_->Push(Factory::undefined_value()); } // Push the receiver. frame_->PushParameterAt(-1); // Resolve the call. Result result = frame_->CallRuntime(Runtime::kResolvePossiblyDirectEval, 3); // The runtime call returns a pair of values in eax (function) and // edx (receiver). Touch up the stack with the right values. Result receiver = allocator_->Allocate(edx); frame_->SetElementAt(arg_count + 1, &result); frame_->SetElementAt(arg_count, &receiver); receiver.Unuse(); // Call the function. CodeForSourcePosition(node->position()); InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; CallFunctionStub call_function(arg_count, in_loop, RECEIVER_MIGHT_BE_VALUE); result = frame_->CallStub(&call_function, arg_count + 1); // Restore the context and overwrite the function on the stack with // the result. frame_->RestoreContextRegister(); frame_->SetElementAt(0, &result); } else if (var != NULL && !var->is_this() && var->is_global()) { // ---------------------------------- // JavaScript example: 'foo(1, 2, 3)' // foo is global // ---------------------------------- // Pass the global object as the receiver and let the IC stub // patch the stack to use the global proxy as 'this' in the // invoked function. LoadGlobal(); // Load the arguments. int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { Load(args->at(i)); } // Push the name of the function onto the frame. frame_->Push(var->name()); // Call the IC initialization code. CodeForSourcePosition(node->position()); Result result = frame_->CallCallIC(RelocInfo::CODE_TARGET_CONTEXT, arg_count, loop_nesting()); frame_->RestoreContextRegister(); frame_->Push(&result); } else if (var != NULL && var->slot() != NULL && var->slot()->type() == Slot::LOOKUP) { // ---------------------------------- // JavaScript example: 'with (obj) foo(1, 2, 3)' // foo is in obj // ---------------------------------- // Load the function from the context. Sync the frame so we can // push the arguments directly into place. frame_->SyncRange(0, frame_->element_count() - 1); frame_->EmitPush(esi); frame_->EmitPush(Immediate(var->name())); frame_->CallRuntime(Runtime::kLoadContextSlot, 2); // The runtime call returns a pair of values in eax and edx. The // looked-up function is in eax and the receiver is in edx. These // register references are not ref counted here. We spill them // eagerly since they are arguments to an inevitable call (and are // not sharable by the arguments). ASSERT(!allocator()->is_used(eax)); frame_->EmitPush(eax); // Load the receiver. ASSERT(!allocator()->is_used(edx)); frame_->EmitPush(edx); // Call the function. CallWithArguments(args, NO_CALL_FUNCTION_FLAGS, node->position()); } else if (property != NULL) { // Check if the key is a literal string. Literal* literal = property->key()->AsLiteral(); if (literal != NULL && literal->handle()->IsSymbol()) { // ------------------------------------------------------------------ // JavaScript example: 'object.foo(1, 2, 3)' or 'map["key"](1, 2, 3)' // ------------------------------------------------------------------ Handle<String> name = Handle<String>::cast(literal->handle()); if (ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION && name->IsEqualTo(CStrVector("apply")) && args->length() == 2 && args->at(1)->AsVariableProxy() != NULL && args->at(1)->AsVariableProxy()->IsArguments()) { // Use the optimized Function.prototype.apply that avoids // allocating lazily allocated arguments objects. CallApplyLazy(property->obj(), args->at(0), args->at(1)->AsVariableProxy(), node->position()); } else { // Push the receiver onto the frame. Load(property->obj()); // Load the arguments. int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { Load(args->at(i)); } // Push the name of the function onto the frame. frame_->Push(name); // Call the IC initialization code. CodeForSourcePosition(node->position()); Result result = frame_->CallCallIC(RelocInfo::CODE_TARGET, arg_count, loop_nesting()); frame_->RestoreContextRegister(); frame_->Push(&result); } } else { // ------------------------------------------- // JavaScript example: 'array[index](1, 2, 3)' // ------------------------------------------- // Load the function to call from the property through a reference. // Pass receiver to called function. if (property->is_synthetic()) { Reference ref(this, property); ref.GetValue(); // Use global object as receiver. LoadGlobalReceiver(); } else { Load(property->obj()); frame()->Dup(); Load(property->key()); Result function = EmitKeyedLoad(); Result receiver = frame_->Pop(); frame_->Push(&function); frame_->Push(&receiver); } // Call the function. CallWithArguments(args, RECEIVER_MIGHT_BE_VALUE, node->position()); } } else { // ---------------------------------- // JavaScript example: 'foo(1, 2, 3)' // foo is not global // ---------------------------------- // Load the function. Load(function); // Pass the global proxy as the receiver. LoadGlobalReceiver(); // Call the function. CallWithArguments(args, NO_CALL_FUNCTION_FLAGS, node->position()); } } void CodeGenerator::VisitCallNew(CallNew* node) { Comment cmnt(masm_, "[ CallNew"); // According to ECMA-262, section 11.2.2, page 44, the function // expression in new calls must be evaluated before the // arguments. This is different from ordinary calls, where the // actual function to call is resolved after the arguments have been // evaluated. // Compute function to call and use the global object as the // receiver. There is no need to use the global proxy here because // it will always be replaced with a newly allocated object. Load(node->expression()); LoadGlobal(); // Push the arguments ("left-to-right") on the stack. ZoneList<Expression*>* args = node->arguments(); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { Load(args->at(i)); } // Call the construct call builtin that handles allocation and // constructor invocation. CodeForSourcePosition(node->position()); Result result = frame_->CallConstructor(arg_count); // Replace the function on the stack with the result. frame_->SetElementAt(0, &result); } void CodeGenerator::GenerateIsSmi(ZoneList<Expression*>* args) { ASSERT(args->length() == 1); Load(args->at(0)); Result value = frame_->Pop(); value.ToRegister(); ASSERT(value.is_valid()); __ test(value.reg(), Immediate(kSmiTagMask)); value.Unuse(); destination()->Split(zero); } void CodeGenerator::GenerateLog(ZoneList<Expression*>* args) { // Conditionally generate a log call. // Args: // 0 (literal string): The type of logging (corresponds to the flags). // This is used to determine whether or not to generate the log call. // 1 (string): Format string. Access the string at argument index 2 // with '%2s' (see Logger::LogRuntime for all the formats). // 2 (array): Arguments to the format string. ASSERT_EQ(args->length(), 3); #ifdef ENABLE_LOGGING_AND_PROFILING if (ShouldGenerateLog(args->at(0))) { Load(args->at(1)); Load(args->at(2)); frame_->CallRuntime(Runtime::kLog, 2); } #endif // Finally, we're expected to leave a value on the top of the stack. frame_->Push(Factory::undefined_value()); } void CodeGenerator::GenerateIsNonNegativeSmi(ZoneList<Expression*>* args) { ASSERT(args->length() == 1); Load(args->at(0)); Result value = frame_->Pop(); value.ToRegister(); ASSERT(value.is_valid()); __ test(value.reg(), Immediate(kSmiTagMask | 0x80000000)); value.Unuse(); destination()->Split(zero); } // This generates code that performs a charCodeAt() call or returns // undefined in order to trigger the slow case, Runtime_StringCharCodeAt. // It can handle flat, 8 and 16 bit characters and cons strings where the // answer is found in the left hand branch of the cons. The slow case will // flatten the string, which will ensure that the answer is in the left hand // side the next time around. void CodeGenerator::GenerateFastCharCodeAt(ZoneList<Expression*>* args) { Comment(masm_, "[ GenerateFastCharCodeAt"); ASSERT(args->length() == 2); Label slow_case; Label end; Label not_a_flat_string; Label try_again_with_new_string; Label ascii_string; Label got_char_code; Load(args->at(0)); Load(args->at(1)); Result index = frame_->Pop(); Result object = frame_->Pop(); // Get register ecx to use as shift amount later. Result shift_amount; if (object.is_register() && object.reg().is(ecx)) { Result fresh = allocator_->Allocate(); shift_amount = object; object = fresh; __ mov(object.reg(), ecx); } if (index.is_register() && index.reg().is(ecx)) { Result fresh = allocator_->Allocate(); shift_amount = index; index = fresh; __ mov(index.reg(), ecx); } // There could be references to ecx in the frame. Allocating will // spill them, otherwise spill explicitly. if (shift_amount.is_valid()) { frame_->Spill(ecx); } else { shift_amount = allocator()->Allocate(ecx); } ASSERT(shift_amount.is_register()); ASSERT(shift_amount.reg().is(ecx)); ASSERT(allocator_->count(ecx) == 1); // We will mutate the index register and possibly the object register. // The case where they are somehow the same register is handled // because we only mutate them in the case where the receiver is a // heap object and the index is not. object.ToRegister(); index.ToRegister(); frame_->Spill(object.reg()); frame_->Spill(index.reg()); // We need a single extra temporary register. Result temp = allocator()->Allocate(); ASSERT(temp.is_valid()); // There is no virtual frame effect from here up to the final result // push. // If the receiver is a smi trigger the slow case. ASSERT(kSmiTag == 0); __ test(object.reg(), Immediate(kSmiTagMask)); __ j(zero, &slow_case); // If the index is negative or non-smi trigger the slow case. ASSERT(kSmiTag == 0); __ test(index.reg(), Immediate(kSmiTagMask | 0x80000000)); __ j(not_zero, &slow_case); // Untag the index. __ SmiUntag(index.reg()); __ bind(&try_again_with_new_string); // Fetch the instance type of the receiver into ecx. __ mov(ecx, FieldOperand(object.reg(), HeapObject::kMapOffset)); __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); // If the receiver is not a string trigger the slow case. __ test(ecx, Immediate(kIsNotStringMask)); __ j(not_zero, &slow_case); // Fetch the length field into the temporary register. __ mov(temp.reg(), FieldOperand(object.reg(), String::kLengthOffset)); // Check for index out of range. __ cmp(index.reg(), Operand(temp.reg())); __ j(greater_equal, &slow_case); // Reload the instance type (into the temp register this time).. __ mov(temp.reg(), FieldOperand(object.reg(), HeapObject::kMapOffset)); __ movzx_b(temp.reg(), FieldOperand(temp.reg(), Map::kInstanceTypeOffset)); // We need special handling for non-flat strings. ASSERT(kSeqStringTag == 0); __ test(temp.reg(), Immediate(kStringRepresentationMask)); __ j(not_zero, ¬_a_flat_string); // Check for 1-byte or 2-byte string. __ test(temp.reg(), Immediate(kStringEncodingMask)); __ j(not_zero, &ascii_string); // 2-byte string. // Load the 2-byte character code into the temp register. __ movzx_w(temp.reg(), FieldOperand(object.reg(), index.reg(), times_2, SeqTwoByteString::kHeaderSize)); __ jmp(&got_char_code); // ASCII string. __ bind(&ascii_string); // Load the byte into the temp register. __ movzx_b(temp.reg(), FieldOperand(object.reg(), index.reg(), times_1, SeqAsciiString::kHeaderSize)); __ bind(&got_char_code); __ SmiTag(temp.reg()); __ jmp(&end); // Handle non-flat strings. __ bind(¬_a_flat_string); __ and_(temp.reg(), kStringRepresentationMask); __ cmp(temp.reg(), kConsStringTag); __ j(not_equal, &slow_case); // ConsString. // Check that the right hand side is the empty string (ie if this is really a // flat string in a cons string). If that is not the case we would rather go // to the runtime system now, to flatten the string. __ mov(temp.reg(), FieldOperand(object.reg(), ConsString::kSecondOffset)); __ cmp(Operand(temp.reg()), Factory::empty_string()); __ j(not_equal, &slow_case); // Get the first of the two strings. __ mov(object.reg(), FieldOperand(object.reg(), ConsString::kFirstOffset)); __ jmp(&try_again_with_new_string); __ bind(&slow_case); // Move the undefined value into the result register, which will // trigger the slow case. __ Set(temp.reg(), Immediate(Factory::undefined_value())); __ bind(&end); frame_->Push(&temp); } void CodeGenerator::GenerateIsArray(ZoneList<Expression*>* args) { ASSERT(args->length() == 1); Load(args->at(0)); Result value = frame_->Pop(); value.ToRegister(); ASSERT(value.is_valid()); __ test(value.reg(), Immediate(kSmiTagMask)); destination()->false_target()->Branch(equal); // It is a heap object - get map. Result temp = allocator()->Allocate(); ASSERT(temp.is_valid()); // Check if the object is a JS array or not. __ CmpObjectType(value.reg(), JS_ARRAY_TYPE, temp.reg()); value.Unuse(); temp.Unuse(); destination()->Split(equal); } void CodeGenerator::GenerateIsRegExp(ZoneList<Expression*>* args) { ASSERT(args->length() == 1); Load(args->at(0)); Result value = frame_->Pop(); value.ToRegister(); ASSERT(value.is_valid()); __ test(value.reg(), Immediate(kSmiTagMask)); destination()->false_target()->Branch(equal); // It is a heap object - get map. Result temp = allocator()->Allocate(); ASSERT(temp.is_valid()); // Check if the object is a regexp. __ CmpObjectType(value.reg(), JS_REGEXP_TYPE, temp.reg()); value.Unuse(); temp.Unuse(); destination()->Split(equal); } void CodeGenerator::GenerateIsObject(ZoneList<Expression*>* args) { // This generates a fast version of: // (typeof(arg) === 'object' || %_ClassOf(arg) == 'RegExp') ASSERT(args->length() == 1); Load(args->at(0)); Result obj = frame_->Pop(); obj.ToRegister(); __ test(obj.reg(), Immediate(kSmiTagMask)); destination()->false_target()->Branch(zero); __ cmp(obj.reg(), Factory::null_value()); destination()->true_target()->Branch(equal); Result map = allocator()->Allocate(); ASSERT(map.is_valid()); __ mov(map.reg(), FieldOperand(obj.reg(), HeapObject::kMapOffset)); // Undetectable objects behave like undefined when tested with typeof. __ movzx_b(map.reg(), FieldOperand(map.reg(), Map::kBitFieldOffset)); __ test(map.reg(), Immediate(1 << Map::kIsUndetectable)); destination()->false_target()->Branch(not_zero); __ mov(map.reg(), FieldOperand(obj.reg(), HeapObject::kMapOffset)); __ movzx_b(map.reg(), FieldOperand(map.reg(), Map::kInstanceTypeOffset)); __ cmp(map.reg(), FIRST_JS_OBJECT_TYPE); destination()->false_target()->Branch(less); __ cmp(map.reg(), LAST_JS_OBJECT_TYPE); obj.Unuse(); map.Unuse(); destination()->Split(less_equal); } void CodeGenerator::GenerateIsFunction(ZoneList<Expression*>* args) { // This generates a fast version of: // (%_ClassOf(arg) === 'Function') ASSERT(args->length() == 1); Load(args->at(0)); Result obj = frame_->Pop(); obj.ToRegister(); __ test(obj.reg(), Immediate(kSmiTagMask)); destination()->false_target()->Branch(zero); Result temp = allocator()->Allocate(); ASSERT(temp.is_valid()); __ CmpObjectType(obj.reg(), JS_FUNCTION_TYPE, temp.reg()); obj.Unuse(); temp.Unuse(); destination()->Split(equal); } void CodeGenerator::GenerateIsUndetectableObject(ZoneList<Expression*>* args) { ASSERT(args->length() == 1); Load(args->at(0)); Result obj = frame_->Pop(); obj.ToRegister(); __ test(obj.reg(), Immediate(kSmiTagMask)); destination()->false_target()->Branch(zero); Result temp = allocator()->Allocate(); ASSERT(temp.is_valid()); __ mov(temp.reg(), FieldOperand(obj.reg(), HeapObject::kMapOffset)); __ movzx_b(temp.reg(), FieldOperand(temp.reg(), Map::kBitFieldOffset)); __ test(temp.reg(), Immediate(1 << Map::kIsUndetectable)); obj.Unuse(); temp.Unuse(); destination()->Split(not_zero); } void CodeGenerator::GenerateIsConstructCall(ZoneList<Expression*>* args) { ASSERT(args->length() == 0); // Get the frame pointer for the calling frame. Result fp = allocator()->Allocate(); __ mov(fp.reg(), Operand(ebp, StandardFrameConstants::kCallerFPOffset)); // Skip the arguments adaptor frame if it exists. Label check_frame_marker; __ cmp(Operand(fp.reg(), StandardFrameConstants::kContextOffset), Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ j(not_equal, &check_frame_marker); __ mov(fp.reg(), Operand(fp.reg(), StandardFrameConstants::kCallerFPOffset)); // Check the marker in the calling frame. __ bind(&check_frame_marker); __ cmp(Operand(fp.reg(), StandardFrameConstants::kMarkerOffset), Immediate(Smi::FromInt(StackFrame::CONSTRUCT))); fp.Unuse(); destination()->Split(equal); } void CodeGenerator::GenerateArgumentsLength(ZoneList<Expression*>* args) { ASSERT(args->length() == 0); // ArgumentsAccessStub takes the parameter count as an input argument // in register eax. Create a constant result for it. Result count(Handle<Smi>(Smi::FromInt(scope()->num_parameters()))); // Call the shared stub to get to the arguments.length. ArgumentsAccessStub stub(ArgumentsAccessStub::READ_LENGTH); Result result = frame_->CallStub(&stub, &count); frame_->Push(&result); } void CodeGenerator::GenerateClassOf(ZoneList<Expression*>* args) { ASSERT(args->length() == 1); JumpTarget leave, null, function, non_function_constructor; Load(args->at(0)); // Load the object. Result obj = frame_->Pop(); obj.ToRegister(); frame_->Spill(obj.reg()); // If the object is a smi, we return null. __ test(obj.reg(), Immediate(kSmiTagMask)); null.Branch(zero); // Check that the object is a JS object but take special care of JS // functions to make sure they have 'Function' as their class. { Result tmp = allocator()->Allocate(); __ mov(obj.reg(), FieldOperand(obj.reg(), HeapObject::kMapOffset)); __ movzx_b(tmp.reg(), FieldOperand(obj.reg(), Map::kInstanceTypeOffset)); __ cmp(tmp.reg(), FIRST_JS_OBJECT_TYPE); null.Branch(less); // As long as JS_FUNCTION_TYPE is the last instance type and it is // right after LAST_JS_OBJECT_TYPE, we can avoid checking for // LAST_JS_OBJECT_TYPE. ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1); __ cmp(tmp.reg(), JS_FUNCTION_TYPE); function.Branch(equal); } // Check if the constructor in the map is a function. { Result tmp = allocator()->Allocate(); __ mov(obj.reg(), FieldOperand(obj.reg(), Map::kConstructorOffset)); __ CmpObjectType(obj.reg(), JS_FUNCTION_TYPE, tmp.reg()); non_function_constructor.Branch(not_equal); } // The map register now contains the constructor function. Grab the // instance class name from there. __ mov(obj.reg(), FieldOperand(obj.reg(), JSFunction::kSharedFunctionInfoOffset)); __ mov(obj.reg(), FieldOperand(obj.reg(), SharedFunctionInfo::kInstanceClassNameOffset)); frame_->Push(&obj); leave.Jump(); // Functions have class 'Function'. function.Bind(); frame_->Push(Factory::function_class_symbol()); leave.Jump(); // Objects with a non-function constructor have class 'Object'. non_function_constructor.Bind(); frame_->Push(Factory::Object_symbol()); leave.Jump(); // Non-JS objects have class null. null.Bind(); frame_->Push(Factory::null_value()); // All done. leave.Bind(); } void CodeGenerator::GenerateValueOf(ZoneList<Expression*>* args) { ASSERT(args->length() == 1); JumpTarget leave; Load(args->at(0)); // Load the object. frame_->Dup(); Result object = frame_->Pop(); object.ToRegister(); ASSERT(object.is_valid()); // if (object->IsSmi()) return object. __ test(object.reg(), Immediate(kSmiTagMask)); leave.Branch(zero, taken); // It is a heap object - get map. Result temp = allocator()->Allocate(); ASSERT(temp.is_valid()); // if (!object->IsJSValue()) return object. __ CmpObjectType(object.reg(), JS_VALUE_TYPE, temp.reg()); leave.Branch(not_equal, not_taken); __ mov(temp.reg(), FieldOperand(object.reg(), JSValue::kValueOffset)); object.Unuse(); frame_->SetElementAt(0, &temp); leave.Bind(); } void CodeGenerator::GenerateSetValueOf(ZoneList<Expression*>* args) { ASSERT(args->length() == 2); JumpTarget leave; Load(args->at(0)); // Load the object. Load(args->at(1)); // Load the value. Result value = frame_->Pop(); Result object = frame_->Pop(); value.ToRegister(); object.ToRegister(); // if (object->IsSmi()) return value. __ test(object.reg(), Immediate(kSmiTagMask)); leave.Branch(zero, &value, taken); // It is a heap object - get its map. Result scratch = allocator_->Allocate(); ASSERT(scratch.is_valid()); // if (!object->IsJSValue()) return value. __ CmpObjectType(object.reg(), JS_VALUE_TYPE, scratch.reg()); leave.Branch(not_equal, &value, not_taken); // Store the value. __ mov(FieldOperand(object.reg(), JSValue::kValueOffset), value.reg()); // Update the write barrier. Save the value as it will be // overwritten by the write barrier code and is needed afterward. Result duplicate_value = allocator_->Allocate(); ASSERT(duplicate_value.is_valid()); __ mov(duplicate_value.reg(), value.reg()); // The object register is also overwritten by the write barrier and // possibly aliased in the frame. frame_->Spill(object.reg()); __ RecordWrite(object.reg(), JSValue::kValueOffset, duplicate_value.reg(), scratch.reg()); object.Unuse(); scratch.Unuse(); duplicate_value.Unuse(); // Leave. leave.Bind(&value); frame_->Push(&value); } void CodeGenerator::GenerateArgumentsAccess(ZoneList<Expression*>* args) { ASSERT(args->length() == 1); // ArgumentsAccessStub expects the key in edx and the formal // parameter count in eax. Load(args->at(0)); Result key = frame_->Pop(); // Explicitly create a constant result. Result count(Handle<Smi>(Smi::FromInt(scope()->num_parameters()))); // Call the shared stub to get to arguments[key]. ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT); Result result = frame_->CallStub(&stub, &key, &count); frame_->Push(&result); } void CodeGenerator::GenerateObjectEquals(ZoneList<Expression*>* args) { ASSERT(args->length() == 2); // Load the two objects into registers and perform the comparison. Load(args->at(0)); Load(args->at(1)); Result right = frame_->Pop(); Result left = frame_->Pop(); right.ToRegister(); left.ToRegister(); __ cmp(right.reg(), Operand(left.reg())); right.Unuse(); left.Unuse(); destination()->Split(equal); } void CodeGenerator::GenerateGetFramePointer(ZoneList<Expression*>* args) { ASSERT(args->length() == 0); ASSERT(kSmiTag == 0); // EBP value is aligned, so it should look like Smi. Result ebp_as_smi = allocator_->Allocate(); ASSERT(ebp_as_smi.is_valid()); __ mov(ebp_as_smi.reg(), Operand(ebp)); frame_->Push(&ebp_as_smi); } void CodeGenerator::GenerateRandomPositiveSmi(ZoneList<Expression*>* args) { ASSERT(args->length() == 0); frame_->SpillAll(); // Make sure the frame is aligned like the OS expects. static const int kFrameAlignment = OS::ActivationFrameAlignment(); if (kFrameAlignment > 0) { ASSERT(IsPowerOf2(kFrameAlignment)); __ mov(edi, Operand(esp)); // Save in callee-saved register. __ and_(esp, -kFrameAlignment); } // Call V8::RandomPositiveSmi(). __ call(FUNCTION_ADDR(V8::RandomPositiveSmi), RelocInfo::RUNTIME_ENTRY); // Restore stack pointer from callee-saved register edi. if (kFrameAlignment > 0) { __ mov(esp, Operand(edi)); } Result result = allocator_->Allocate(eax); frame_->Push(&result); } void CodeGenerator::GenerateStringAdd(ZoneList<Expression*>* args) { ASSERT_EQ(2, args->length()); Load(args->at(0)); Load(args->at(1)); StringAddStub stub(NO_STRING_ADD_FLAGS); Result answer = frame_->CallStub(&stub, 2); frame_->Push(&answer); } void CodeGenerator::GenerateSubString(ZoneList<Expression*>* args) { ASSERT_EQ(3, args->length()); Load(args->at(0)); Load(args->at(1)); Load(args->at(2)); SubStringStub stub; Result answer = frame_->CallStub(&stub, 3); frame_->Push(&answer); } void CodeGenerator::GenerateStringCompare(ZoneList<Expression*>* args) { ASSERT_EQ(2, args->length()); Load(args->at(0)); Load(args->at(1)); StringCompareStub stub; Result answer = frame_->CallStub(&stub, 2); frame_->Push(&answer); } void CodeGenerator::GenerateRegExpExec(ZoneList<Expression*>* args) { ASSERT_EQ(args->length(), 4); // Load the arguments on the stack and call the stub. Load(args->at(0)); Load(args->at(1)); Load(args->at(2)); Load(args->at(3)); RegExpExecStub stub; Result result = frame_->CallStub(&stub, 4); frame_->Push(&result); } void CodeGenerator::GenerateNumberToString(ZoneList<Expression*>* args) { ASSERT_EQ(args->length(), 1); // Load the argument on the stack and call the stub. Load(args->at(0)); NumberToStringStub stub; Result result = frame_->CallStub(&stub, 1); frame_->Push(&result); } void CodeGenerator::GenerateMathSin(ZoneList<Expression*>* args) { ASSERT_EQ(args->length(), 1); Load(args->at(0)); TranscendentalCacheStub stub(TranscendentalCache::SIN); Result result = frame_->CallStub(&stub, 1); frame_->Push(&result); } void CodeGenerator::GenerateMathCos(ZoneList<Expression*>* args) { ASSERT_EQ(args->length(), 1); Load(args->at(0)); TranscendentalCacheStub stub(TranscendentalCache::COS); Result result = frame_->CallStub(&stub, 1); frame_->Push(&result); } void CodeGenerator::VisitCallRuntime(CallRuntime* node) { if (CheckForInlineRuntimeCall(node)) { return; } ZoneList<Expression*>* args = node->arguments(); Comment cmnt(masm_, "[ CallRuntime"); Runtime::Function* function = node->function(); if (function == NULL) { // Push the builtins object found in the current global object. Result temp = allocator()->Allocate(); ASSERT(temp.is_valid()); __ mov(temp.reg(), GlobalObject()); __ mov(temp.reg(), FieldOperand(temp.reg(), GlobalObject::kBuiltinsOffset)); frame_->Push(&temp); } // Push the arguments ("left-to-right"). int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { Load(args->at(i)); } if (function == NULL) { // Call the JS runtime function. frame_->Push(node->name()); Result answer = frame_->CallCallIC(RelocInfo::CODE_TARGET, arg_count, loop_nesting_); frame_->RestoreContextRegister(); frame_->Push(&answer); } else { // Call the C runtime function. Result answer = frame_->CallRuntime(function, arg_count); frame_->Push(&answer); } } void CodeGenerator::VisitUnaryOperation(UnaryOperation* node) { Comment cmnt(masm_, "[ UnaryOperation"); Token::Value op = node->op(); if (op == Token::NOT) { // Swap the true and false targets but keep the same actual label // as the fall through. destination()->Invert(); LoadCondition(node->expression(), destination(), true); // Swap the labels back. destination()->Invert(); } else if (op == Token::DELETE) { Property* property = node->expression()->AsProperty(); if (property != NULL) { Load(property->obj()); Load(property->key()); Result answer = frame_->InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, 2); frame_->Push(&answer); return; } Variable* variable = node->expression()->AsVariableProxy()->AsVariable(); if (variable != NULL) { Slot* slot = variable->slot(); if (variable->is_global()) { LoadGlobal(); frame_->Push(variable->name()); Result answer = frame_->InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, 2); frame_->Push(&answer); return; } else if (slot != NULL && slot->type() == Slot::LOOKUP) { // Call the runtime to look up the context holding the named // variable. Sync the virtual frame eagerly so we can push the // arguments directly into place. frame_->SyncRange(0, frame_->element_count() - 1); frame_->EmitPush(esi); frame_->EmitPush(Immediate(variable->name())); Result context = frame_->CallRuntime(Runtime::kLookupContext, 2); ASSERT(context.is_register()); frame_->EmitPush(context.reg()); context.Unuse(); frame_->EmitPush(Immediate(variable->name())); Result answer = frame_->InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, 2); frame_->Push(&answer); return; } // Default: Result of deleting non-global, not dynamically // introduced variables is false. frame_->Push(Factory::false_value()); } else { // Default: Result of deleting expressions is true. Load(node->expression()); // may have side-effects frame_->SetElementAt(0, Factory::true_value()); } } else if (op == Token::TYPEOF) { // Special case for loading the typeof expression; see comment on // LoadTypeofExpression(). LoadTypeofExpression(node->expression()); Result answer = frame_->CallRuntime(Runtime::kTypeof, 1); frame_->Push(&answer); } else if (op == Token::VOID) { Expression* expression = node->expression(); if (expression && expression->AsLiteral() && ( expression->AsLiteral()->IsTrue() || expression->AsLiteral()->IsFalse() || expression->AsLiteral()->handle()->IsNumber() || expression->AsLiteral()->handle()->IsString() || expression->AsLiteral()->handle()->IsJSRegExp() || expression->AsLiteral()->IsNull())) { // Omit evaluating the value of the primitive literal. // It will be discarded anyway, and can have no side effect. frame_->Push(Factory::undefined_value()); } else { Load(node->expression()); frame_->SetElementAt(0, Factory::undefined_value()); } } else { Load(node->expression()); bool overwrite = (node->expression()->AsBinaryOperation() != NULL && node->expression()->AsBinaryOperation()->ResultOverwriteAllowed()); switch (op) { case Token::SUB: { GenericUnaryOpStub stub(Token::SUB, overwrite); Result operand = frame_->Pop(); Result answer = frame_->CallStub(&stub, &operand); frame_->Push(&answer); break; } case Token::BIT_NOT: { // Smi check. JumpTarget smi_label; JumpTarget continue_label; Result operand = frame_->Pop(); operand.ToRegister(); __ test(operand.reg(), Immediate(kSmiTagMask)); smi_label.Branch(zero, &operand, taken); GenericUnaryOpStub stub(Token::BIT_NOT, overwrite); Result answer = frame_->CallStub(&stub, &operand); continue_label.Jump(&answer); smi_label.Bind(&answer); answer.ToRegister(); frame_->Spill(answer.reg()); __ not_(answer.reg()); __ and_(answer.reg(), ~kSmiTagMask); // Remove inverted smi-tag. continue_label.Bind(&answer); frame_->Push(&answer); break; } case Token::ADD: { // Smi check. JumpTarget continue_label; Result operand = frame_->Pop(); operand.ToRegister(); __ test(operand.reg(), Immediate(kSmiTagMask)); continue_label.Branch(zero, &operand, taken); frame_->Push(&operand); Result answer = frame_->InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION, 1); continue_label.Bind(&answer); frame_->Push(&answer); break; } default: // NOT, DELETE, TYPEOF, and VOID are handled outside the // switch. UNREACHABLE(); } } } // The value in dst was optimistically incremented or decremented. The // result overflowed or was not smi tagged. Undo the operation, call // into the runtime to convert the argument to a number, and call the // specialized add or subtract stub. The result is left in dst. class DeferredPrefixCountOperation: public DeferredCode { public: DeferredPrefixCountOperation(Register dst, bool is_increment) : dst_(dst), is_increment_(is_increment) { set_comment("[ DeferredCountOperation"); } virtual void Generate(); private: Register dst_; bool is_increment_; }; void DeferredPrefixCountOperation::Generate() { // Undo the optimistic smi operation. if (is_increment_) { __ sub(Operand(dst_), Immediate(Smi::FromInt(1))); } else { __ add(Operand(dst_), Immediate(Smi::FromInt(1))); } __ push(dst_); __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION); __ push(eax); __ push(Immediate(Smi::FromInt(1))); if (is_increment_) { __ CallRuntime(Runtime::kNumberAdd, 2); } else { __ CallRuntime(Runtime::kNumberSub, 2); } if (!dst_.is(eax)) __ mov(dst_, eax); } // The value in dst was optimistically incremented or decremented. The // result overflowed or was not smi tagged. Undo the operation and call // into the runtime to convert the argument to a number. Update the // original value in old. Call the specialized add or subtract stub. // The result is left in dst. class DeferredPostfixCountOperation: public DeferredCode { public: DeferredPostfixCountOperation(Register dst, Register old, bool is_increment) : dst_(dst), old_(old), is_increment_(is_increment) { set_comment("[ DeferredCountOperation"); } virtual void Generate(); private: Register dst_; Register old_; bool is_increment_; }; void DeferredPostfixCountOperation::Generate() { // Undo the optimistic smi operation. if (is_increment_) { __ sub(Operand(dst_), Immediate(Smi::FromInt(1))); } else { __ add(Operand(dst_), Immediate(Smi::FromInt(1))); } __ push(dst_); __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION); // Save the result of ToNumber to use as the old value. __ push(eax); // Call the runtime for the addition or subtraction. __ push(eax); __ push(Immediate(Smi::FromInt(1))); if (is_increment_) { __ CallRuntime(Runtime::kNumberAdd, 2); } else { __ CallRuntime(Runtime::kNumberSub, 2); } if (!dst_.is(eax)) __ mov(dst_, eax); __ pop(old_); } void CodeGenerator::VisitCountOperation(CountOperation* node) { Comment cmnt(masm_, "[ CountOperation"); bool is_postfix = node->is_postfix(); bool is_increment = node->op() == Token::INC; Variable* var = node->expression()->AsVariableProxy()->AsVariable(); bool is_const = (var != NULL && var->mode() == Variable::CONST); // Postfix operations need a stack slot under the reference to hold // the old value while the new value is being stored. This is so that // in the case that storing the new value requires a call, the old // value will be in the frame to be spilled. if (is_postfix) frame_->Push(Smi::FromInt(0)); // A constant reference is not saved to, so a constant reference is not a // compound assignment reference. { Reference target(this, node->expression(), !is_const); if (target.is_illegal()) { // Spoof the virtual frame to have the expected height (one higher // than on entry). if (!is_postfix) frame_->Push(Smi::FromInt(0)); return; } target.TakeValue(); Result new_value = frame_->Pop(); new_value.ToRegister(); Result old_value; // Only allocated in the postfix case. if (is_postfix) { // Allocate a temporary to preserve the old value. old_value = allocator_->Allocate(); ASSERT(old_value.is_valid()); __ mov(old_value.reg(), new_value.reg()); } // Ensure the new value is writable. frame_->Spill(new_value.reg()); // In order to combine the overflow and the smi tag check, we need // to be able to allocate a byte register. We attempt to do so // without spilling. If we fail, we will generate separate overflow // and smi tag checks. // // We allocate and clear the temporary byte register before // performing the count operation since clearing the register using // xor will clear the overflow flag. Result tmp = allocator_->AllocateByteRegisterWithoutSpilling(); if (tmp.is_valid()) { __ Set(tmp.reg(), Immediate(0)); } DeferredCode* deferred = NULL; if (is_postfix) { deferred = new DeferredPostfixCountOperation(new_value.reg(), old_value.reg(), is_increment); } else { deferred = new DeferredPrefixCountOperation(new_value.reg(), is_increment); } if (is_increment) { __ add(Operand(new_value.reg()), Immediate(Smi::FromInt(1))); } else { __ sub(Operand(new_value.reg()), Immediate(Smi::FromInt(1))); } // If the count operation didn't overflow and the result is a valid // smi, we're done. Otherwise, we jump to the deferred slow-case // code. if (tmp.is_valid()) { // We combine the overflow and the smi tag check if we could // successfully allocate a temporary byte register. __ setcc(overflow, tmp.reg()); __ or_(Operand(tmp.reg()), new_value.reg()); __ test(tmp.reg(), Immediate(kSmiTagMask)); tmp.Unuse(); deferred->Branch(not_zero); } else { // Otherwise we test separately for overflow and smi tag. deferred->Branch(overflow); __ test(new_value.reg(), Immediate(kSmiTagMask)); deferred->Branch(not_zero); } deferred->BindExit(); // Postfix: store the old value in the allocated slot under the // reference. if (is_postfix) frame_->SetElementAt(target.size(), &old_value); frame_->Push(&new_value); // Non-constant: update the reference. if (!is_const) target.SetValue(NOT_CONST_INIT); } // Postfix: drop the new value and use the old. if (is_postfix) frame_->Drop(); } void CodeGenerator::VisitBinaryOperation(BinaryOperation* node) { Comment cmnt(masm_, "[ BinaryOperation"); Token::Value op = node->op(); // According to ECMA-262 section 11.11, page 58, the binary logical // operators must yield the result of one of the two expressions // before any ToBoolean() conversions. This means that the value // produced by a && or || operator is not necessarily a boolean. // NOTE: If the left hand side produces a materialized value (not // control flow), we force the right hand side to do the same. This // is necessary because we assume that if we get control flow on the // last path out of an expression we got it on all paths. if (op == Token::AND) { JumpTarget is_true; ControlDestination dest(&is_true, destination()->false_target(), true); LoadCondition(node->left(), &dest, false); if (dest.false_was_fall_through()) { // The current false target was used as the fall-through. If // there are no dangling jumps to is_true then the left // subexpression was unconditionally false. Otherwise we have // paths where we do have to evaluate the right subexpression. if (is_true.is_linked()) { // We need to compile the right subexpression. If the jump to // the current false target was a forward jump then we have a // valid frame, we have just bound the false target, and we // have to jump around the code for the right subexpression. if (has_valid_frame()) { destination()->false_target()->Unuse(); destination()->false_target()->Jump(); } is_true.Bind(); // The left subexpression compiled to control flow, so the // right one is free to do so as well. LoadCondition(node->right(), destination(), false); } else { // We have actually just jumped to or bound the current false // target but the current control destination is not marked as // used. destination()->Use(false); } } else if (dest.is_used()) { // The left subexpression compiled to control flow (and is_true // was just bound), so the right is free to do so as well. LoadCondition(node->right(), destination(), false); } else { // We have a materialized value on the frame, so we exit with // one on all paths. There are possibly also jumps to is_true // from nested subexpressions. JumpTarget pop_and_continue; JumpTarget exit; // Avoid popping the result if it converts to 'false' using the // standard ToBoolean() conversion as described in ECMA-262, // section 9.2, page 30. // // Duplicate the TOS value. The duplicate will be popped by // ToBoolean. frame_->Dup(); ControlDestination dest(&pop_and_continue, &exit, true); ToBoolean(&dest); // Pop the result of evaluating the first part. frame_->Drop(); // Compile right side expression. is_true.Bind(); Load(node->right()); // Exit (always with a materialized value). exit.Bind(); } } else if (op == Token::OR) { JumpTarget is_false; ControlDestination dest(destination()->true_target(), &is_false, false); LoadCondition(node->left(), &dest, false); if (dest.true_was_fall_through()) { // The current true target was used as the fall-through. If // there are no dangling jumps to is_false then the left // subexpression was unconditionally true. Otherwise we have // paths where we do have to evaluate the right subexpression. if (is_false.is_linked()) { // We need to compile the right subexpression. If the jump to // the current true target was a forward jump then we have a // valid frame, we have just bound the true target, and we // have to jump around the code for the right subexpression. if (has_valid_frame()) { destination()->true_target()->Unuse(); destination()->true_target()->Jump(); } is_false.Bind(); // The left subexpression compiled to control flow, so the // right one is free to do so as well. LoadCondition(node->right(), destination(), false); } else { // We have just jumped to or bound the current true target but // the current control destination is not marked as used. destination()->Use(true); } } else if (dest.is_used()) { // The left subexpression compiled to control flow (and is_false // was just bound), so the right is free to do so as well. LoadCondition(node->right(), destination(), false); } else { // We have a materialized value on the frame, so we exit with // one on all paths. There are possibly also jumps to is_false // from nested subexpressions. JumpTarget pop_and_continue; JumpTarget exit; // Avoid popping the result if it converts to 'true' using the // standard ToBoolean() conversion as described in ECMA-262, // section 9.2, page 30. // // Duplicate the TOS value. The duplicate will be popped by // ToBoolean. frame_->Dup(); ControlDestination dest(&exit, &pop_and_continue, false); ToBoolean(&dest); // Pop the result of evaluating the first part. frame_->Drop(); // Compile right side expression. is_false.Bind(); Load(node->right()); // Exit (always with a materialized value). exit.Bind(); } } else { // NOTE: The code below assumes that the slow cases (calls to runtime) // never return a constant/immutable object. OverwriteMode overwrite_mode = NO_OVERWRITE; if (node->left()->AsBinaryOperation() != NULL && node->left()->AsBinaryOperation()->ResultOverwriteAllowed()) { overwrite_mode = OVERWRITE_LEFT; } else if (node->right()->AsBinaryOperation() != NULL && node->right()->AsBinaryOperation()->ResultOverwriteAllowed()) { overwrite_mode = OVERWRITE_RIGHT; } Load(node->left()); Load(node->right()); GenericBinaryOperation(node->op(), node->type(), overwrite_mode); } } void CodeGenerator::VisitThisFunction(ThisFunction* node) { frame_->PushFunction(); } void CodeGenerator::VisitCompareOperation(CompareOperation* node) { Comment cmnt(masm_, "[ CompareOperation"); bool left_already_loaded = false; // Get the expressions from the node. Expression* left = node->left(); Expression* right = node->right(); Token::Value op = node->op(); // To make typeof testing for natives implemented in JavaScript really // efficient, we generate special code for expressions of the form: // 'typeof <expression> == <string>'. UnaryOperation* operation = left->AsUnaryOperation(); if ((op == Token::EQ || op == Token::EQ_STRICT) && (operation != NULL && operation->op() == Token::TYPEOF) && (right->AsLiteral() != NULL && right->AsLiteral()->handle()->IsString())) { Handle<String> check(String::cast(*right->AsLiteral()->handle())); // Load the operand and move it to a register. LoadTypeofExpression(operation->expression()); Result answer = frame_->Pop(); answer.ToRegister(); if (check->Equals(Heap::number_symbol())) { __ test(answer.reg(), Immediate(kSmiTagMask)); destination()->true_target()->Branch(zero); frame_->Spill(answer.reg()); __ mov(answer.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset)); __ cmp(answer.reg(), Factory::heap_number_map()); answer.Unuse(); destination()->Split(equal); } else if (check->Equals(Heap::string_symbol())) { __ test(answer.reg(), Immediate(kSmiTagMask)); destination()->false_target()->Branch(zero); // It can be an undetectable string object. Result temp = allocator()->Allocate(); ASSERT(temp.is_valid()); __ mov(temp.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset)); __ movzx_b(temp.reg(), FieldOperand(temp.reg(), Map::kBitFieldOffset)); __ test(temp.reg(), Immediate(1 << Map::kIsUndetectable)); destination()->false_target()->Branch(not_zero); __ CmpObjectType(answer.reg(), FIRST_NONSTRING_TYPE, temp.reg()); temp.Unuse(); answer.Unuse(); destination()->Split(below); } else if (check->Equals(Heap::boolean_symbol())) { __ cmp(answer.reg(), Factory::true_value()); destination()->true_target()->Branch(equal); __ cmp(answer.reg(), Factory::false_value()); answer.Unuse(); destination()->Split(equal); } else if (check->Equals(Heap::undefined_symbol())) { __ cmp(answer.reg(), Factory::undefined_value()); destination()->true_target()->Branch(equal); __ test(answer.reg(), Immediate(kSmiTagMask)); destination()->false_target()->Branch(zero); // It can be an undetectable object. frame_->Spill(answer.reg()); __ mov(answer.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset)); __ movzx_b(answer.reg(), FieldOperand(answer.reg(), Map::kBitFieldOffset)); __ test(answer.reg(), Immediate(1 << Map::kIsUndetectable)); answer.Unuse(); destination()->Split(not_zero); } else if (check->Equals(Heap::function_symbol())) { __ test(answer.reg(), Immediate(kSmiTagMask)); destination()->false_target()->Branch(zero); frame_->Spill(answer.reg()); __ CmpObjectType(answer.reg(), JS_FUNCTION_TYPE, answer.reg()); destination()->true_target()->Branch(equal); // Regular expressions are callable so typeof == 'function'. __ CmpInstanceType(answer.reg(), JS_REGEXP_TYPE); answer.Unuse(); destination()->Split(equal); } else if (check->Equals(Heap::object_symbol())) { __ test(answer.reg(), Immediate(kSmiTagMask)); destination()->false_target()->Branch(zero); __ cmp(answer.reg(), Factory::null_value()); destination()->true_target()->Branch(equal); Result map = allocator()->Allocate(); ASSERT(map.is_valid()); // Regular expressions are typeof == 'function', not 'object'. __ CmpObjectType(answer.reg(), JS_REGEXP_TYPE, map.reg()); destination()->false_target()->Branch(equal); // It can be an undetectable object. __ movzx_b(map.reg(), FieldOperand(map.reg(), Map::kBitFieldOffset)); __ test(map.reg(), Immediate(1 << Map::kIsUndetectable)); destination()->false_target()->Branch(not_zero); __ mov(map.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset)); __ movzx_b(map.reg(), FieldOperand(map.reg(), Map::kInstanceTypeOffset)); __ cmp(map.reg(), FIRST_JS_OBJECT_TYPE); destination()->false_target()->Branch(less); __ cmp(map.reg(), LAST_JS_OBJECT_TYPE); answer.Unuse(); map.Unuse(); destination()->Split(less_equal); } else { // Uncommon case: typeof testing against a string literal that is // never returned from the typeof operator. answer.Unuse(); destination()->Goto(false); } return; } else if (op == Token::LT && right->AsLiteral() != NULL && right->AsLiteral()->handle()->IsHeapNumber()) { Handle<HeapNumber> check(HeapNumber::cast(*right->AsLiteral()->handle())); if (check->value() == 2147483648.0) { // 0x80000000. Load(left); left_already_loaded = true; Result lhs = frame_->Pop(); lhs.ToRegister(); __ test(lhs.reg(), Immediate(kSmiTagMask)); destination()->true_target()->Branch(zero); // All Smis are less. Result scratch = allocator()->Allocate(); ASSERT(scratch.is_valid()); __ mov(scratch.reg(), FieldOperand(lhs.reg(), HeapObject::kMapOffset)); __ cmp(scratch.reg(), Factory::heap_number_map()); JumpTarget not_a_number; not_a_number.Branch(not_equal, &lhs); __ mov(scratch.reg(), FieldOperand(lhs.reg(), HeapNumber::kExponentOffset)); __ cmp(Operand(scratch.reg()), Immediate(0xfff00000)); not_a_number.Branch(above_equal, &lhs); // It's a negative NaN or -Inf. const uint32_t borderline_exponent = (HeapNumber::kExponentBias + 31) << HeapNumber::kExponentShift; __ cmp(Operand(scratch.reg()), Immediate(borderline_exponent)); scratch.Unuse(); lhs.Unuse(); destination()->true_target()->Branch(less); destination()->false_target()->Jump(); not_a_number.Bind(&lhs); frame_->Push(&lhs); } } Condition cc = no_condition; bool strict = false; switch (op) { case Token::EQ_STRICT: strict = true; // Fall through case Token::EQ: cc = equal; break; case Token::LT: cc = less; break; case Token::GT: cc = greater; break; case Token::LTE: cc = less_equal; break; case Token::GTE: cc = greater_equal; break; case Token::IN: { if (!left_already_loaded) Load(left); Load(right); Result answer = frame_->InvokeBuiltin(Builtins::IN, CALL_FUNCTION, 2); frame_->Push(&answer); // push the result return; } case Token::INSTANCEOF: { if (!left_already_loaded) Load(left); Load(right); InstanceofStub stub; Result answer = frame_->CallStub(&stub, 2); answer.ToRegister(); __ test(answer.reg(), Operand(answer.reg())); answer.Unuse(); destination()->Split(zero); return; } default: UNREACHABLE(); } if (!left_already_loaded) Load(left); Load(right); Comparison(node, cc, strict, destination()); } #ifdef DEBUG bool CodeGenerator::HasValidEntryRegisters() { return (allocator()->count(eax) == (frame()->is_used(eax) ? 1 : 0)) && (allocator()->count(ebx) == (frame()->is_used(ebx) ? 1 : 0)) && (allocator()->count(ecx) == (frame()->is_used(ecx) ? 1 : 0)) && (allocator()->count(edx) == (frame()->is_used(edx) ? 1 : 0)) && (allocator()->count(edi) == (frame()->is_used(edi) ? 1 : 0)); } #endif // Emit a LoadIC call to get the value from receiver and leave it in // dst. class DeferredReferenceGetNamedValue: public DeferredCode { public: DeferredReferenceGetNamedValue(Register dst, Register receiver, Handle<String> name) : dst_(dst), receiver_(receiver), name_(name) { set_comment("[ DeferredReferenceGetNamedValue"); } virtual void Generate(); Label* patch_site() { return &patch_site_; } private: Label patch_site_; Register dst_; Register receiver_; Handle<String> name_; }; void DeferredReferenceGetNamedValue::Generate() { if (!receiver_.is(eax)) { __ mov(eax, receiver_); } __ Set(ecx, Immediate(name_)); Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize)); __ call(ic, RelocInfo::CODE_TARGET); // The call must be followed by a test eax instruction to indicate // that the inobject property case was inlined. // // Store the delta to the map check instruction here in the test // instruction. Use masm_-> instead of the __ macro since the // latter can't return a value. int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site()); // Here we use masm_-> instead of the __ macro because this is the // instruction that gets patched and coverage code gets in the way. masm_->test(eax, Immediate(-delta_to_patch_site)); __ IncrementCounter(&Counters::named_load_inline_miss, 1); if (!dst_.is(eax)) __ mov(dst_, eax); } class DeferredReferenceGetKeyedValue: public DeferredCode { public: explicit DeferredReferenceGetKeyedValue(Register dst, Register receiver, Register key) : dst_(dst), receiver_(receiver), key_(key) { set_comment("[ DeferredReferenceGetKeyedValue"); } virtual void Generate(); Label* patch_site() { return &patch_site_; } private: Label patch_site_; Register dst_; Register receiver_; Register key_; }; void DeferredReferenceGetKeyedValue::Generate() { if (!receiver_.is(eax)) { // Register eax is available for key. if (!key_.is(eax)) { __ mov(eax, key_); } if (!receiver_.is(edx)) { __ mov(edx, receiver_); } } else if (!key_.is(edx)) { // Register edx is available for receiver. if (!receiver_.is(edx)) { __ mov(edx, receiver_); } if (!key_.is(eax)) { __ mov(eax, key_); } } else { __ xchg(edx, eax); } // Calculate the delta from the IC call instruction to the map check // cmp instruction in the inlined version. This delta is stored in // a test(eax, delta) instruction after the call so that we can find // it in the IC initialization code and patch the cmp instruction. // This means that we cannot allow test instructions after calls to // KeyedLoadIC stubs in other places. Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize)); __ call(ic, RelocInfo::CODE_TARGET); // The delta from the start of the map-compare instruction to the // test instruction. We use masm_-> directly here instead of the __ // macro because the macro sometimes uses macro expansion to turn // into something that can't return a value. This is encountered // when doing generated code coverage tests. int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site()); // Here we use masm_-> instead of the __ macro because this is the // instruction that gets patched and coverage code gets in the way. masm_->test(eax, Immediate(-delta_to_patch_site)); __ IncrementCounter(&Counters::keyed_load_inline_miss, 1); if (!dst_.is(eax)) __ mov(dst_, eax); } class DeferredReferenceSetKeyedValue: public DeferredCode { public: DeferredReferenceSetKeyedValue(Register value, Register key, Register receiver) : value_(value), key_(key), receiver_(receiver) { set_comment("[ DeferredReferenceSetKeyedValue"); } virtual void Generate(); Label* patch_site() { return &patch_site_; } private: Register value_; Register key_; Register receiver_; Label patch_site_; }; void DeferredReferenceSetKeyedValue::Generate() { __ IncrementCounter(&Counters::keyed_store_inline_miss, 1); // Push receiver and key arguments on the stack. __ push(receiver_); __ push(key_); // Move value argument to eax as expected by the IC stub. if (!value_.is(eax)) __ mov(eax, value_); // Call the IC stub. Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize)); __ call(ic, RelocInfo::CODE_TARGET); // The delta from the start of the map-compare instruction to the // test instruction. We use masm_-> directly here instead of the // __ macro because the macro sometimes uses macro expansion to turn // into something that can't return a value. This is encountered // when doing generated code coverage tests. int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site()); // Here we use masm_-> instead of the __ macro because this is the // instruction that gets patched and coverage code gets in the way. masm_->test(eax, Immediate(-delta_to_patch_site)); // Restore value (returned from store IC), key and receiver // registers. if (!value_.is(eax)) __ mov(value_, eax); __ pop(key_); __ pop(receiver_); } Result CodeGenerator::EmitNamedLoad(Handle<String> name, bool is_contextual) { #ifdef DEBUG int original_height = frame()->height(); #endif Result result; // Do not inline the inobject property case for loads from the global // object. Also do not inline for unoptimized code. This saves time in // the code generator. Unoptimized code is toplevel code or code that is // not in a loop. if (is_contextual || scope()->is_global_scope() || loop_nesting() == 0) { Comment cmnt(masm(), "[ Load from named Property"); frame()->Push(name); RelocInfo::Mode mode = is_contextual ? RelocInfo::CODE_TARGET_CONTEXT : RelocInfo::CODE_TARGET; result = frame()->CallLoadIC(mode); // A test eax instruction following the call signals that the inobject // property case was inlined. Ensure that there is not a test eax // instruction here. __ nop(); } else { // Inline the inobject property case. Comment cmnt(masm(), "[ Inlined named property load"); Result receiver = frame()->Pop(); receiver.ToRegister(); result = allocator()->Allocate(); ASSERT(result.is_valid()); DeferredReferenceGetNamedValue* deferred = new DeferredReferenceGetNamedValue(result.reg(), receiver.reg(), name); // Check that the receiver is a heap object. __ test(receiver.reg(), Immediate(kSmiTagMask)); deferred->Branch(zero); __ bind(deferred->patch_site()); // This is the map check instruction that will be patched (so we can't // use the double underscore macro that may insert instructions). // Initially use an invalid map to force a failure. masm()->cmp(FieldOperand(receiver.reg(), HeapObject::kMapOffset), Immediate(Factory::null_value())); // This branch is always a forwards branch so it's always a fixed size // which allows the assert below to succeed and patching to work. deferred->Branch(not_equal); // The delta from the patch label to the load offset must be statically // known. ASSERT(masm()->SizeOfCodeGeneratedSince(deferred->patch_site()) == LoadIC::kOffsetToLoadInstruction); // The initial (invalid) offset has to be large enough to force a 32-bit // instruction encoding to allow patching with an arbitrary offset. Use // kMaxInt (minus kHeapObjectTag). int offset = kMaxInt; masm()->mov(result.reg(), FieldOperand(receiver.reg(), offset)); __ IncrementCounter(&Counters::named_load_inline, 1); deferred->BindExit(); } ASSERT(frame()->height() == original_height - 1); return result; } Result CodeGenerator::EmitNamedStore(Handle<String> name, bool is_contextual) { #ifdef DEBUG int expected_height = frame()->height() - (is_contextual ? 1 : 2); #endif Result result = frame()->CallStoreIC(name, is_contextual); ASSERT_EQ(expected_height, frame()->height()); return result; } Result CodeGenerator::EmitKeyedLoad() { #ifdef DEBUG int original_height = frame()->height(); #endif Result result; // Inline array load code if inside of a loop. We do not know the // receiver map yet, so we initially generate the code with a check // against an invalid map. In the inline cache code, we patch the map // check if appropriate. if (loop_nesting() > 0) { Comment cmnt(masm_, "[ Inlined load from keyed Property"); Result key = frame_->Pop(); Result receiver = frame_->Pop(); key.ToRegister(); receiver.ToRegister(); // Use a fresh temporary to load the elements without destroying // the receiver which is needed for the deferred slow case. Result elements = allocator()->Allocate(); ASSERT(elements.is_valid()); // Use a fresh temporary for the index and later the loaded // value. result = allocator()->Allocate(); ASSERT(result.is_valid()); DeferredReferenceGetKeyedValue* deferred = new DeferredReferenceGetKeyedValue(result.reg(), receiver.reg(), key.reg()); __ test(receiver.reg(), Immediate(kSmiTagMask)); deferred->Branch(zero); // Initially, use an invalid map. The map is patched in the IC // initialization code. __ bind(deferred->patch_site()); // Use masm-> here instead of the double underscore macro since extra // coverage code can interfere with the patching. masm_->cmp(FieldOperand(receiver.reg(), HeapObject::kMapOffset), Immediate(Factory::null_value())); deferred->Branch(not_equal); // Check that the key is a smi. __ test(key.reg(), Immediate(kSmiTagMask)); deferred->Branch(not_zero); // Get the elements array from the receiver and check that it // is not a dictionary. __ mov(elements.reg(), FieldOperand(receiver.reg(), JSObject::kElementsOffset)); __ cmp(FieldOperand(elements.reg(), HeapObject::kMapOffset), Immediate(Factory::fixed_array_map())); deferred->Branch(not_equal); // Shift the key to get the actual index value and check that // it is within bounds. __ mov(result.reg(), key.reg()); __ SmiUntag(result.reg()); __ cmp(result.reg(), FieldOperand(elements.reg(), FixedArray::kLengthOffset)); deferred->Branch(above_equal); // Load and check that the result is not the hole. __ mov(result.reg(), Operand(elements.reg(), result.reg(), times_4, FixedArray::kHeaderSize - kHeapObjectTag)); elements.Unuse(); __ cmp(Operand(result.reg()), Immediate(Factory::the_hole_value())); deferred->Branch(equal); __ IncrementCounter(&Counters::keyed_load_inline, 1); deferred->BindExit(); } else { Comment cmnt(masm_, "[ Load from keyed Property"); result = frame_->CallKeyedLoadIC(RelocInfo::CODE_TARGET); // Make sure that we do not have a test instruction after the // call. A test instruction after the call is used to // indicate that we have generated an inline version of the // keyed load. The explicit nop instruction is here because // the push that follows might be peep-hole optimized away. __ nop(); } ASSERT(frame()->height() == original_height - 2); return result; } Result CodeGenerator::EmitKeyedStore(StaticType* key_type) { #ifdef DEBUG int original_height = frame()->height(); #endif Result result; // Generate inlined version of the keyed store if the code is in a loop // and the key is likely to be a smi. if (loop_nesting() > 0 && key_type->IsLikelySmi()) { Comment cmnt(masm(), "[ Inlined store to keyed Property"); // Get the receiver, key and value into registers. result = frame()->Pop(); Result key = frame()->Pop(); Result receiver = frame()->Pop(); Result tmp = allocator_->Allocate(); ASSERT(tmp.is_valid()); // Determine whether the value is a constant before putting it in a // register. bool value_is_constant = result.is_constant(); // Make sure that value, key and receiver are in registers. result.ToRegister(); key.ToRegister(); receiver.ToRegister(); DeferredReferenceSetKeyedValue* deferred = new DeferredReferenceSetKeyedValue(result.reg(), key.reg(), receiver.reg()); // Check that the value is a smi if it is not a constant. We can skip // the write barrier for smis and constants. if (!value_is_constant) { __ test(result.reg(), Immediate(kSmiTagMask)); deferred->Branch(not_zero); } // Check that the key is a non-negative smi. __ test(key.reg(), Immediate(kSmiTagMask | 0x80000000)); deferred->Branch(not_zero); // Check that the receiver is not a smi. __ test(receiver.reg(), Immediate(kSmiTagMask)); deferred->Branch(zero); // Check that the receiver is a JSArray. __ mov(tmp.reg(), FieldOperand(receiver.reg(), HeapObject::kMapOffset)); __ movzx_b(tmp.reg(), FieldOperand(tmp.reg(), Map::kInstanceTypeOffset)); __ cmp(tmp.reg(), JS_ARRAY_TYPE); deferred->Branch(not_equal); // Check that the key is within bounds. Both the key and the length of // the JSArray are smis. __ cmp(key.reg(), FieldOperand(receiver.reg(), JSArray::kLengthOffset)); deferred->Branch(greater_equal); // Get the elements array from the receiver and check that it is not a // dictionary. __ mov(tmp.reg(), FieldOperand(receiver.reg(), JSObject::kElementsOffset)); // Bind the deferred code patch site to be able to locate the fixed // array map comparison. When debugging, we patch this comparison to // always fail so that we will hit the IC call in the deferred code // which will allow the debugger to break for fast case stores. __ bind(deferred->patch_site()); __ cmp(FieldOperand(tmp.reg(), HeapObject::kMapOffset), Immediate(Factory::fixed_array_map())); deferred->Branch(not_equal); // Store the value. __ mov(Operand(tmp.reg(), key.reg(), times_2, FixedArray::kHeaderSize - kHeapObjectTag), result.reg()); __ IncrementCounter(&Counters::keyed_store_inline, 1); deferred->BindExit(); } else { result = frame()->CallKeyedStoreIC(); // Make sure that we do not have a test instruction after the // call. A test instruction after the call is used to // indicate that we have generated an inline version of the // keyed store. __ nop(); frame()->Drop(2); } ASSERT(frame()->height() == original_height - 3); return result; } #undef __ #define __ ACCESS_MASM(masm) Handle<String> Reference::GetName() { ASSERT(type_ == NAMED); Property* property = expression_->AsProperty(); if (property == NULL) { // Global variable reference treated as a named property reference. VariableProxy* proxy = expression_->AsVariableProxy(); ASSERT(proxy->AsVariable() != NULL); ASSERT(proxy->AsVariable()->is_global()); return proxy->name(); } else { Literal* raw_name = property->key()->AsLiteral(); ASSERT(raw_name != NULL); return Handle<String>::cast(raw_name->handle()); } } void Reference::GetValue() { ASSERT(!cgen_->in_spilled_code()); ASSERT(cgen_->HasValidEntryRegisters()); ASSERT(!is_illegal()); MacroAssembler* masm = cgen_->masm(); // Record the source position for the property load. Property* property = expression_->AsProperty(); if (property != NULL) { cgen_->CodeForSourcePosition(property->position()); } switch (type_) { case SLOT: { Comment cmnt(masm, "[ Load from Slot"); Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot(); ASSERT(slot != NULL); Result result = cgen_->LoadFromSlotCheckForArguments(slot, NOT_INSIDE_TYPEOF); if (!persist_after_get_) set_unloaded(); cgen_->frame()->Push(&result); break; } case NAMED: { Variable* var = expression_->AsVariableProxy()->AsVariable(); bool is_global = var != NULL; ASSERT(!is_global || var->is_global()); if (persist_after_get_) cgen_->frame()->Dup(); Result result = cgen_->EmitNamedLoad(GetName(), is_global); if (!persist_after_get_) set_unloaded(); cgen_->frame()->Push(&result); break; } case KEYED: { if (persist_after_get_) { cgen_->frame()->PushElementAt(1); cgen_->frame()->PushElementAt(1); } Result value = cgen_->EmitKeyedLoad(); cgen_->frame()->Push(&value); if (!persist_after_get_) set_unloaded(); break; } default: UNREACHABLE(); } } void Reference::TakeValue() { // For non-constant frame-allocated slots, we invalidate the value in the // slot. For all others, we fall back on GetValue. ASSERT(!cgen_->in_spilled_code()); ASSERT(!is_illegal()); if (type_ != SLOT) { GetValue(); return; } Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot(); ASSERT(slot != NULL); if (slot->type() == Slot::LOOKUP || slot->type() == Slot::CONTEXT || slot->var()->mode() == Variable::CONST || slot->is_arguments()) { GetValue(); return; } // Only non-constant, frame-allocated parameters and locals can // reach here. Be careful not to use the optimizations for arguments // object access since it may not have been initialized yet. ASSERT(!slot->is_arguments()); if (slot->type() == Slot::PARAMETER) { cgen_->frame()->TakeParameterAt(slot->index()); } else { ASSERT(slot->type() == Slot::LOCAL); cgen_->frame()->TakeLocalAt(slot->index()); } ASSERT(persist_after_get_); // Do not unload the reference, because it is used in SetValue. } void Reference::SetValue(InitState init_state) { ASSERT(cgen_->HasValidEntryRegisters()); ASSERT(!is_illegal()); MacroAssembler* masm = cgen_->masm(); switch (type_) { case SLOT: { Comment cmnt(masm, "[ Store to Slot"); Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot(); ASSERT(slot != NULL); cgen_->StoreToSlot(slot, init_state); set_unloaded(); break; } case NAMED: { Comment cmnt(masm, "[ Store to named Property"); Result answer = cgen_->EmitNamedStore(GetName(), false); cgen_->frame()->Push(&answer); set_unloaded(); break; } case KEYED: { Comment cmnt(masm, "[ Store to keyed Property"); Property* property = expression()->AsProperty(); ASSERT(property != NULL); Result answer = cgen_->EmitKeyedStore(property->key()->type()); cgen_->frame()->Push(&answer); set_unloaded(); break; } case UNLOADED: case ILLEGAL: UNREACHABLE(); } } void FastNewClosureStub::Generate(MacroAssembler* masm) { // Clone the boilerplate in new space. Set the context to the // current context in esi. Label gc; __ AllocateInNewSpace(JSFunction::kSize, eax, ebx, ecx, &gc, TAG_OBJECT); // Get the boilerplate function from the stack. __ mov(edx, Operand(esp, 1 * kPointerSize)); // Compute the function map in the current global context and set that // as the map of the allocated object. __ mov(ecx, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX))); __ mov(ecx, FieldOperand(ecx, GlobalObject::kGlobalContextOffset)); __ mov(ecx, Operand(ecx, Context::SlotOffset(Context::FUNCTION_MAP_INDEX))); __ mov(FieldOperand(eax, JSObject::kMapOffset), ecx); // Clone the rest of the boilerplate fields. We don't have to update // the write barrier because the allocated object is in new space. for (int offset = kPointerSize; offset < JSFunction::kSize; offset += kPointerSize) { if (offset == JSFunction::kContextOffset) { __ mov(FieldOperand(eax, offset), esi); } else { __ mov(ebx, FieldOperand(edx, offset)); __ mov(FieldOperand(eax, offset), ebx); } } // Return and remove the on-stack parameter. __ ret(1 * kPointerSize); // Create a new closure through the slower runtime call. __ bind(&gc); __ pop(ecx); // Temporarily remove return address. __ pop(edx); __ push(esi); __ push(edx); __ push(ecx); // Restore return address. __ TailCallRuntime(ExternalReference(Runtime::kNewClosure), 2, 1); } void FastNewContextStub::Generate(MacroAssembler* masm) { // Try to allocate the context in new space. Label gc; int length = slots_ + Context::MIN_CONTEXT_SLOTS; __ AllocateInNewSpace((length * kPointerSize) + FixedArray::kHeaderSize, eax, ebx, ecx, &gc, TAG_OBJECT); // Get the function from the stack. __ mov(ecx, Operand(esp, 1 * kPointerSize)); // Setup the object header. __ mov(FieldOperand(eax, HeapObject::kMapOffset), Factory::context_map()); __ mov(FieldOperand(eax, Array::kLengthOffset), Immediate(length)); // Setup the fixed slots. __ xor_(ebx, Operand(ebx)); // Set to NULL. __ mov(Operand(eax, Context::SlotOffset(Context::CLOSURE_INDEX)), ecx); __ mov(Operand(eax, Context::SlotOffset(Context::FCONTEXT_INDEX)), eax); __ mov(Operand(eax, Context::SlotOffset(Context::PREVIOUS_INDEX)), ebx); __ mov(Operand(eax, Context::SlotOffset(Context::EXTENSION_INDEX)), ebx); // Copy the global object from the surrounding context. We go through the // context in the function (ecx) to match the allocation behavior we have // in the runtime system (see Heap::AllocateFunctionContext). __ mov(ebx, FieldOperand(ecx, JSFunction::kContextOffset)); __ mov(ebx, Operand(ebx, Context::SlotOffset(Context::GLOBAL_INDEX))); __ mov(Operand(eax, Context::SlotOffset(Context::GLOBAL_INDEX)), ebx); // Initialize the rest of the slots to undefined. __ mov(ebx, Factory::undefined_value()); for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) { __ mov(Operand(eax, Context::SlotOffset(i)), ebx); } // Return and remove the on-stack parameter. __ mov(esi, Operand(eax)); __ ret(1 * kPointerSize); // Need to collect. Call into runtime system. __ bind(&gc); __ TailCallRuntime(ExternalReference(Runtime::kNewContext), 1, 1); } void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) { // Stack layout on entry: // // [esp + kPointerSize]: constant elements. // [esp + (2 * kPointerSize)]: literal index. // [esp + (3 * kPointerSize)]: literals array. // All sizes here are multiples of kPointerSize. int elements_size = (length_ > 0) ? FixedArray::SizeFor(length_) : 0; int size = JSArray::kSize + elements_size; // Load boilerplate object into ecx and check if we need to create a // boilerplate. Label slow_case; __ mov(ecx, Operand(esp, 3 * kPointerSize)); __ mov(eax, Operand(esp, 2 * kPointerSize)); ASSERT((kPointerSize == 4) && (kSmiTagSize == 1) && (kSmiTag == 0)); __ mov(ecx, FieldOperand(ecx, eax, times_2, FixedArray::kHeaderSize)); __ cmp(ecx, Factory::undefined_value()); __ j(equal, &slow_case); // Allocate both the JS array and the elements array in one big // allocation. This avoids multiple limit checks. __ AllocateInNewSpace(size, eax, ebx, edx, &slow_case, TAG_OBJECT); // Copy the JS array part. for (int i = 0; i < JSArray::kSize; i += kPointerSize) { if ((i != JSArray::kElementsOffset) || (length_ == 0)) { __ mov(ebx, FieldOperand(ecx, i)); __ mov(FieldOperand(eax, i), ebx); } } if (length_ > 0) { // Get hold of the elements array of the boilerplate and setup the // elements pointer in the resulting object. __ mov(ecx, FieldOperand(ecx, JSArray::kElementsOffset)); __ lea(edx, Operand(eax, JSArray::kSize)); __ mov(FieldOperand(eax, JSArray::kElementsOffset), edx); // Copy the elements array. for (int i = 0; i < elements_size; i += kPointerSize) { __ mov(ebx, FieldOperand(ecx, i)); __ mov(FieldOperand(edx, i), ebx); } } // Return and remove the on-stack parameters. __ ret(3 * kPointerSize); __ bind(&slow_case); ExternalReference runtime(Runtime::kCreateArrayLiteralShallow); __ TailCallRuntime(runtime, 3, 1); } // NOTE: The stub does not handle the inlined cases (Smis, Booleans, undefined). void ToBooleanStub::Generate(MacroAssembler* masm) { Label false_result, true_result, not_string; __ mov(eax, Operand(esp, 1 * kPointerSize)); // 'null' => false. __ cmp(eax, Factory::null_value()); __ j(equal, &false_result); // Get the map and type of the heap object. __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset)); __ movzx_b(ecx, FieldOperand(edx, Map::kInstanceTypeOffset)); // Undetectable => false. __ movzx_b(ebx, FieldOperand(edx, Map::kBitFieldOffset)); __ and_(ebx, 1 << Map::kIsUndetectable); __ j(not_zero, &false_result); // JavaScript object => true. __ cmp(ecx, FIRST_JS_OBJECT_TYPE); __ j(above_equal, &true_result); // String value => false iff empty. __ cmp(ecx, FIRST_NONSTRING_TYPE); __ j(above_equal, ¬_string); __ mov(edx, FieldOperand(eax, String::kLengthOffset)); __ test(edx, Operand(edx)); __ j(zero, &false_result); __ jmp(&true_result); __ bind(¬_string); // HeapNumber => false iff +0, -0, or NaN. __ cmp(edx, Factory::heap_number_map()); __ j(not_equal, &true_result); __ fldz(); __ fld_d(FieldOperand(eax, HeapNumber::kValueOffset)); __ FCmp(); __ j(zero, &false_result); // Fall through to |true_result|. // Return 1/0 for true/false in eax. __ bind(&true_result); __ mov(eax, 1); __ ret(1 * kPointerSize); __ bind(&false_result); __ mov(eax, 0); __ ret(1 * kPointerSize); } void GenericBinaryOpStub::GenerateCall( MacroAssembler* masm, Register left, Register right) { if (!ArgsInRegistersSupported()) { // Pass arguments on the stack. __ push(left); __ push(right); } else { // The calling convention with registers is left in edx and right in eax. Register left_arg = edx; Register right_arg = eax; if (!(left.is(left_arg) && right.is(right_arg))) { if (left.is(right_arg) && right.is(left_arg)) { if (IsOperationCommutative()) { SetArgsReversed(); } else { __ xchg(left, right); } } else if (left.is(left_arg)) { __ mov(right_arg, right); } else if (right.is(right_arg)) { __ mov(left_arg, left); } else if (left.is(right_arg)) { if (IsOperationCommutative()) { __ mov(left_arg, right); SetArgsReversed(); } else { // Order of moves important to avoid destroying left argument. __ mov(left_arg, left); __ mov(right_arg, right); } } else if (right.is(left_arg)) { if (IsOperationCommutative()) { __ mov(right_arg, left); SetArgsReversed(); } else { // Order of moves important to avoid destroying right argument. __ mov(right_arg, right); __ mov(left_arg, left); } } else { // Order of moves is not important. __ mov(left_arg, left); __ mov(right_arg, right); } } // Update flags to indicate that arguments are in registers. SetArgsInRegisters(); __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1); } // Call the stub. __ CallStub(this); } void GenericBinaryOpStub::GenerateCall( MacroAssembler* masm, Register left, Smi* right) { if (!ArgsInRegistersSupported()) { // Pass arguments on the stack. __ push(left); __ push(Immediate(right)); } else { // The calling convention with registers is left in edx and right in eax. Register left_arg = edx; Register right_arg = eax; if (left.is(left_arg)) { __ mov(right_arg, Immediate(right)); } else if (left.is(right_arg) && IsOperationCommutative()) { __ mov(left_arg, Immediate(right)); SetArgsReversed(); } else { // For non-commutative operations, left and right_arg might be // the same register. Therefore, the order of the moves is // important here in order to not overwrite left before moving // it to left_arg. __ mov(left_arg, left); __ mov(right_arg, Immediate(right)); } // Update flags to indicate that arguments are in registers. SetArgsInRegisters(); __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1); } // Call the stub. __ CallStub(this); } void GenericBinaryOpStub::GenerateCall( MacroAssembler* masm, Smi* left, Register right) { if (!ArgsInRegistersSupported()) { // Pass arguments on the stack. __ push(Immediate(left)); __ push(right); } else { // The calling convention with registers is left in edx and right in eax. Register left_arg = edx; Register right_arg = eax; if (right.is(right_arg)) { __ mov(left_arg, Immediate(left)); } else if (right.is(left_arg) && IsOperationCommutative()) { __ mov(right_arg, Immediate(left)); SetArgsReversed(); } else { // For non-commutative operations, right and left_arg might be // the same register. Therefore, the order of the moves is // important here in order to not overwrite right before moving // it to right_arg. __ mov(right_arg, right); __ mov(left_arg, Immediate(left)); } // Update flags to indicate that arguments are in registers. SetArgsInRegisters(); __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1); } // Call the stub. __ CallStub(this); } Result GenericBinaryOpStub::GenerateCall(MacroAssembler* masm, VirtualFrame* frame, Result* left, Result* right) { if (ArgsInRegistersSupported()) { SetArgsInRegisters(); return frame->CallStub(this, left, right); } else { frame->Push(left); frame->Push(right); return frame->CallStub(this, 2); } } void GenericBinaryOpStub::GenerateSmiCode(MacroAssembler* masm, Label* slow) { // 1. Move arguments into edx, eax except for DIV and MOD, which need the // dividend in eax and edx free for the division. Use eax, ebx for those. Comment load_comment(masm, "-- Load arguments"); Register left = edx; Register right = eax; if (op_ == Token::DIV || op_ == Token::MOD) { left = eax; right = ebx; if (HasArgsInRegisters()) { __ mov(ebx, eax); __ mov(eax, edx); } } if (!HasArgsInRegisters()) { __ mov(right, Operand(esp, 1 * kPointerSize)); __ mov(left, Operand(esp, 2 * kPointerSize)); } // 2. Prepare the smi check of both operands by oring them together. Comment smi_check_comment(masm, "-- Smi check arguments"); Label not_smis; Register combined = ecx; ASSERT(!left.is(combined) && !right.is(combined)); switch (op_) { case Token::BIT_OR: // Perform the operation into eax and smi check the result. Preserve // eax in case the result is not a smi. ASSERT(!left.is(ecx) && !right.is(ecx)); __ mov(ecx, right); __ or_(right, Operand(left)); // Bitwise or is commutative. combined = right; break; case Token::BIT_XOR: case Token::BIT_AND: case Token::ADD: case Token::SUB: case Token::MUL: case Token::DIV: case Token::MOD: __ mov(combined, right); __ or_(combined, Operand(left)); break; case Token::SHL: case Token::SAR: case Token::SHR: // Move the right operand into ecx for the shift operation, use eax // for the smi check register. ASSERT(!left.is(ecx) && !right.is(ecx)); __ mov(ecx, right); __ or_(right, Operand(left)); combined = right; break; default: break; } // 3. Perform the smi check of the operands. ASSERT(kSmiTag == 0); // Adjust zero check if not the case. __ test(combined, Immediate(kSmiTagMask)); __ j(not_zero, ¬_smis, not_taken); // 4. Operands are both smis, perform the operation leaving the result in // eax and check the result if necessary. Comment perform_smi(masm, "-- Perform smi operation"); Label use_fp_on_smis; switch (op_) { case Token::BIT_OR: // Nothing to do. break; case Token::BIT_XOR: ASSERT(right.is(eax)); __ xor_(right, Operand(left)); // Bitwise xor is commutative. break; case Token::BIT_AND: ASSERT(right.is(eax)); __ and_(right, Operand(left)); // Bitwise and is commutative. break; case Token::SHL: // Remove tags from operands (but keep sign). __ SmiUntag(left); __ SmiUntag(ecx); // Perform the operation. __ shl_cl(left); // Check that the *signed* result fits in a smi. __ cmp(left, 0xc0000000); __ j(sign, &use_fp_on_smis, not_taken); // Tag the result and store it in register eax. __ SmiTag(left); __ mov(eax, left); break; case Token::SAR: // Remove tags from operands (but keep sign). __ SmiUntag(left); __ SmiUntag(ecx); // Perform the operation. __ sar_cl(left); // Tag the result and store it in register eax. __ SmiTag(left); __ mov(eax, left); break; case Token::SHR: // Remove tags from operands (but keep sign). __ SmiUntag(left); __ SmiUntag(ecx); // Perform the operation. __ shr_cl(left); // Check that the *unsigned* result fits in a smi. // Neither of the two high-order bits can be set: // - 0x80000000: high bit would be lost when smi tagging. // - 0x40000000: this number would convert to negative when // Smi tagging these two cases can only happen with shifts // by 0 or 1 when handed a valid smi. __ test(left, Immediate(0xc0000000)); __ j(not_zero, slow, not_taken); // Tag the result and store it in register eax. __ SmiTag(left); __ mov(eax, left); break; case Token::ADD: ASSERT(right.is(eax)); __ add(right, Operand(left)); // Addition is commutative. __ j(overflow, &use_fp_on_smis, not_taken); break; case Token::SUB: __ sub(left, Operand(right)); __ j(overflow, &use_fp_on_smis, not_taken); __ mov(eax, left); break; case Token::MUL: // If the smi tag is 0 we can just leave the tag on one operand. ASSERT(kSmiTag == 0); // Adjust code below if not the case. // We can't revert the multiplication if the result is not a smi // so save the right operand. __ mov(ebx, right); // Remove tag from one of the operands (but keep sign). __ SmiUntag(right); // Do multiplication. __ imul(right, Operand(left)); // Multiplication is commutative. __ j(overflow, &use_fp_on_smis, not_taken); // Check for negative zero result. Use combined = left | right. __ NegativeZeroTest(right, combined, &use_fp_on_smis); break; case Token::DIV: // We can't revert the division if the result is not a smi so // save the left operand. __ mov(edi, left); // Check for 0 divisor. __ test(right, Operand(right)); __ j(zero, &use_fp_on_smis, not_taken); // Sign extend left into edx:eax. ASSERT(left.is(eax)); __ cdq(); // Divide edx:eax by right. __ idiv(right); // Check for the corner case of dividing the most negative smi by // -1. We cannot use the overflow flag, since it is not set by idiv // instruction. ASSERT(kSmiTag == 0 && kSmiTagSize == 1); __ cmp(eax, 0x40000000); __ j(equal, &use_fp_on_smis); // Check for negative zero result. Use combined = left | right. __ NegativeZeroTest(eax, combined, &use_fp_on_smis); // Check that the remainder is zero. __ test(edx, Operand(edx)); __ j(not_zero, &use_fp_on_smis); // Tag the result and store it in register eax. __ SmiTag(eax); break; case Token::MOD: // Check for 0 divisor. __ test(right, Operand(right)); __ j(zero, ¬_smis, not_taken); // Sign extend left into edx:eax. ASSERT(left.is(eax)); __ cdq(); // Divide edx:eax by right. __ idiv(right); // Check for negative zero result. Use combined = left | right. __ NegativeZeroTest(edx, combined, slow); // Move remainder to register eax. __ mov(eax, edx); break; default: UNREACHABLE(); } // 5. Emit return of result in eax. GenerateReturn(masm); // 6. For some operations emit inline code to perform floating point // operations on known smis (e.g., if the result of the operation // overflowed the smi range). switch (op_) { case Token::SHL: { Comment perform_float(masm, "-- Perform float operation on smis"); __ bind(&use_fp_on_smis); // Result we want is in left == edx, so we can put the allocated heap // number in eax. __ AllocateHeapNumber(eax, ecx, ebx, slow); // Store the result in the HeapNumber and return. if (CpuFeatures::IsSupported(SSE2)) { CpuFeatures::Scope use_sse2(SSE2); __ cvtsi2sd(xmm0, Operand(left)); __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); } else { // It's OK to overwrite the right argument on the stack because we // are about to return. __ mov(Operand(esp, 1 * kPointerSize), left); __ fild_s(Operand(esp, 1 * kPointerSize)); __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); } GenerateReturn(masm); break; } case Token::ADD: case Token::SUB: case Token::MUL: case Token::DIV: { Comment perform_float(masm, "-- Perform float operation on smis"); __ bind(&use_fp_on_smis); // Restore arguments to edx, eax. switch (op_) { case Token::ADD: // Revert right = right + left. __ sub(right, Operand(left)); break; case Token::SUB: // Revert left = left - right. __ add(left, Operand(right)); break; case Token::MUL: // Right was clobbered but a copy is in ebx. __ mov(right, ebx); break; case Token::DIV: // Left was clobbered but a copy is in edi. Right is in ebx for // division. __ mov(edx, edi); __ mov(eax, right); break; default: UNREACHABLE(); break; } __ AllocateHeapNumber(ecx, ebx, no_reg, slow); if (CpuFeatures::IsSupported(SSE2)) { CpuFeatures::Scope use_sse2(SSE2); FloatingPointHelper::LoadSSE2Smis(masm, ebx); switch (op_) { case Token::ADD: __ addsd(xmm0, xmm1); break; case Token::SUB: __ subsd(xmm0, xmm1); break; case Token::MUL: __ mulsd(xmm0, xmm1); break; case Token::DIV: __ divsd(xmm0, xmm1); break; default: UNREACHABLE(); } __ movdbl(FieldOperand(ecx, HeapNumber::kValueOffset), xmm0); } else { // SSE2 not available, use FPU. FloatingPointHelper::LoadFloatSmis(masm, ebx); switch (op_) { case Token::ADD: __ faddp(1); break; case Token::SUB: __ fsubp(1); break; case Token::MUL: __ fmulp(1); break; case Token::DIV: __ fdivp(1); break; default: UNREACHABLE(); } __ fstp_d(FieldOperand(ecx, HeapNumber::kValueOffset)); } __ mov(eax, ecx); GenerateReturn(masm); break; } default: break; } // 7. Non-smi operands, fall out to the non-smi code with the operands in // edx and eax. Comment done_comment(masm, "-- Enter non-smi code"); __ bind(¬_smis); switch (op_) { case Token::BIT_OR: case Token::SHL: case Token::SAR: case Token::SHR: // Right operand is saved in ecx and eax was destroyed by the smi // check. __ mov(eax, ecx); break; case Token::DIV: case Token::MOD: // Operands are in eax, ebx at this point. __ mov(edx, eax); __ mov(eax, ebx); break; default: break; } } void GenericBinaryOpStub::Generate(MacroAssembler* masm) { Label call_runtime; __ IncrementCounter(&Counters::generic_binary_stub_calls, 1); // Generate fast case smi code if requested. This flag is set when the fast // case smi code is not generated by the caller. Generating it here will speed // up common operations. if (HasSmiCodeInStub()) { GenerateSmiCode(masm, &call_runtime); } else if (op_ != Token::MOD) { // MOD goes straight to runtime. GenerateLoadArguments(masm); } // Floating point case. switch (op_) { case Token::ADD: case Token::SUB: case Token::MUL: case Token::DIV: { if (CpuFeatures::IsSupported(SSE2)) { CpuFeatures::Scope use_sse2(SSE2); if (NumberInfo::IsNumber(operands_type_)) { if (FLAG_debug_code) { // Assert at runtime that inputs are only numbers. __ AbortIfNotNumber(edx, "GenericBinaryOpStub operand not a number."); __ AbortIfNotNumber(eax, "GenericBinaryOpStub operand not a number."); } FloatingPointHelper::LoadSSE2Operands(masm); } else { FloatingPointHelper::LoadSSE2Operands(masm, &call_runtime); } switch (op_) { case Token::ADD: __ addsd(xmm0, xmm1); break; case Token::SUB: __ subsd(xmm0, xmm1); break; case Token::MUL: __ mulsd(xmm0, xmm1); break; case Token::DIV: __ divsd(xmm0, xmm1); break; default: UNREACHABLE(); } GenerateHeapResultAllocation(masm, &call_runtime); __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); GenerateReturn(masm); } else { // SSE2 not available, use FPU. if (NumberInfo::IsNumber(operands_type_)) { if (FLAG_debug_code) { // Assert at runtime that inputs are only numbers. __ AbortIfNotNumber(edx, "GenericBinaryOpStub operand not a number."); __ AbortIfNotNumber(eax, "GenericBinaryOpStub operand not a number."); } } else { FloatingPointHelper::CheckFloatOperands(masm, &call_runtime, ebx); } FloatingPointHelper::LoadFloatOperands( masm, ecx, FloatingPointHelper::ARGS_IN_REGISTERS); switch (op_) { case Token::ADD: __ faddp(1); break; case Token::SUB: __ fsubp(1); break; case Token::MUL: __ fmulp(1); break; case Token::DIV: __ fdivp(1); break; default: UNREACHABLE(); } Label after_alloc_failure; GenerateHeapResultAllocation(masm, &after_alloc_failure); __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); GenerateReturn(masm); __ bind(&after_alloc_failure); __ ffree(); __ jmp(&call_runtime); } } case Token::MOD: { // For MOD we go directly to runtime in the non-smi case. break; } case Token::BIT_OR: case Token::BIT_AND: case Token::BIT_XOR: case Token::SAR: case Token::SHL: case Token::SHR: { Label non_smi_result; FloatingPointHelper::LoadAsIntegers(masm, use_sse3_, &call_runtime); switch (op_) { case Token::BIT_OR: __ or_(eax, Operand(ecx)); break; case Token::BIT_AND: __ and_(eax, Operand(ecx)); break; case Token::BIT_XOR: __ xor_(eax, Operand(ecx)); break; case Token::SAR: __ sar_cl(eax); break; case Token::SHL: __ shl_cl(eax); break; case Token::SHR: __ shr_cl(eax); break; default: UNREACHABLE(); } if (op_ == Token::SHR) { // Check if result is non-negative and fits in a smi. __ test(eax, Immediate(0xc0000000)); __ j(not_zero, &call_runtime); } else { // Check if result fits in a smi. __ cmp(eax, 0xc0000000); __ j(negative, &non_smi_result); } // Tag smi result and return. __ SmiTag(eax); GenerateReturn(masm); // All ops except SHR return a signed int32 that we load in a HeapNumber. if (op_ != Token::SHR) { __ bind(&non_smi_result); // Allocate a heap number if needed. __ mov(ebx, Operand(eax)); // ebx: result Label skip_allocation; switch (mode_) { case OVERWRITE_LEFT: case OVERWRITE_RIGHT: // If the operand was an object, we skip the // allocation of a heap number. __ mov(eax, Operand(esp, mode_ == OVERWRITE_RIGHT ? 1 * kPointerSize : 2 * kPointerSize)); __ test(eax, Immediate(kSmiTagMask)); __ j(not_zero, &skip_allocation, not_taken); // Fall through! case NO_OVERWRITE: __ AllocateHeapNumber(eax, ecx, edx, &call_runtime); __ bind(&skip_allocation); break; default: UNREACHABLE(); } // Store the result in the HeapNumber and return. if (CpuFeatures::IsSupported(SSE2)) { CpuFeatures::Scope use_sse2(SSE2); __ cvtsi2sd(xmm0, Operand(ebx)); __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); } else { __ mov(Operand(esp, 1 * kPointerSize), ebx); __ fild_s(Operand(esp, 1 * kPointerSize)); __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); } GenerateReturn(masm); } break; } default: UNREACHABLE(); break; } // If all else fails, use the runtime system to get the correct // result. If arguments was passed in registers now place them on the // stack in the correct order below the return address. __ bind(&call_runtime); if (HasArgsInRegisters()) { __ pop(ecx); if (HasArgsReversed()) { __ push(eax); __ push(edx); } else { __ push(edx); __ push(eax); } __ push(ecx); } switch (op_) { case Token::ADD: { // Test for string arguments before calling runtime. Label not_strings, not_string1, string1, string1_smi2; Result answer; __ test(edx, Immediate(kSmiTagMask)); __ j(zero, ¬_string1); __ CmpObjectType(edx, FIRST_NONSTRING_TYPE, ecx); __ j(above_equal, ¬_string1); // First argument is a string, test second. __ test(eax, Immediate(kSmiTagMask)); __ j(zero, &string1_smi2); __ CmpObjectType(eax, FIRST_NONSTRING_TYPE, ecx); __ j(above_equal, &string1); // First and second argument are strings. Jump to the string add stub. StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB); __ TailCallStub(&string_add_stub); __ bind(&string1_smi2); // First argument is a string, second is a smi. Try to lookup the number // string for the smi in the number string cache. NumberToStringStub::GenerateLookupNumberStringCache( masm, eax, edi, ebx, ecx, true, &string1); // Call the string add stub to make the result. __ EnterInternalFrame(); __ push(edx); // Original first argument. __ push(edi); // Number to string result for second argument. __ CallStub(&string_add_stub); __ LeaveInternalFrame(); __ ret(2 * kPointerSize); __ bind(&string1); __ InvokeBuiltin( HasArgsReversed() ? Builtins::STRING_ADD_RIGHT : Builtins::STRING_ADD_LEFT, JUMP_FUNCTION); // First argument was not a string, test second. __ bind(¬_string1); __ test(eax, Immediate(kSmiTagMask)); __ j(zero, ¬_strings); __ CmpObjectType(eax, FIRST_NONSTRING_TYPE, ecx); __ j(above_equal, ¬_strings); // Only second argument is a string. __ InvokeBuiltin( HasArgsReversed() ? Builtins::STRING_ADD_LEFT : Builtins::STRING_ADD_RIGHT, JUMP_FUNCTION); __ bind(¬_strings); // Neither argument is a string. __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION); break; } case Token::SUB: __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION); break; case Token::MUL: __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION); break; case Token::DIV: __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION); break; case Token::MOD: __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION); break; case Token::BIT_OR: __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION); break; case Token::BIT_AND: __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION); break; case Token::BIT_XOR: __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION); break; case Token::SAR: __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION); break; case Token::SHL: __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION); break; case Token::SHR: __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION); break; default: UNREACHABLE(); } } void GenericBinaryOpStub::GenerateHeapResultAllocation(MacroAssembler* masm, Label* alloc_failure) { Label skip_allocation; OverwriteMode mode = mode_; if (HasArgsReversed()) { if (mode == OVERWRITE_RIGHT) { mode = OVERWRITE_LEFT; } else if (mode == OVERWRITE_LEFT) { mode = OVERWRITE_RIGHT; } } switch (mode) { case OVERWRITE_LEFT: { // If the argument in edx is already an object, we skip the // allocation of a heap number. __ test(edx, Immediate(kSmiTagMask)); __ j(not_zero, &skip_allocation, not_taken); // Allocate a heap number for the result. Keep eax and edx intact // for the possible runtime call. __ AllocateHeapNumber(ebx, ecx, no_reg, alloc_failure); // Now edx can be overwritten losing one of the arguments as we are // now done and will not need it any more. __ mov(edx, Operand(ebx)); __ bind(&skip_allocation); // Use object in edx as a result holder __ mov(eax, Operand(edx)); break; } case OVERWRITE_RIGHT: // If the argument in eax is already an object, we skip the // allocation of a heap number. __ test(eax, Immediate(kSmiTagMask)); __ j(not_zero, &skip_allocation, not_taken); // Fall through! case NO_OVERWRITE: // Allocate a heap number for the result. Keep eax and edx intact // for the possible runtime call. __ AllocateHeapNumber(ebx, ecx, no_reg, alloc_failure); // Now eax can be overwritten losing one of the arguments as we are // now done and will not need it any more. __ mov(eax, ebx); __ bind(&skip_allocation); break; default: UNREACHABLE(); } } void GenericBinaryOpStub::GenerateLoadArguments(MacroAssembler* masm) { // If arguments are not passed in registers read them from the stack. if (!HasArgsInRegisters()) { __ mov(eax, Operand(esp, 1 * kPointerSize)); __ mov(edx, Operand(esp, 2 * kPointerSize)); } } void GenericBinaryOpStub::GenerateReturn(MacroAssembler* masm) { // If arguments are not passed in registers remove them from the stack before // returning. if (!HasArgsInRegisters()) { __ ret(2 * kPointerSize); // Remove both operands } else { __ ret(0); } } void TranscendentalCacheStub::Generate(MacroAssembler* masm) { // Input on stack: // esp[4]: argument (should be number). // esp[0]: return address. // Test that eax is a number. Label runtime_call; Label runtime_call_clear_stack; Label input_not_smi; Label loaded; __ mov(eax, Operand(esp, kPointerSize)); __ test(eax, Immediate(kSmiTagMask)); __ j(not_zero, &input_not_smi); // Input is a smi. Untag and load it onto the FPU stack. // Then load the low and high words of the double into ebx, edx. ASSERT_EQ(1, kSmiTagSize); __ sar(eax, 1); __ sub(Operand(esp), Immediate(2 * kPointerSize)); __ mov(Operand(esp, 0), eax); __ fild_s(Operand(esp, 0)); __ fst_d(Operand(esp, 0)); __ pop(edx); __ pop(ebx); __ jmp(&loaded); __ bind(&input_not_smi); // Check if input is a HeapNumber. __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); __ cmp(Operand(ebx), Immediate(Factory::heap_number_map())); __ j(not_equal, &runtime_call); // Input is a HeapNumber. Push it on the FPU stack and load its // low and high words into ebx, edx. __ fld_d(FieldOperand(eax, HeapNumber::kValueOffset)); __ mov(edx, FieldOperand(eax, HeapNumber::kExponentOffset)); __ mov(ebx, FieldOperand(eax, HeapNumber::kMantissaOffset)); __ bind(&loaded); // ST[0] == double value // ebx = low 32 bits of double value // edx = high 32 bits of double value // Compute hash: // h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1); __ mov(ecx, ebx); __ xor_(ecx, Operand(edx)); __ mov(eax, ecx); __ sar(eax, 16); __ xor_(ecx, Operand(eax)); __ mov(eax, ecx); __ sar(eax, 8); __ xor_(ecx, Operand(eax)); ASSERT(IsPowerOf2(TranscendentalCache::kCacheSize)); __ and_(Operand(ecx), Immediate(TranscendentalCache::kCacheSize - 1)); // ST[0] == double value. // ebx = low 32 bits of double value. // edx = high 32 bits of double value. // ecx = TranscendentalCache::hash(double value). __ mov(eax, Immediate(ExternalReference::transcendental_cache_array_address())); // Eax points to cache array. __ mov(eax, Operand(eax, type_ * sizeof(TranscendentalCache::caches_[0]))); // Eax points to the cache for the type type_. // If NULL, the cache hasn't been initialized yet, so go through runtime. __ test(eax, Operand(eax)); __ j(zero, &runtime_call_clear_stack); #ifdef DEBUG // Check that the layout of cache elements match expectations. { // NOLINT - doesn't like a single brace on a line. TranscendentalCache::Element test_elem[2]; char* elem_start = reinterpret_cast<char*>(&test_elem[0]); char* elem2_start = reinterpret_cast<char*>(&test_elem[1]); char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0])); char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1])); char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output)); CHECK_EQ(12, elem2_start - elem_start); // Two uint_32's and a pointer. CHECK_EQ(0, elem_in0 - elem_start); CHECK_EQ(kIntSize, elem_in1 - elem_start); CHECK_EQ(2 * kIntSize, elem_out - elem_start); } #endif // Find the address of the ecx'th entry in the cache, i.e., &eax[ecx*12]. __ lea(ecx, Operand(ecx, ecx, times_2, 0)); __ lea(ecx, Operand(eax, ecx, times_4, 0)); // Check if cache matches: Double value is stored in uint32_t[2] array. Label cache_miss; __ cmp(ebx, Operand(ecx, 0)); __ j(not_equal, &cache_miss); __ cmp(edx, Operand(ecx, kIntSize)); __ j(not_equal, &cache_miss); // Cache hit! __ mov(eax, Operand(ecx, 2 * kIntSize)); __ fstp(0); __ ret(kPointerSize); __ bind(&cache_miss); // Update cache with new value. // We are short on registers, so use no_reg as scratch. // This gives slightly larger code. __ AllocateHeapNumber(eax, edi, no_reg, &runtime_call_clear_stack); GenerateOperation(masm); __ mov(Operand(ecx, 0), ebx); __ mov(Operand(ecx, kIntSize), edx); __ mov(Operand(ecx, 2 * kIntSize), eax); __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); __ ret(kPointerSize); __ bind(&runtime_call_clear_stack); __ fstp(0); __ bind(&runtime_call); __ TailCallRuntime(ExternalReference(RuntimeFunction()), 1, 1); } Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() { switch (type_) { // Add more cases when necessary. case TranscendentalCache::SIN: return Runtime::kMath_sin; case TranscendentalCache::COS: return Runtime::kMath_cos; default: UNIMPLEMENTED(); return Runtime::kAbort; } } void TranscendentalCacheStub::GenerateOperation(MacroAssembler* masm) { // Only free register is edi. Label done; ASSERT(type_ == TranscendentalCache::SIN || type_ == TranscendentalCache::COS); // More transcendental types can be added later. // Both fsin and fcos require arguments in the range +/-2^63 and // return NaN for infinities and NaN. They can share all code except // the actual fsin/fcos operation. Label in_range; // If argument is outside the range -2^63..2^63, fsin/cos doesn't // work. We must reduce it to the appropriate range. __ mov(edi, edx); __ and_(Operand(edi), Immediate(0x7ff00000)); // Exponent only. int supported_exponent_limit = (63 + HeapNumber::kExponentBias) << HeapNumber::kExponentShift; __ cmp(Operand(edi), Immediate(supported_exponent_limit)); __ j(below, &in_range, taken); // Check for infinity and NaN. Both return NaN for sin. __ cmp(Operand(edi), Immediate(0x7ff00000)); Label non_nan_result; __ j(not_equal, &non_nan_result, taken); // Input is +/-Infinity or NaN. Result is NaN. __ fstp(0); // NaN is represented by 0x7ff8000000000000. __ push(Immediate(0x7ff80000)); __ push(Immediate(0)); __ fld_d(Operand(esp, 0)); __ add(Operand(esp), Immediate(2 * kPointerSize)); __ jmp(&done); __ bind(&non_nan_result); // Use fpmod to restrict argument to the range +/-2*PI. __ mov(edi, eax); // Save eax before using fnstsw_ax. __ fldpi(); __ fadd(0); __ fld(1); // FPU Stack: input, 2*pi, input. { Label no_exceptions; __ fwait(); __ fnstsw_ax(); // Clear if Illegal Operand or Zero Division exceptions are set. __ test(Operand(eax), Immediate(5)); __ j(zero, &no_exceptions); __ fnclex(); __ bind(&no_exceptions); } // Compute st(0) % st(1) { Label partial_remainder_loop; __ bind(&partial_remainder_loop); __ fprem1(); __ fwait(); __ fnstsw_ax(); __ test(Operand(eax), Immediate(0x400 /* C2 */)); // If C2 is set, computation only has partial result. Loop to // continue computation. __ j(not_zero, &partial_remainder_loop); } // FPU Stack: input, 2*pi, input % 2*pi __ fstp(2); __ fstp(0); __ mov(eax, edi); // Restore eax (allocated HeapNumber pointer). // FPU Stack: input % 2*pi __ bind(&in_range); switch (type_) { case TranscendentalCache::SIN: __ fsin(); break; case TranscendentalCache::COS: __ fcos(); break; default: UNREACHABLE(); } __ bind(&done); } // Get the integer part of a heap number. Surprisingly, all this bit twiddling // is faster than using the built-in instructions on floating point registers. // Trashes edi and ebx. Dest is ecx. Source cannot be ecx or one of the // trashed registers. void IntegerConvert(MacroAssembler* masm, Register source, bool use_sse3, Label* conversion_failure) { ASSERT(!source.is(ecx) && !source.is(edi) && !source.is(ebx)); Label done, right_exponent, normal_exponent; Register scratch = ebx; Register scratch2 = edi; // Get exponent word. __ mov(scratch, FieldOperand(source, HeapNumber::kExponentOffset)); // Get exponent alone in scratch2. __ mov(scratch2, scratch); __ and_(scratch2, HeapNumber::kExponentMask); if (use_sse3) { CpuFeatures::Scope scope(SSE3); // Check whether the exponent is too big for a 64 bit signed integer. static const uint32_t kTooBigExponent = (HeapNumber::kExponentBias + 63) << HeapNumber::kExponentShift; __ cmp(Operand(scratch2), Immediate(kTooBigExponent)); __ j(greater_equal, conversion_failure); // Load x87 register with heap number. __ fld_d(FieldOperand(source, HeapNumber::kValueOffset)); // Reserve space for 64 bit answer. __ sub(Operand(esp), Immediate(sizeof(uint64_t))); // Nolint. // Do conversion, which cannot fail because we checked the exponent. __ fisttp_d(Operand(esp, 0)); __ mov(ecx, Operand(esp, 0)); // Load low word of answer into ecx. __ add(Operand(esp), Immediate(sizeof(uint64_t))); // Nolint. } else { // Load ecx with zero. We use this either for the final shift or // for the answer. __ xor_(ecx, Operand(ecx)); // Check whether the exponent matches a 32 bit signed int that cannot be // represented by a Smi. A non-smi 32 bit integer is 1.xxx * 2^30 so the // exponent is 30 (biased). This is the exponent that we are fastest at and // also the highest exponent we can handle here. const uint32_t non_smi_exponent = (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift; __ cmp(Operand(scratch2), Immediate(non_smi_exponent)); // If we have a match of the int32-but-not-Smi exponent then skip some // logic. __ j(equal, &right_exponent); // If the exponent is higher than that then go to slow case. This catches // numbers that don't fit in a signed int32, infinities and NaNs. __ j(less, &normal_exponent); { // Handle a big exponent. The only reason we have this code is that the // >>> operator has a tendency to generate numbers with an exponent of 31. const uint32_t big_non_smi_exponent = (HeapNumber::kExponentBias + 31) << HeapNumber::kExponentShift; __ cmp(Operand(scratch2), Immediate(big_non_smi_exponent)); __ j(not_equal, conversion_failure); // We have the big exponent, typically from >>>. This means the number is // in the range 2^31 to 2^32 - 1. Get the top bits of the mantissa. __ mov(scratch2, scratch); __ and_(scratch2, HeapNumber::kMantissaMask); // Put back the implicit 1. __ or_(scratch2, 1 << HeapNumber::kExponentShift); // Shift up the mantissa bits to take up the space the exponent used to // take. We just orred in the implicit bit so that took care of one and // we want to use the full unsigned range so we subtract 1 bit from the // shift distance. const int big_shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 1; __ shl(scratch2, big_shift_distance); // Get the second half of the double. __ mov(ecx, FieldOperand(source, HeapNumber::kMantissaOffset)); // Shift down 21 bits to get the most significant 11 bits or the low // mantissa word. __ shr(ecx, 32 - big_shift_distance); __ or_(ecx, Operand(scratch2)); // We have the answer in ecx, but we may need to negate it. __ test(scratch, Operand(scratch)); __ j(positive, &done); __ neg(ecx); __ jmp(&done); } __ bind(&normal_exponent); // Exponent word in scratch, exponent part of exponent word in scratch2. // Zero in ecx. // We know the exponent is smaller than 30 (biased). If it is less than // 0 (biased) then the number is smaller in magnitude than 1.0 * 2^0, ie // it rounds to zero. const uint32_t zero_exponent = (HeapNumber::kExponentBias + 0) << HeapNumber::kExponentShift; __ sub(Operand(scratch2), Immediate(zero_exponent)); // ecx already has a Smi zero. __ j(less, &done); // We have a shifted exponent between 0 and 30 in scratch2. __ shr(scratch2, HeapNumber::kExponentShift); __ mov(ecx, Immediate(30)); __ sub(ecx, Operand(scratch2)); __ bind(&right_exponent); // Here ecx is the shift, scratch is the exponent word. // Get the top bits of the mantissa. __ and_(scratch, HeapNumber::kMantissaMask); // Put back the implicit 1. __ or_(scratch, 1 << HeapNumber::kExponentShift); // Shift up the mantissa bits to take up the space the exponent used to // take. We have kExponentShift + 1 significant bits int he low end of the // word. Shift them to the top bits. const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2; __ shl(scratch, shift_distance); // Get the second half of the double. For some exponents we don't // actually need this because the bits get shifted out again, but // it's probably slower to test than just to do it. __ mov(scratch2, FieldOperand(source, HeapNumber::kMantissaOffset)); // Shift down 22 bits to get the most significant 10 bits or the low // mantissa word. __ shr(scratch2, 32 - shift_distance); __ or_(scratch2, Operand(scratch)); // Move down according to the exponent. __ shr_cl(scratch2); // Now the unsigned answer is in scratch2. We need to move it to ecx and // we may need to fix the sign. Label negative; __ xor_(ecx, Operand(ecx)); __ cmp(ecx, FieldOperand(source, HeapNumber::kExponentOffset)); __ j(greater, &negative); __ mov(ecx, scratch2); __ jmp(&done); __ bind(&negative); __ sub(ecx, Operand(scratch2)); __ bind(&done); } } // Input: edx, eax are the left and right objects of a bit op. // Output: eax, ecx are left and right integers for a bit op. void FloatingPointHelper::LoadAsIntegers(MacroAssembler* masm, bool use_sse3, Label* conversion_failure) { // Check float operands. Label arg1_is_object, check_undefined_arg1; Label arg2_is_object, check_undefined_arg2; Label load_arg2, done; __ test(edx, Immediate(kSmiTagMask)); __ j(not_zero, &arg1_is_object); __ SmiUntag(edx); __ jmp(&load_arg2); // If the argument is undefined it converts to zero (ECMA-262, section 9.5). __ bind(&check_undefined_arg1); __ cmp(edx, Factory::undefined_value()); __ j(not_equal, conversion_failure); __ mov(edx, Immediate(0)); __ jmp(&load_arg2); __ bind(&arg1_is_object); __ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset)); __ cmp(ebx, Factory::heap_number_map()); __ j(not_equal, &check_undefined_arg1); // Get the untagged integer version of the edx heap number in ecx. IntegerConvert(masm, edx, use_sse3, conversion_failure); __ mov(edx, ecx); // Here edx has the untagged integer, eax has a Smi or a heap number. __ bind(&load_arg2); // Test if arg2 is a Smi. __ test(eax, Immediate(kSmiTagMask)); __ j(not_zero, &arg2_is_object); __ SmiUntag(eax); __ mov(ecx, eax); __ jmp(&done); // If the argument is undefined it converts to zero (ECMA-262, section 9.5). __ bind(&check_undefined_arg2); __ cmp(eax, Factory::undefined_value()); __ j(not_equal, conversion_failure); __ mov(ecx, Immediate(0)); __ jmp(&done); __ bind(&arg2_is_object); __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); __ cmp(ebx, Factory::heap_number_map()); __ j(not_equal, &check_undefined_arg2); // Get the untagged integer version of the eax heap number in ecx. IntegerConvert(masm, eax, use_sse3, conversion_failure); __ bind(&done); __ mov(eax, edx); } void FloatingPointHelper::LoadFloatOperand(MacroAssembler* masm, Register number) { Label load_smi, done; __ test(number, Immediate(kSmiTagMask)); __ j(zero, &load_smi, not_taken); __ fld_d(FieldOperand(number, HeapNumber::kValueOffset)); __ jmp(&done); __ bind(&load_smi); __ SmiUntag(number); __ push(number); __ fild_s(Operand(esp, 0)); __ pop(number); __ bind(&done); } void FloatingPointHelper::LoadSSE2Operands(MacroAssembler* masm) { Label load_smi_edx, load_eax, load_smi_eax, done; // Load operand in edx into xmm0. __ test(edx, Immediate(kSmiTagMask)); __ j(zero, &load_smi_edx, not_taken); // Argument in edx is a smi. __ movdbl(xmm0, FieldOperand(edx, HeapNumber::kValueOffset)); __ bind(&load_eax); // Load operand in eax into xmm1. __ test(eax, Immediate(kSmiTagMask)); __ j(zero, &load_smi_eax, not_taken); // Argument in eax is a smi. __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset)); __ jmp(&done); __ bind(&load_smi_edx); __ SmiUntag(edx); // Untag smi before converting to float. __ cvtsi2sd(xmm0, Operand(edx)); __ SmiTag(edx); // Retag smi for heap number overwriting test. __ jmp(&load_eax); __ bind(&load_smi_eax); __ SmiUntag(eax); // Untag smi before converting to float. __ cvtsi2sd(xmm1, Operand(eax)); __ SmiTag(eax); // Retag smi for heap number overwriting test. __ bind(&done); } void FloatingPointHelper::LoadSSE2Operands(MacroAssembler* masm, Label* not_numbers) { Label load_smi_edx, load_eax, load_smi_eax, load_float_eax, done; // Load operand in edx into xmm0, or branch to not_numbers. __ test(edx, Immediate(kSmiTagMask)); __ j(zero, &load_smi_edx, not_taken); // Argument in edx is a smi. __ cmp(FieldOperand(edx, HeapObject::kMapOffset), Factory::heap_number_map()); __ j(not_equal, not_numbers); // Argument in edx is not a number. __ movdbl(xmm0, FieldOperand(edx, HeapNumber::kValueOffset)); __ bind(&load_eax); // Load operand in eax into xmm1, or branch to not_numbers. __ test(eax, Immediate(kSmiTagMask)); __ j(zero, &load_smi_eax, not_taken); // Argument in eax is a smi. __ cmp(FieldOperand(eax, HeapObject::kMapOffset), Factory::heap_number_map()); __ j(equal, &load_float_eax); __ jmp(not_numbers); // Argument in eax is not a number. __ bind(&load_smi_edx); __ SmiUntag(edx); // Untag smi before converting to float. __ cvtsi2sd(xmm0, Operand(edx)); __ SmiTag(edx); // Retag smi for heap number overwriting test. __ jmp(&load_eax); __ bind(&load_smi_eax); __ SmiUntag(eax); // Untag smi before converting to float. __ cvtsi2sd(xmm1, Operand(eax)); __ SmiTag(eax); // Retag smi for heap number overwriting test. __ jmp(&done); __ bind(&load_float_eax); __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset)); __ bind(&done); } void FloatingPointHelper::LoadSSE2Smis(MacroAssembler* masm, Register scratch) { const Register left = edx; const Register right = eax; __ mov(scratch, left); ASSERT(!scratch.is(right)); // We're about to clobber scratch. __ SmiUntag(scratch); __ cvtsi2sd(xmm0, Operand(scratch)); __ mov(scratch, right); __ SmiUntag(scratch); __ cvtsi2sd(xmm1, Operand(scratch)); } void FloatingPointHelper::LoadFloatOperands(MacroAssembler* masm, Register scratch, ArgLocation arg_location) { Label load_smi_1, load_smi_2, done_load_1, done; if (arg_location == ARGS_IN_REGISTERS) { __ mov(scratch, edx); } else { __ mov(scratch, Operand(esp, 2 * kPointerSize)); } __ test(scratch, Immediate(kSmiTagMask)); __ j(zero, &load_smi_1, not_taken); __ fld_d(FieldOperand(scratch, HeapNumber::kValueOffset)); __ bind(&done_load_1); if (arg_location == ARGS_IN_REGISTERS) { __ mov(scratch, eax); } else { __ mov(scratch, Operand(esp, 1 * kPointerSize)); } __ test(scratch, Immediate(kSmiTagMask)); __ j(zero, &load_smi_2, not_taken); __ fld_d(FieldOperand(scratch, HeapNumber::kValueOffset)); __ jmp(&done); __ bind(&load_smi_1); __ SmiUntag(scratch); __ push(scratch); __ fild_s(Operand(esp, 0)); __ pop(scratch); __ jmp(&done_load_1); __ bind(&load_smi_2); __ SmiUntag(scratch); __ push(scratch); __ fild_s(Operand(esp, 0)); __ pop(scratch); __ bind(&done); } void FloatingPointHelper::LoadFloatSmis(MacroAssembler* masm, Register scratch) { const Register left = edx; const Register right = eax; __ mov(scratch, left); ASSERT(!scratch.is(right)); // We're about to clobber scratch. __ SmiUntag(scratch); __ push(scratch); __ fild_s(Operand(esp, 0)); __ mov(scratch, right); __ SmiUntag(scratch); __ mov(Operand(esp, 0), scratch); __ fild_s(Operand(esp, 0)); __ pop(scratch); } void FloatingPointHelper::CheckFloatOperands(MacroAssembler* masm, Label* non_float, Register scratch) { Label test_other, done; // Test if both operands are floats or smi -> scratch=k_is_float; // Otherwise scratch = k_not_float. __ test(edx, Immediate(kSmiTagMask)); __ j(zero, &test_other, not_taken); // argument in edx is OK __ mov(scratch, FieldOperand(edx, HeapObject::kMapOffset)); __ cmp(scratch, Factory::heap_number_map()); __ j(not_equal, non_float); // argument in edx is not a number -> NaN __ bind(&test_other); __ test(eax, Immediate(kSmiTagMask)); __ j(zero, &done); // argument in eax is OK __ mov(scratch, FieldOperand(eax, HeapObject::kMapOffset)); __ cmp(scratch, Factory::heap_number_map()); __ j(not_equal, non_float); // argument in eax is not a number -> NaN // Fall-through: Both operands are numbers. __ bind(&done); } void GenericUnaryOpStub::Generate(MacroAssembler* masm) { Label slow, done; if (op_ == Token::SUB) { // Check whether the value is a smi. Label try_float; __ test(eax, Immediate(kSmiTagMask)); __ j(not_zero, &try_float, not_taken); // Go slow case if the value of the expression is zero // to make sure that we switch between 0 and -0. __ test(eax, Operand(eax)); __ j(zero, &slow, not_taken); // The value of the expression is a smi that is not zero. Try // optimistic subtraction '0 - value'. Label undo; __ mov(edx, Operand(eax)); __ Set(eax, Immediate(0)); __ sub(eax, Operand(edx)); __ j(overflow, &undo, not_taken); // If result is a smi we are done. __ test(eax, Immediate(kSmiTagMask)); __ j(zero, &done, taken); // Restore eax and go slow case. __ bind(&undo); __ mov(eax, Operand(edx)); __ jmp(&slow); // Try floating point case. __ bind(&try_float); __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset)); __ cmp(edx, Factory::heap_number_map()); __ j(not_equal, &slow); if (overwrite_) { __ mov(edx, FieldOperand(eax, HeapNumber::kExponentOffset)); __ xor_(edx, HeapNumber::kSignMask); // Flip sign. __ mov(FieldOperand(eax, HeapNumber::kExponentOffset), edx); } else { __ mov(edx, Operand(eax)); // edx: operand __ AllocateHeapNumber(eax, ebx, ecx, &undo); // eax: allocated 'empty' number __ mov(ecx, FieldOperand(edx, HeapNumber::kExponentOffset)); __ xor_(ecx, HeapNumber::kSignMask); // Flip sign. __ mov(FieldOperand(eax, HeapNumber::kExponentOffset), ecx); __ mov(ecx, FieldOperand(edx, HeapNumber::kMantissaOffset)); __ mov(FieldOperand(eax, HeapNumber::kMantissaOffset), ecx); } } else if (op_ == Token::BIT_NOT) { // Check if the operand is a heap number. __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset)); __ cmp(edx, Factory::heap_number_map()); __ j(not_equal, &slow, not_taken); // Convert the heap number in eax to an untagged integer in ecx. IntegerConvert(masm, eax, CpuFeatures::IsSupported(SSE3), &slow); // Do the bitwise operation and check if the result fits in a smi. Label try_float; __ not_(ecx); __ cmp(ecx, 0xc0000000); __ j(sign, &try_float, not_taken); // Tag the result as a smi and we're done. ASSERT(kSmiTagSize == 1); __ lea(eax, Operand(ecx, times_2, kSmiTag)); __ jmp(&done); // Try to store the result in a heap number. __ bind(&try_float); if (!overwrite_) { // Allocate a fresh heap number, but don't overwrite eax until // we're sure we can do it without going through the slow case // that needs the value in eax. __ AllocateHeapNumber(ebx, edx, edi, &slow); __ mov(eax, Operand(ebx)); } if (CpuFeatures::IsSupported(SSE2)) { CpuFeatures::Scope use_sse2(SSE2); __ cvtsi2sd(xmm0, Operand(ecx)); __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); } else { __ push(ecx); __ fild_s(Operand(esp, 0)); __ pop(ecx); __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); } } else { UNIMPLEMENTED(); } // Return from the stub. __ bind(&done); __ StubReturn(1); // Handle the slow case by jumping to the JavaScript builtin. __ bind(&slow); __ pop(ecx); // pop return address. __ push(eax); __ push(ecx); // push return address switch (op_) { case Token::SUB: __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION); break; case Token::BIT_NOT: __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION); break; default: UNREACHABLE(); } } void ArgumentsAccessStub::GenerateReadLength(MacroAssembler* masm) { // Check if the calling frame is an arguments adaptor frame. __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset)); __ cmp(Operand(ecx), Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); // Arguments adaptor case: Read the arguments length from the // adaptor frame and return it. // Otherwise nothing to do: The number of formal parameters has already been // passed in register eax by calling function. Just return it. if (CpuFeatures::IsSupported(CMOV)) { CpuFeatures::Scope use_cmov(CMOV); __ cmov(equal, eax, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset)); } else { Label exit; __ j(not_equal, &exit); __ mov(eax, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ bind(&exit); } __ ret(0); } void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { // The key is in edx and the parameter count is in eax. // The displacement is used for skipping the frame pointer on the // stack. It is the offset of the last parameter (if any) relative // to the frame pointer. static const int kDisplacement = 1 * kPointerSize; // Check that the key is a smi. Label slow; __ test(edx, Immediate(kSmiTagMask)); __ j(not_zero, &slow, not_taken); // Check if the calling frame is an arguments adaptor frame. Label adaptor; __ mov(ebx, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); __ mov(ecx, Operand(ebx, StandardFrameConstants::kContextOffset)); __ cmp(Operand(ecx), Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ j(equal, &adaptor); // Check index against formal parameters count limit passed in // through register eax. Use unsigned comparison to get negative // check for free. __ cmp(edx, Operand(eax)); __ j(above_equal, &slow, not_taken); // Read the argument from the stack and return it. ASSERT(kSmiTagSize == 1 && kSmiTag == 0); // shifting code depends on this __ lea(ebx, Operand(ebp, eax, times_2, 0)); __ neg(edx); __ mov(eax, Operand(ebx, edx, times_2, kDisplacement)); __ ret(0); // Arguments adaptor case: Check index against actual arguments // limit found in the arguments adaptor frame. Use unsigned // comparison to get negative check for free. __ bind(&adaptor); __ mov(ecx, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ cmp(edx, Operand(ecx)); __ j(above_equal, &slow, not_taken); // Read the argument from the stack and return it. ASSERT(kSmiTagSize == 1 && kSmiTag == 0); // shifting code depends on this __ lea(ebx, Operand(ebx, ecx, times_2, 0)); __ neg(edx); __ mov(eax, Operand(ebx, edx, times_2, kDisplacement)); __ ret(0); // Slow-case: Handle non-smi or out-of-bounds access to arguments // by calling the runtime system. __ bind(&slow); __ pop(ebx); // Return address. __ push(edx); __ push(ebx); __ TailCallRuntime(ExternalReference(Runtime::kGetArgumentsProperty), 1, 1); } void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) { // esp[0] : return address // esp[4] : number of parameters // esp[8] : receiver displacement // esp[16] : function // The displacement is used for skipping the return address and the // frame pointer on the stack. It is the offset of the last // parameter (if any) relative to the frame pointer. static const int kDisplacement = 2 * kPointerSize; // Check if the calling frame is an arguments adaptor frame. Label adaptor_frame, try_allocate, runtime; __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset)); __ cmp(Operand(ecx), Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ j(equal, &adaptor_frame); // Get the length from the frame. __ mov(ecx, Operand(esp, 1 * kPointerSize)); __ jmp(&try_allocate); // Patch the arguments.length and the parameters pointer. __ bind(&adaptor_frame); __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ mov(Operand(esp, 1 * kPointerSize), ecx); __ lea(edx, Operand(edx, ecx, times_2, kDisplacement)); __ mov(Operand(esp, 2 * kPointerSize), edx); // Try the new space allocation. Start out with computing the size of // the arguments object and the elements array. Label add_arguments_object; __ bind(&try_allocate); __ test(ecx, Operand(ecx)); __ j(zero, &add_arguments_object); __ lea(ecx, Operand(ecx, times_2, FixedArray::kHeaderSize)); __ bind(&add_arguments_object); __ add(Operand(ecx), Immediate(Heap::kArgumentsObjectSize)); // Do the allocation of both objects in one go. __ AllocateInNewSpace(ecx, eax, edx, ebx, &runtime, TAG_OBJECT); // Get the arguments boilerplate from the current (global) context. int offset = Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX); __ mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX))); __ mov(edi, FieldOperand(edi, GlobalObject::kGlobalContextOffset)); __ mov(edi, Operand(edi, offset)); // Copy the JS object part. for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) { __ mov(ebx, FieldOperand(edi, i)); __ mov(FieldOperand(eax, i), ebx); } // Setup the callee in-object property. ASSERT(Heap::arguments_callee_index == 0); __ mov(ebx, Operand(esp, 3 * kPointerSize)); __ mov(FieldOperand(eax, JSObject::kHeaderSize), ebx); // Get the length (smi tagged) and set that as an in-object property too. ASSERT(Heap::arguments_length_index == 1); __ mov(ecx, Operand(esp, 1 * kPointerSize)); __ mov(FieldOperand(eax, JSObject::kHeaderSize + kPointerSize), ecx); // If there are no actual arguments, we're done. Label done; __ test(ecx, Operand(ecx)); __ j(zero, &done); // Get the parameters pointer from the stack and untag the length. __ mov(edx, Operand(esp, 2 * kPointerSize)); __ SmiUntag(ecx); // Setup the elements pointer in the allocated arguments object and // initialize the header in the elements fixed array. __ lea(edi, Operand(eax, Heap::kArgumentsObjectSize)); __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi); __ mov(FieldOperand(edi, FixedArray::kMapOffset), Immediate(Factory::fixed_array_map())); __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx); // Copy the fixed array slots. Label loop; __ bind(&loop); __ mov(ebx, Operand(edx, -1 * kPointerSize)); // Skip receiver. __ mov(FieldOperand(edi, FixedArray::kHeaderSize), ebx); __ add(Operand(edi), Immediate(kPointerSize)); __ sub(Operand(edx), Immediate(kPointerSize)); __ dec(ecx); __ j(not_zero, &loop); // Return and remove the on-stack parameters. __ bind(&done); __ ret(3 * kPointerSize); // Do the runtime call to allocate the arguments object. __ bind(&runtime); __ TailCallRuntime(ExternalReference(Runtime::kNewArgumentsFast), 3, 1); } void RegExpExecStub::Generate(MacroAssembler* masm) { // Just jump directly to runtime if native RegExp is not selected at compile // time or if regexp entry in generated code is turned off runtime switch or // at compilation. #ifndef V8_NATIVE_REGEXP __ TailCallRuntime(ExternalReference(Runtime::kRegExpExec), 4, 1); #else // V8_NATIVE_REGEXP if (!FLAG_regexp_entry_native) { __ TailCallRuntime(ExternalReference(Runtime::kRegExpExec), 4, 1); return; } // Stack frame on entry. // esp[0]: return address // esp[4]: last_match_info (expected JSArray) // esp[8]: previous index // esp[12]: subject string // esp[16]: JSRegExp object static const int kLastMatchInfoOffset = 1 * kPointerSize; static const int kPreviousIndexOffset = 2 * kPointerSize; static const int kSubjectOffset = 3 * kPointerSize; static const int kJSRegExpOffset = 4 * kPointerSize; Label runtime, invoke_regexp; // Ensure that a RegExp stack is allocated. ExternalReference address_of_regexp_stack_memory_address = ExternalReference::address_of_regexp_stack_memory_address(); ExternalReference address_of_regexp_stack_memory_size = ExternalReference::address_of_regexp_stack_memory_size(); __ mov(ebx, Operand::StaticVariable(address_of_regexp_stack_memory_size)); __ test(ebx, Operand(ebx)); __ j(zero, &runtime, not_taken); // Check that the first argument is a JSRegExp object. __ mov(eax, Operand(esp, kJSRegExpOffset)); ASSERT_EQ(0, kSmiTag); __ test(eax, Immediate(kSmiTagMask)); __ j(zero, &runtime); __ CmpObjectType(eax, JS_REGEXP_TYPE, ecx); __ j(not_equal, &runtime); // Check that the RegExp has been compiled (data contains a fixed array). __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset)); if (FLAG_debug_code) { __ test(ecx, Immediate(kSmiTagMask)); __ Check(not_zero, "Unexpected type for RegExp data, FixedArray expected"); __ CmpObjectType(ecx, FIXED_ARRAY_TYPE, ebx); __ Check(equal, "Unexpected type for RegExp data, FixedArray expected"); } // ecx: RegExp data (FixedArray) // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. __ mov(ebx, FieldOperand(ecx, JSRegExp::kDataTagOffset)); __ cmp(Operand(ebx), Immediate(Smi::FromInt(JSRegExp::IRREGEXP))); __ j(not_equal, &runtime); // ecx: RegExp data (FixedArray) // Check that the number of captures fit in the static offsets vector buffer. __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset)); // Calculate number of capture registers (number_of_captures + 1) * 2. This // uses the asumption that smis are 2 * their untagged value. ASSERT_EQ(0, kSmiTag); ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize); __ add(Operand(edx), Immediate(2)); // edx was a smi. // Check that the static offsets vector buffer is large enough. __ cmp(edx, OffsetsVector::kStaticOffsetsVectorSize); __ j(above, &runtime); // ecx: RegExp data (FixedArray) // edx: Number of capture registers // Check that the second argument is a string. __ mov(eax, Operand(esp, kSubjectOffset)); __ test(eax, Immediate(kSmiTagMask)); __ j(zero, &runtime); Condition is_string = masm->IsObjectStringType(eax, ebx, ebx); __ j(NegateCondition(is_string), &runtime); // Get the length of the string to ebx. __ mov(ebx, FieldOperand(eax, String::kLengthOffset)); // ebx: Length of subject string // ecx: RegExp data (FixedArray) // edx: Number of capture registers // Check that the third argument is a positive smi. // Check that the third argument is a positive smi less than the subject // string length. A negative value will be greater (usigned comparison). __ mov(eax, Operand(esp, kPreviousIndexOffset)); __ SmiUntag(eax); __ cmp(eax, Operand(ebx)); __ j(above, &runtime); // ecx: RegExp data (FixedArray) // edx: Number of capture registers // Check that the fourth object is a JSArray object. __ mov(eax, Operand(esp, kLastMatchInfoOffset)); __ test(eax, Immediate(kSmiTagMask)); __ j(zero, &runtime); __ CmpObjectType(eax, JS_ARRAY_TYPE, ebx); __ j(not_equal, &runtime); // Check that the JSArray is in fast case. __ mov(ebx, FieldOperand(eax, JSArray::kElementsOffset)); __ mov(eax, FieldOperand(ebx, HeapObject::kMapOffset)); __ cmp(eax, Factory::fixed_array_map()); __ j(not_equal, &runtime); // Check that the last match info has space for the capture registers and the // additional information. __ mov(eax, FieldOperand(ebx, FixedArray::kLengthOffset)); __ add(Operand(edx), Immediate(RegExpImpl::kLastMatchOverhead)); __ cmp(edx, Operand(eax)); __ j(greater, &runtime); // ecx: RegExp data (FixedArray) // Check the representation and encoding of the subject string. Label seq_string, seq_two_byte_string, check_code; const int kStringRepresentationEncodingMask = kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask; __ mov(eax, Operand(esp, kSubjectOffset)); __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset)); __ and_(ebx, kStringRepresentationEncodingMask); // First check for sequential string. ASSERT_EQ(0, kStringTag); ASSERT_EQ(0, kSeqStringTag); __ test(Operand(ebx), Immediate(kIsNotStringMask | kStringRepresentationMask)); __ j(zero, &seq_string); // Check for flat cons string. // A flat cons string is a cons string where the second part is the empty // string. In that case the subject string is just the first part of the cons // string. Also in this case the first part of the cons string is known to be // a sequential string or an external string. __ mov(edx, ebx); __ and_(edx, kStringRepresentationMask); __ cmp(edx, kConsStringTag); __ j(not_equal, &runtime); __ mov(edx, FieldOperand(eax, ConsString::kSecondOffset)); __ cmp(Operand(edx), Factory::empty_string()); __ j(not_equal, &runtime); __ mov(eax, FieldOperand(eax, ConsString::kFirstOffset)); __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset)); ASSERT_EQ(0, kSeqStringTag); __ test(ebx, Immediate(kStringRepresentationMask)); __ j(not_zero, &runtime); __ and_(ebx, kStringRepresentationEncodingMask); __ bind(&seq_string); // eax: subject string (sequential either ascii to two byte) // ebx: suject string type & kStringRepresentationEncodingMask // ecx: RegExp data (FixedArray) // Check that the irregexp code has been generated for an ascii string. If // it has, the field contains a code object otherwise it contains the hole. __ cmp(ebx, kStringTag | kSeqStringTag | kTwoByteStringTag); __ j(equal, &seq_two_byte_string); if (FLAG_debug_code) { __ cmp(ebx, kStringTag | kSeqStringTag | kAsciiStringTag); __ Check(equal, "Expected sequential ascii string"); } __ mov(edx, FieldOperand(ecx, JSRegExp::kDataAsciiCodeOffset)); __ Set(edi, Immediate(1)); // Type is ascii. __ jmp(&check_code); __ bind(&seq_two_byte_string); // eax: subject string // ecx: RegExp data (FixedArray) __ mov(edx, FieldOperand(ecx, JSRegExp::kDataUC16CodeOffset)); __ Set(edi, Immediate(0)); // Type is two byte. __ bind(&check_code); // Check that the irregexp code has been generated for the actual string // encoding. If it has, the field contains a code object otherwise it contains // the hole. __ CmpObjectType(edx, CODE_TYPE, ebx); __ j(not_equal, &runtime); // eax: subject string // edx: code // edi: encoding of subject string (1 if ascii, 0 if two_byte); // Load used arguments before starting to push arguments for call to native // RegExp code to avoid handling changing stack height. __ mov(ebx, Operand(esp, kPreviousIndexOffset)); __ SmiUntag(ebx); // Previous index from smi. // eax: subject string // ebx: previous index // edx: code // edi: encoding of subject string (1 if ascii 0 if two_byte); // All checks done. Now push arguments for native regexp code. __ IncrementCounter(&Counters::regexp_entry_native, 1); // Argument 7: Indicate that this is a direct call from JavaScript. __ push(Immediate(1)); // Argument 6: Start (high end) of backtracking stack memory area. __ mov(ecx, Operand::StaticVariable(address_of_regexp_stack_memory_address)); __ add(ecx, Operand::StaticVariable(address_of_regexp_stack_memory_size)); __ push(ecx); // Argument 5: static offsets vector buffer. __ push(Immediate(ExternalReference::address_of_static_offsets_vector())); // Argument 4: End of string data // Argument 3: Start of string data Label push_two_byte, push_rest; __ test(edi, Operand(edi)); __ mov(edi, FieldOperand(eax, String::kLengthOffset)); __ j(zero, &push_two_byte); __ lea(ecx, FieldOperand(eax, edi, times_1, SeqAsciiString::kHeaderSize)); __ push(ecx); // Argument 4. __ lea(ecx, FieldOperand(eax, ebx, times_1, SeqAsciiString::kHeaderSize)); __ push(ecx); // Argument 3. __ jmp(&push_rest); __ bind(&push_two_byte); __ lea(ecx, FieldOperand(eax, edi, times_2, SeqTwoByteString::kHeaderSize)); __ push(ecx); // Argument 4. __ lea(ecx, FieldOperand(eax, ebx, times_2, SeqTwoByteString::kHeaderSize)); __ push(ecx); // Argument 3. __ bind(&push_rest); // Argument 2: Previous index. __ push(ebx); // Argument 1: Subject string. __ push(eax); // Locate the code entry and call it. __ add(Operand(edx), Immediate(Code::kHeaderSize - kHeapObjectTag)); __ call(Operand(edx)); // Remove arguments. __ add(Operand(esp), Immediate(7 * kPointerSize)); // Check the result. Label success; __ cmp(eax, NativeRegExpMacroAssembler::SUCCESS); __ j(equal, &success, taken); Label failure; __ cmp(eax, NativeRegExpMacroAssembler::FAILURE); __ j(equal, &failure, taken); __ cmp(eax, NativeRegExpMacroAssembler::EXCEPTION); // If not exception it can only be retry. Handle that in the runtime system. __ j(not_equal, &runtime); // Result must now be exception. If there is no pending exception already a // stack overflow (on the backtrack stack) was detected in RegExp code but // haven't created the exception yet. Handle that in the runtime system. // TODO(592) Rerunning the RegExp to get the stack overflow exception. ExternalReference pending_exception(Top::k_pending_exception_address); __ mov(eax, Operand::StaticVariable(ExternalReference::the_hole_value_location())); __ cmp(eax, Operand::StaticVariable(pending_exception)); __ j(equal, &runtime); __ bind(&failure); // For failure and exception return null. __ mov(Operand(eax), Factory::null_value()); __ ret(4 * kPointerSize); // Load RegExp data. __ bind(&success); __ mov(eax, Operand(esp, kJSRegExpOffset)); __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset)); __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset)); // Calculate number of capture registers (number_of_captures + 1) * 2. ASSERT_EQ(0, kSmiTag); ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize); __ add(Operand(edx), Immediate(2)); // edx was a smi. // edx: Number of capture registers // Load last_match_info which is still known to be a fast case JSArray. __ mov(eax, Operand(esp, kLastMatchInfoOffset)); __ mov(ebx, FieldOperand(eax, JSArray::kElementsOffset)); // ebx: last_match_info backing store (FixedArray) // edx: number of capture registers // Store the capture count. __ SmiTag(edx); // Number of capture registers to smi. __ mov(FieldOperand(ebx, RegExpImpl::kLastCaptureCountOffset), edx); __ SmiUntag(edx); // Number of capture registers back from smi. // Store last subject and last input. __ mov(eax, Operand(esp, kSubjectOffset)); __ mov(FieldOperand(ebx, RegExpImpl::kLastSubjectOffset), eax); __ mov(ecx, ebx); __ RecordWrite(ecx, RegExpImpl::kLastSubjectOffset, eax, edi); __ mov(eax, Operand(esp, kSubjectOffset)); __ mov(FieldOperand(ebx, RegExpImpl::kLastInputOffset), eax); __ mov(ecx, ebx); __ RecordWrite(ecx, RegExpImpl::kLastInputOffset, eax, edi); // Get the static offsets vector filled by the native regexp code. ExternalReference address_of_static_offsets_vector = ExternalReference::address_of_static_offsets_vector(); __ mov(ecx, Immediate(address_of_static_offsets_vector)); // ebx: last_match_info backing store (FixedArray) // ecx: offsets vector // edx: number of capture registers Label next_capture, done; __ mov(eax, Operand(esp, kPreviousIndexOffset)); // Capture register counter starts from number of capture registers and // counts down until wraping after zero. __ bind(&next_capture); __ sub(Operand(edx), Immediate(1)); __ j(negative, &done); // Read the value from the static offsets vector buffer. __ mov(edi, Operand(ecx, edx, times_int_size, 0)); // Perform explicit shift ASSERT_EQ(0, kSmiTag); __ shl(edi, kSmiTagSize); // Add previous index (from its stack slot) if value is not negative. Label capture_negative; // Carry flag set by shift above. __ j(negative, &capture_negative, not_taken); __ add(edi, Operand(eax)); // Add previous index (adding smi to smi). __ bind(&capture_negative); // Store the smi value in the last match info. __ mov(FieldOperand(ebx, edx, times_pointer_size, RegExpImpl::kFirstCaptureOffset), edi); __ jmp(&next_capture); __ bind(&done); // Return last match info. __ mov(eax, Operand(esp, kLastMatchInfoOffset)); __ ret(4 * kPointerSize); // Do the runtime call to execute the regexp. __ bind(&runtime); __ TailCallRuntime(ExternalReference(Runtime::kRegExpExec), 4, 1); #endif // V8_NATIVE_REGEXP } void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm, Register object, Register result, Register scratch1, Register scratch2, bool object_is_smi, Label* not_found) { // Currently only lookup for smis. Check for smi if object is not known to be // a smi. if (!object_is_smi) { ASSERT(kSmiTag == 0); __ test(object, Immediate(kSmiTagMask)); __ j(not_zero, not_found); } // Use of registers. Register result is used as a temporary. Register number_string_cache = result; Register mask = scratch1; Register scratch = scratch2; // Load the number string cache. ExternalReference roots_address = ExternalReference::roots_address(); __ mov(scratch, Immediate(Heap::kNumberStringCacheRootIndex)); __ mov(number_string_cache, Operand::StaticArray(scratch, times_pointer_size, roots_address)); // Make the hash mask from the length of the number string cache. It // contains two elements (number and string) for each cache entry. __ mov(mask, FieldOperand(number_string_cache, FixedArray::kLengthOffset)); __ shr(mask, 1); // Divide length by two (length is not a smi). __ sub(Operand(mask), Immediate(1)); // Make mask. // Calculate the entry in the number string cache. The hash value in the // number string cache for smis is just the smi value. __ mov(scratch, object); __ SmiUntag(scratch); __ and_(scratch, Operand(mask)); // Check if the entry is the smi we are looking for. __ cmp(object, FieldOperand(number_string_cache, scratch, times_twice_pointer_size, FixedArray::kHeaderSize)); __ j(not_equal, not_found); // Get the result from the cache. __ mov(result, FieldOperand(number_string_cache, scratch, times_twice_pointer_size, FixedArray::kHeaderSize + kPointerSize)); __ IncrementCounter(&Counters::number_to_string_native, 1); } void NumberToStringStub::Generate(MacroAssembler* masm) { Label runtime; __ mov(ebx, Operand(esp, kPointerSize)); // Generate code to lookup number in the number string cache. GenerateLookupNumberStringCache(masm, ebx, eax, ecx, edx, false, &runtime); __ ret(1 * kPointerSize); __ bind(&runtime); // Handle number to string in the runtime system if not found in the cache. __ TailCallRuntime(ExternalReference(Runtime::kNumberToString), 1, 1); } void CompareStub::Generate(MacroAssembler* masm) { Label call_builtin, done; // NOTICE! This code is only reached after a smi-fast-case check, so // it is certain that at least one operand isn't a smi. if (cc_ == equal) { // Both strict and non-strict. Label slow; // Fallthrough label. // Equality is almost reflexive (everything but NaN), so start by testing // for "identity and not NaN". { Label not_identical; __ cmp(eax, Operand(edx)); __ j(not_equal, ¬_identical); // Test for NaN. Sadly, we can't just compare to Factory::nan_value(), // so we do the second best thing - test it ourselves. if (never_nan_nan_) { __ Set(eax, Immediate(0)); __ ret(0); } else { Label return_equal; Label heap_number; // If it's not a heap number, then return equal. __ cmp(FieldOperand(edx, HeapObject::kMapOffset), Immediate(Factory::heap_number_map())); __ j(equal, &heap_number); __ bind(&return_equal); __ Set(eax, Immediate(0)); __ ret(0); __ bind(&heap_number); // It is a heap number, so return non-equal if it's NaN and equal if // it's not NaN. // The representation of NaN values has all exponent bits (52..62) set, // and not all mantissa bits (0..51) clear. // We only accept QNaNs, which have bit 51 set. // Read top bits of double representation (second word of value). // Value is a QNaN if value & kQuietNaNMask == kQuietNaNMask, i.e., // all bits in the mask are set. We only need to check the word // that contains the exponent and high bit of the mantissa. ASSERT_NE(0, (kQuietNaNHighBitsMask << 1) & 0x80000000u); __ mov(edx, FieldOperand(edx, HeapNumber::kExponentOffset)); __ xor_(eax, Operand(eax)); // Shift value and mask so kQuietNaNHighBitsMask applies to topmost // bits. __ add(edx, Operand(edx)); __ cmp(edx, kQuietNaNHighBitsMask << 1); __ setcc(above_equal, eax); __ ret(0); } __ bind(¬_identical); } // If we're doing a strict equality comparison, we don't have to do // type conversion, so we generate code to do fast comparison for objects // and oddballs. Non-smi numbers and strings still go through the usual // slow-case code. if (strict_) { // If either is a Smi (we know that not both are), then they can only // be equal if the other is a HeapNumber. If so, use the slow case. { Label not_smis; ASSERT_EQ(0, kSmiTag); ASSERT_EQ(0, Smi::FromInt(0)); __ mov(ecx, Immediate(kSmiTagMask)); __ and_(ecx, Operand(eax)); __ test(ecx, Operand(edx)); __ j(not_zero, ¬_smis); // One operand is a smi. // Check whether the non-smi is a heap number. ASSERT_EQ(1, kSmiTagMask); // ecx still holds eax & kSmiTag, which is either zero or one. __ sub(Operand(ecx), Immediate(0x01)); __ mov(ebx, edx); __ xor_(ebx, Operand(eax)); __ and_(ebx, Operand(ecx)); // ebx holds either 0 or eax ^ edx. __ xor_(ebx, Operand(eax)); // if eax was smi, ebx is now edx, else eax. // Check if the non-smi operand is a heap number. __ cmp(FieldOperand(ebx, HeapObject::kMapOffset), Immediate(Factory::heap_number_map())); // If heap number, handle it in the slow case. __ j(equal, &slow); // Return non-equal (ebx is not zero) __ mov(eax, ebx); __ ret(0); __ bind(¬_smis); } // If either operand is a JSObject or an oddball value, then they are not // equal since their pointers are different // There is no test for undetectability in strict equality. // Get the type of the first operand. __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset)); __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); // If the first object is a JS object, we have done pointer comparison. ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); Label first_non_object; __ cmp(ecx, FIRST_JS_OBJECT_TYPE); __ j(less, &first_non_object); // Return non-zero (eax is not zero) Label return_not_equal; ASSERT(kHeapObjectTag != 0); __ bind(&return_not_equal); __ ret(0); __ bind(&first_non_object); // Check for oddballs: true, false, null, undefined. __ cmp(ecx, ODDBALL_TYPE); __ j(equal, &return_not_equal); __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset)); __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); __ cmp(ecx, FIRST_JS_OBJECT_TYPE); __ j(greater_equal, &return_not_equal); // Check for oddballs: true, false, null, undefined. __ cmp(ecx, ODDBALL_TYPE); __ j(equal, &return_not_equal); // Fall through to the general case. } __ bind(&slow); } // Push arguments below the return address. __ pop(ecx); __ push(eax); __ push(edx); __ push(ecx); // Inlined floating point compare. // Call builtin if operands are not floating point or smi. Label check_for_symbols; Label unordered; if (CpuFeatures::IsSupported(SSE2)) { CpuFeatures::Scope use_sse2(SSE2); CpuFeatures::Scope use_cmov(CMOV); FloatingPointHelper::LoadSSE2Operands(masm, &check_for_symbols); __ comisd(xmm0, xmm1); // Jump to builtin for NaN. __ j(parity_even, &unordered, not_taken); __ mov(eax, 0); // equal __ mov(ecx, Immediate(Smi::FromInt(1))); __ cmov(above, eax, Operand(ecx)); __ mov(ecx, Immediate(Smi::FromInt(-1))); __ cmov(below, eax, Operand(ecx)); __ ret(2 * kPointerSize); } else { FloatingPointHelper::CheckFloatOperands(masm, &check_for_symbols, ebx); FloatingPointHelper::LoadFloatOperands(masm, ecx); __ FCmp(); // Jump to builtin for NaN. __ j(parity_even, &unordered, not_taken); Label below_lbl, above_lbl; // Return a result of -1, 0, or 1, to indicate result of comparison. __ j(below, &below_lbl, not_taken); __ j(above, &above_lbl, not_taken); __ xor_(eax, Operand(eax)); // equal // Both arguments were pushed in case a runtime call was needed. __ ret(2 * kPointerSize); __ bind(&below_lbl); __ mov(eax, Immediate(Smi::FromInt(-1))); __ ret(2 * kPointerSize); __ bind(&above_lbl); __ mov(eax, Immediate(Smi::FromInt(1))); __ ret(2 * kPointerSize); // eax, edx were pushed } // If one of the numbers was NaN, then the result is always false. // The cc is never not-equal. __ bind(&unordered); ASSERT(cc_ != not_equal); if (cc_ == less || cc_ == less_equal) { __ mov(eax, Immediate(Smi::FromInt(1))); } else { __ mov(eax, Immediate(Smi::FromInt(-1))); } __ ret(2 * kPointerSize); // eax, edx were pushed // Fast negative check for symbol-to-symbol equality. __ bind(&check_for_symbols); Label check_for_strings; if (cc_ == equal) { BranchIfNonSymbol(masm, &check_for_strings, eax, ecx); BranchIfNonSymbol(masm, &check_for_strings, edx, ecx); // We've already checked for object identity, so if both operands // are symbols they aren't equal. Register eax already holds a // non-zero value, which indicates not equal, so just return. __ ret(2 * kPointerSize); } __ bind(&check_for_strings); __ JumpIfNotBothSequentialAsciiStrings(edx, eax, ecx, ebx, &call_builtin); // Inline comparison of ascii strings. StringCompareStub::GenerateCompareFlatAsciiStrings(masm, edx, eax, ecx, ebx, edi); #ifdef DEBUG __ Abort("Unexpected fall-through from string comparison"); #endif __ bind(&call_builtin); // must swap argument order __ pop(ecx); __ pop(edx); __ pop(eax); __ push(edx); __ push(eax); // Figure out which native to call and setup the arguments. Builtins::JavaScript builtin; if (cc_ == equal) { builtin = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS; } else { builtin = Builtins::COMPARE; int ncr; // NaN compare result if (cc_ == less || cc_ == less_equal) { ncr = GREATER; } else { ASSERT(cc_ == greater || cc_ == greater_equal); // remaining cases ncr = LESS; } __ push(Immediate(Smi::FromInt(ncr))); } // Restore return address on the stack. __ push(ecx); // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) // tagged as a small integer. __ InvokeBuiltin(builtin, JUMP_FUNCTION); } void CompareStub::BranchIfNonSymbol(MacroAssembler* masm, Label* label, Register object, Register scratch) { __ test(object, Immediate(kSmiTagMask)); __ j(zero, label); __ mov(scratch, FieldOperand(object, HeapObject::kMapOffset)); __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset)); __ and_(scratch, kIsSymbolMask | kIsNotStringMask); __ cmp(scratch, kSymbolTag | kStringTag); __ j(not_equal, label); } void StackCheckStub::Generate(MacroAssembler* masm) { // Because builtins always remove the receiver from the stack, we // have to fake one to avoid underflowing the stack. The receiver // must be inserted below the return address on the stack so we // temporarily store that in a register. __ pop(eax); __ push(Immediate(Smi::FromInt(0))); __ push(eax); // Do tail-call to runtime routine. __ TailCallRuntime(ExternalReference(Runtime::kStackGuard), 1, 1); } void CallFunctionStub::Generate(MacroAssembler* masm) { Label slow; // If the receiver might be a value (string, number or boolean) check for this // and box it if it is. if (ReceiverMightBeValue()) { // Get the receiver from the stack. // +1 ~ return address Label receiver_is_value, receiver_is_js_object; __ mov(eax, Operand(esp, (argc_ + 1) * kPointerSize)); // Check if receiver is a smi (which is a number value). __ test(eax, Immediate(kSmiTagMask)); __ j(zero, &receiver_is_value, not_taken); // Check if the receiver is a valid JS object. __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, edi); __ j(above_equal, &receiver_is_js_object); // Call the runtime to box the value. __ bind(&receiver_is_value); __ EnterInternalFrame(); __ push(eax); __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); __ LeaveInternalFrame(); __ mov(Operand(esp, (argc_ + 1) * kPointerSize), eax); __ bind(&receiver_is_js_object); } // Get the function to call from the stack. // +2 ~ receiver, return address __ mov(edi, Operand(esp, (argc_ + 2) * kPointerSize)); // Check that the function really is a JavaScript function. __ test(edi, Immediate(kSmiTagMask)); __ j(zero, &slow, not_taken); // Goto slow case if we do not have a function. __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx); __ j(not_equal, &slow, not_taken); // Fast-case: Just invoke the function. ParameterCount actual(argc_); __ InvokeFunction(edi, actual, JUMP_FUNCTION); // Slow-case: Non-function called. __ bind(&slow); // CALL_NON_FUNCTION expects the non-function callee as receiver (instead // of the original receiver from the call site). __ mov(Operand(esp, (argc_ + 1) * kPointerSize), edi); __ Set(eax, Immediate(argc_)); __ Set(ebx, Immediate(0)); __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION); Handle<Code> adaptor(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline)); __ jmp(adaptor, RelocInfo::CODE_TARGET); } void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) { // eax holds the exception. // Adjust this code if not the case. ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize); // Drop the sp to the top of the handler. ExternalReference handler_address(Top::k_handler_address); __ mov(esp, Operand::StaticVariable(handler_address)); // Restore next handler and frame pointer, discard handler state. ASSERT(StackHandlerConstants::kNextOffset == 0); __ pop(Operand::StaticVariable(handler_address)); ASSERT(StackHandlerConstants::kFPOffset == 1 * kPointerSize); __ pop(ebp); __ pop(edx); // Remove state. // Before returning we restore the context from the frame pointer if // not NULL. The frame pointer is NULL in the exception handler of // a JS entry frame. __ xor_(esi, Operand(esi)); // Tentatively set context pointer to NULL. Label skip; __ cmp(ebp, 0); __ j(equal, &skip, not_taken); __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); __ bind(&skip); ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize); __ ret(0); } // If true, a Handle<T> passed by value is passed and returned by // using the location_ field directly. If false, it is passed and // returned as a pointer to a handle. #ifdef USING_MAC_ABI static const bool kPassHandlesDirectly = true; #else static const bool kPassHandlesDirectly = false; #endif void ApiGetterEntryStub::Generate(MacroAssembler* masm) { Label get_result; Label prologue; Label promote_scheduled_exception; __ EnterApiExitFrame(ExitFrame::MODE_NORMAL, kStackSpace, kArgc); ASSERT_EQ(kArgc, 4); if (kPassHandlesDirectly) { // When handles as passed directly we don't have to allocate extra // space for and pass an out parameter. __ mov(Operand(esp, 0 * kPointerSize), ebx); // name. __ mov(Operand(esp, 1 * kPointerSize), eax); // arguments pointer. } else { // The function expects three arguments to be passed but we allocate // four to get space for the output cell. The argument slots are filled // as follows: // // 3: output cell // 2: arguments pointer // 1: name // 0: pointer to the output cell // // Note that this is one more "argument" than the function expects // so the out cell will have to be popped explicitly after returning // from the function. __ mov(Operand(esp, 1 * kPointerSize), ebx); // name. __ mov(Operand(esp, 2 * kPointerSize), eax); // arguments pointer. __ mov(ebx, esp); __ add(Operand(ebx), Immediate(3 * kPointerSize)); __ mov(Operand(esp, 0 * kPointerSize), ebx); // output __ mov(Operand(esp, 3 * kPointerSize), Immediate(0)); // out cell. } // Call the api function! __ call(fun()->address(), RelocInfo::RUNTIME_ENTRY); // Check if the function scheduled an exception. ExternalReference scheduled_exception_address = ExternalReference::scheduled_exception_address(); __ cmp(Operand::StaticVariable(scheduled_exception_address), Immediate(Factory::the_hole_value())); __ j(not_equal, &promote_scheduled_exception, not_taken); if (!kPassHandlesDirectly) { // The returned value is a pointer to the handle holding the result. // Dereference this to get to the location. __ mov(eax, Operand(eax, 0)); } // Check if the result handle holds 0 __ test(eax, Operand(eax)); __ j(not_zero, &get_result, taken); // It was zero; the result is undefined. __ mov(eax, Factory::undefined_value()); __ jmp(&prologue); // It was non-zero. Dereference to get the result value. __ bind(&get_result); __ mov(eax, Operand(eax, 0)); __ bind(&prologue); __ LeaveExitFrame(ExitFrame::MODE_NORMAL); __ ret(0); __ bind(&promote_scheduled_exception); __ TailCallRuntime(ExternalReference(Runtime::kPromoteScheduledException), 0, 1); } void CEntryStub::GenerateCore(MacroAssembler* masm, Label* throw_normal_exception, Label* throw_termination_exception, Label* throw_out_of_memory_exception, bool do_gc, bool always_allocate_scope) { // eax: result parameter for PerformGC, if any // ebx: pointer to C function (C callee-saved) // ebp: frame pointer (restored after C call) // esp: stack pointer (restored after C call) // edi: number of arguments including receiver (C callee-saved) // esi: pointer to the first argument (C callee-saved) // Result returned in eax, or eax+edx if result_size_ is 2. if (do_gc) { __ mov(Operand(esp, 0 * kPointerSize), eax); // Result. __ call(FUNCTION_ADDR(Runtime::PerformGC), RelocInfo::RUNTIME_ENTRY); } ExternalReference scope_depth = ExternalReference::heap_always_allocate_scope_depth(); if (always_allocate_scope) { __ inc(Operand::StaticVariable(scope_depth)); } // Call C function. __ mov(Operand(esp, 0 * kPointerSize), edi); // argc. __ mov(Operand(esp, 1 * kPointerSize), esi); // argv. __ call(Operand(ebx)); // Result is in eax or edx:eax - do not destroy these registers! if (always_allocate_scope) { __ dec(Operand::StaticVariable(scope_depth)); } // Make sure we're not trying to return 'the hole' from the runtime // call as this may lead to crashes in the IC code later. if (FLAG_debug_code) { Label okay; __ cmp(eax, Factory::the_hole_value()); __ j(not_equal, &okay); __ int3(); __ bind(&okay); } // Check for failure result. Label failure_returned; ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0); __ lea(ecx, Operand(eax, 1)); // Lower 2 bits of ecx are 0 iff eax has failure tag. __ test(ecx, Immediate(kFailureTagMask)); __ j(zero, &failure_returned, not_taken); // Exit the JavaScript to C++ exit frame. __ LeaveExitFrame(mode_); __ ret(0); // Handling of failure. __ bind(&failure_returned); Label retry; // If the returned exception is RETRY_AFTER_GC continue at retry label ASSERT(Failure::RETRY_AFTER_GC == 0); __ test(eax, Immediate(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize)); __ j(zero, &retry, taken); // Special handling of out of memory exceptions. __ cmp(eax, reinterpret_cast<int32_t>(Failure::OutOfMemoryException())); __ j(equal, throw_out_of_memory_exception); // Retrieve the pending exception and clear the variable. ExternalReference pending_exception_address(Top::k_pending_exception_address); __ mov(eax, Operand::StaticVariable(pending_exception_address)); __ mov(edx, Operand::StaticVariable(ExternalReference::the_hole_value_location())); __ mov(Operand::StaticVariable(pending_exception_address), edx); // Special handling of termination exceptions which are uncatchable // by javascript code. __ cmp(eax, Factory::termination_exception()); __ j(equal, throw_termination_exception); // Handle normal exception. __ jmp(throw_normal_exception); // Retry. __ bind(&retry); } void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm, UncatchableExceptionType type) { // Adjust this code if not the case. ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize); // Drop sp to the top stack handler. ExternalReference handler_address(Top::k_handler_address); __ mov(esp, Operand::StaticVariable(handler_address)); // Unwind the handlers until the ENTRY handler is found. Label loop, done; __ bind(&loop); // Load the type of the current stack handler. const int kStateOffset = StackHandlerConstants::kStateOffset; __ cmp(Operand(esp, kStateOffset), Immediate(StackHandler::ENTRY)); __ j(equal, &done); // Fetch the next handler in the list. const int kNextOffset = StackHandlerConstants::kNextOffset; __ mov(esp, Operand(esp, kNextOffset)); __ jmp(&loop); __ bind(&done); // Set the top handler address to next handler past the current ENTRY handler. ASSERT(StackHandlerConstants::kNextOffset == 0); __ pop(Operand::StaticVariable(handler_address)); if (type == OUT_OF_MEMORY) { // Set external caught exception to false. ExternalReference external_caught(Top::k_external_caught_exception_address); __ mov(eax, false); __ mov(Operand::StaticVariable(external_caught), eax); // Set pending exception and eax to out of memory exception. ExternalReference pending_exception(Top::k_pending_exception_address); __ mov(eax, reinterpret_cast<int32_t>(Failure::OutOfMemoryException())); __ mov(Operand::StaticVariable(pending_exception), eax); } // Clear the context pointer. __ xor_(esi, Operand(esi)); // Restore fp from handler and discard handler state. ASSERT(StackHandlerConstants::kFPOffset == 1 * kPointerSize); __ pop(ebp); __ pop(edx); // State. ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize); __ ret(0); } void CEntryStub::Generate(MacroAssembler* masm) { // eax: number of arguments including receiver // ebx: pointer to C function (C callee-saved) // ebp: frame pointer (restored after C call) // esp: stack pointer (restored after C call) // esi: current context (C callee-saved) // edi: JS function of the caller (C callee-saved) // NOTE: Invocations of builtins may return failure objects instead // of a proper result. The builtin entry handles this by performing // a garbage collection and retrying the builtin (twice). // Enter the exit frame that transitions from JavaScript to C++. __ EnterExitFrame(mode_); // eax: result parameter for PerformGC, if any (setup below) // ebx: pointer to builtin function (C callee-saved) // ebp: frame pointer (restored after C call) // esp: stack pointer (restored after C call) // edi: number of arguments including receiver (C callee-saved) // esi: argv pointer (C callee-saved) Label throw_normal_exception; Label throw_termination_exception; Label throw_out_of_memory_exception; // Call into the runtime system. GenerateCore(masm, &throw_normal_exception, &throw_termination_exception, &throw_out_of_memory_exception, false, false); // Do space-specific GC and retry runtime call. GenerateCore(masm, &throw_normal_exception, &throw_termination_exception, &throw_out_of_memory_exception, true, false); // Do full GC and retry runtime call one final time. Failure* failure = Failure::InternalError(); __ mov(eax, Immediate(reinterpret_cast<int32_t>(failure))); GenerateCore(masm, &throw_normal_exception, &throw_termination_exception, &throw_out_of_memory_exception, true, true); __ bind(&throw_out_of_memory_exception); GenerateThrowUncatchable(masm, OUT_OF_MEMORY); __ bind(&throw_termination_exception); GenerateThrowUncatchable(masm, TERMINATION); __ bind(&throw_normal_exception); GenerateThrowTOS(masm); } void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) { Label invoke, exit; #ifdef ENABLE_LOGGING_AND_PROFILING Label not_outermost_js, not_outermost_js_2; #endif // Setup frame. __ push(ebp); __ mov(ebp, Operand(esp)); // Push marker in two places. int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY; __ push(Immediate(Smi::FromInt(marker))); // context slot __ push(Immediate(Smi::FromInt(marker))); // function slot // Save callee-saved registers (C calling conventions). __ push(edi); __ push(esi); __ push(ebx); // Save copies of the top frame descriptor on the stack. ExternalReference c_entry_fp(Top::k_c_entry_fp_address); __ push(Operand::StaticVariable(c_entry_fp)); #ifdef ENABLE_LOGGING_AND_PROFILING // If this is the outermost JS call, set js_entry_sp value. ExternalReference js_entry_sp(Top::k_js_entry_sp_address); __ cmp(Operand::StaticVariable(js_entry_sp), Immediate(0)); __ j(not_equal, ¬_outermost_js); __ mov(Operand::StaticVariable(js_entry_sp), ebp); __ bind(¬_outermost_js); #endif // Call a faked try-block that does the invoke. __ call(&invoke); // Caught exception: Store result (exception) in the pending // exception field in the JSEnv and return a failure sentinel. ExternalReference pending_exception(Top::k_pending_exception_address); __ mov(Operand::StaticVariable(pending_exception), eax); __ mov(eax, reinterpret_cast<int32_t>(Failure::Exception())); __ jmp(&exit); // Invoke: Link this frame into the handler chain. __ bind(&invoke); __ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER); // Clear any pending exceptions. __ mov(edx, Operand::StaticVariable(ExternalReference::the_hole_value_location())); __ mov(Operand::StaticVariable(pending_exception), edx); // Fake a receiver (NULL). __ push(Immediate(0)); // receiver // Invoke the function by calling through JS entry trampoline // builtin and pop the faked function when we return. Notice that we // cannot store a reference to the trampoline code directly in this // stub, because the builtin stubs may not have been generated yet. if (is_construct) { ExternalReference construct_entry(Builtins::JSConstructEntryTrampoline); __ mov(edx, Immediate(construct_entry)); } else { ExternalReference entry(Builtins::JSEntryTrampoline); __ mov(edx, Immediate(entry)); } __ mov(edx, Operand(edx, 0)); // deref address __ lea(edx, FieldOperand(edx, Code::kHeaderSize)); __ call(Operand(edx)); // Unlink this frame from the handler chain. __ pop(Operand::StaticVariable(ExternalReference(Top::k_handler_address))); // Pop next_sp. __ add(Operand(esp), Immediate(StackHandlerConstants::kSize - kPointerSize)); #ifdef ENABLE_LOGGING_AND_PROFILING // If current EBP value is the same as js_entry_sp value, it means that // the current function is the outermost. __ cmp(ebp, Operand::StaticVariable(js_entry_sp)); __ j(not_equal, ¬_outermost_js_2); __ mov(Operand::StaticVariable(js_entry_sp), Immediate(0)); __ bind(¬_outermost_js_2); #endif // Restore the top frame descriptor from the stack. __ bind(&exit); __ pop(Operand::StaticVariable(ExternalReference(Top::k_c_entry_fp_address))); // Restore callee-saved registers (C calling conventions). __ pop(ebx); __ pop(esi); __ pop(edi); __ add(Operand(esp), Immediate(2 * kPointerSize)); // remove markers // Restore frame pointer and return. __ pop(ebp); __ ret(0); } void InstanceofStub::Generate(MacroAssembler* masm) { // Get the object - go slow case if it's a smi. Label slow; __ mov(eax, Operand(esp, 2 * kPointerSize)); // 2 ~ return address, function __ test(eax, Immediate(kSmiTagMask)); __ j(zero, &slow, not_taken); // Check that the left hand is a JS object. __ mov(eax, FieldOperand(eax, HeapObject::kMapOffset)); // eax - object map __ movzx_b(ecx, FieldOperand(eax, Map::kInstanceTypeOffset)); // ecx - type __ cmp(ecx, FIRST_JS_OBJECT_TYPE); __ j(less, &slow, not_taken); __ cmp(ecx, LAST_JS_OBJECT_TYPE); __ j(greater, &slow, not_taken); // Get the prototype of the function. __ mov(edx, Operand(esp, 1 * kPointerSize)); // 1 ~ return address __ TryGetFunctionPrototype(edx, ebx, ecx, &slow); // Check that the function prototype is a JS object. __ test(ebx, Immediate(kSmiTagMask)); __ j(zero, &slow, not_taken); __ mov(ecx, FieldOperand(ebx, HeapObject::kMapOffset)); __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); __ cmp(ecx, FIRST_JS_OBJECT_TYPE); __ j(less, &slow, not_taken); __ cmp(ecx, LAST_JS_OBJECT_TYPE); __ j(greater, &slow, not_taken); // Register mapping: eax is object map and ebx is function prototype. __ mov(ecx, FieldOperand(eax, Map::kPrototypeOffset)); // Loop through the prototype chain looking for the function prototype. Label loop, is_instance, is_not_instance; __ bind(&loop); __ cmp(ecx, Operand(ebx)); __ j(equal, &is_instance); __ cmp(Operand(ecx), Immediate(Factory::null_value())); __ j(equal, &is_not_instance); __ mov(ecx, FieldOperand(ecx, HeapObject::kMapOffset)); __ mov(ecx, FieldOperand(ecx, Map::kPrototypeOffset)); __ jmp(&loop); __ bind(&is_instance); __ Set(eax, Immediate(0)); __ ret(2 * kPointerSize); __ bind(&is_not_instance); __ Set(eax, Immediate(Smi::FromInt(1))); __ ret(2 * kPointerSize); // Slow-case: Go through the JavaScript implementation. __ bind(&slow); __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION); } // Unfortunately you have to run without snapshots to see most of these // names in the profile since most compare stubs end up in the snapshot. const char* CompareStub::GetName() { switch (cc_) { case less: return "CompareStub_LT"; case greater: return "CompareStub_GT"; case less_equal: return "CompareStub_LE"; case greater_equal: return "CompareStub_GE"; case not_equal: { if (strict_) { if (never_nan_nan_) { return "CompareStub_NE_STRICT_NO_NAN"; } else { return "CompareStub_NE_STRICT"; } } else { if (never_nan_nan_) { return "CompareStub_NE_NO_NAN"; } else { return "CompareStub_NE"; } } } case equal: { if (strict_) { if (never_nan_nan_) { return "CompareStub_EQ_STRICT_NO_NAN"; } else { return "CompareStub_EQ_STRICT"; } } else { if (never_nan_nan_) { return "CompareStub_EQ_NO_NAN"; } else { return "CompareStub_EQ"; } } } default: return "CompareStub"; } } int CompareStub::MinorKey() { // Encode the three parameters in a unique 16 bit value. ASSERT(static_cast<unsigned>(cc_) < (1 << 14)); int nnn_value = (never_nan_nan_ ? 2 : 0); if (cc_ != equal) nnn_value = 0; // Avoid duplicate stubs. return (static_cast<unsigned>(cc_) << 2) | nnn_value | (strict_ ? 1 : 0); } void StringAddStub::Generate(MacroAssembler* masm) { Label string_add_runtime; // Load the two arguments. __ mov(eax, Operand(esp, 2 * kPointerSize)); // First argument. __ mov(edx, Operand(esp, 1 * kPointerSize)); // Second argument. // Make sure that both arguments are strings if not known in advance. if (string_check_) { __ test(eax, Immediate(kSmiTagMask)); __ j(zero, &string_add_runtime); __ CmpObjectType(eax, FIRST_NONSTRING_TYPE, ebx); __ j(above_equal, &string_add_runtime); // First argument is a a string, test second. __ test(edx, Immediate(kSmiTagMask)); __ j(zero, &string_add_runtime); __ CmpObjectType(edx, FIRST_NONSTRING_TYPE, ebx); __ j(above_equal, &string_add_runtime); } // Both arguments are strings. // eax: first string // edx: second string // Check if either of the strings are empty. In that case return the other. Label second_not_zero_length, both_not_zero_length; __ mov(ecx, FieldOperand(edx, String::kLengthOffset)); __ test(ecx, Operand(ecx)); __ j(not_zero, &second_not_zero_length); // Second string is empty, result is first string which is already in eax. __ IncrementCounter(&Counters::string_add_native, 1); __ ret(2 * kPointerSize); __ bind(&second_not_zero_length); __ mov(ebx, FieldOperand(eax, String::kLengthOffset)); __ test(ebx, Operand(ebx)); __ j(not_zero, &both_not_zero_length); // First string is empty, result is second string which is in edx. __ mov(eax, edx); __ IncrementCounter(&Counters::string_add_native, 1); __ ret(2 * kPointerSize); // Both strings are non-empty. // eax: first string // ebx: length of first string // ecx: length of second string // edx: second string // Look at the length of the result of adding the two strings. Label string_add_flat_result, longer_than_two; __ bind(&both_not_zero_length); __ add(ebx, Operand(ecx)); // Use the runtime system when adding two one character strings, as it // contains optimizations for this specific case using the symbol table. __ cmp(ebx, 2); __ j(not_equal, &longer_than_two); // Check that both strings are non-external ascii strings. __ JumpIfNotBothSequentialAsciiStrings(eax, edx, ebx, ecx, &string_add_runtime); // Get the two characters forming the sub string. __ movzx_b(ebx, FieldOperand(eax, SeqAsciiString::kHeaderSize)); __ movzx_b(ecx, FieldOperand(edx, SeqAsciiString::kHeaderSize)); // Try to lookup two character string in symbol table. If it is not found // just allocate a new one. Label make_two_character_string, make_flat_ascii_string; GenerateTwoCharacterSymbolTableProbe(masm, ebx, ecx, eax, edx, edi, &make_two_character_string); __ ret(2 * kPointerSize); __ bind(&make_two_character_string); __ Set(ebx, Immediate(2)); __ jmp(&make_flat_ascii_string); __ bind(&longer_than_two); // Check if resulting string will be flat. __ cmp(ebx, String::kMinNonFlatLength); __ j(below, &string_add_flat_result); // Handle exceptionally long strings in the runtime system. ASSERT((String::kMaxLength & 0x80000000) == 0); __ cmp(ebx, String::kMaxLength); __ j(above, &string_add_runtime); // If result is not supposed to be flat allocate a cons string object. If both // strings are ascii the result is an ascii cons string. Label non_ascii, allocated; __ mov(edi, FieldOperand(eax, HeapObject::kMapOffset)); __ movzx_b(ecx, FieldOperand(edi, Map::kInstanceTypeOffset)); __ mov(edi, FieldOperand(edx, HeapObject::kMapOffset)); __ movzx_b(edi, FieldOperand(edi, Map::kInstanceTypeOffset)); __ and_(ecx, Operand(edi)); ASSERT(kStringEncodingMask == kAsciiStringTag); __ test(ecx, Immediate(kAsciiStringTag)); __ j(zero, &non_ascii); // Allocate an acsii cons string. __ AllocateAsciiConsString(ecx, edi, no_reg, &string_add_runtime); __ bind(&allocated); // Fill the fields of the cons string. __ mov(FieldOperand(ecx, ConsString::kLengthOffset), ebx); __ mov(FieldOperand(ecx, ConsString::kHashFieldOffset), Immediate(String::kEmptyHashField)); __ mov(FieldOperand(ecx, ConsString::kFirstOffset), eax); __ mov(FieldOperand(ecx, ConsString::kSecondOffset), edx); __ mov(eax, ecx); __ IncrementCounter(&Counters::string_add_native, 1); __ ret(2 * kPointerSize); __ bind(&non_ascii); // Allocate a two byte cons string. __ AllocateConsString(ecx, edi, no_reg, &string_add_runtime); __ jmp(&allocated); // Handle creating a flat result. First check that both strings are not // external strings. // eax: first string // ebx: length of resulting flat string // edx: second string __ bind(&string_add_flat_result); __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset)); __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); __ and_(ecx, kStringRepresentationMask); __ cmp(ecx, kExternalStringTag); __ j(equal, &string_add_runtime); __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset)); __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); __ and_(ecx, kStringRepresentationMask); __ cmp(ecx, kExternalStringTag); __ j(equal, &string_add_runtime); // Now check if both strings are ascii strings. // eax: first string // ebx: length of resulting flat string // edx: second string Label non_ascii_string_add_flat_result; __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset)); __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); ASSERT(kStringEncodingMask == kAsciiStringTag); __ test(ecx, Immediate(kAsciiStringTag)); __ j(zero, &non_ascii_string_add_flat_result); __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset)); __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); __ test(ecx, Immediate(kAsciiStringTag)); __ j(zero, &string_add_runtime); __ bind(&make_flat_ascii_string); // Both strings are ascii strings. As they are short they are both flat. // ebx: length of resulting flat string __ AllocateAsciiString(eax, ebx, ecx, edx, edi, &string_add_runtime); // eax: result string __ mov(ecx, eax); // Locate first character of result. __ add(Operand(ecx), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); // Load first argument and locate first character. __ mov(edx, Operand(esp, 2 * kPointerSize)); __ mov(edi, FieldOperand(edx, String::kLengthOffset)); __ add(Operand(edx), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); // eax: result string // ecx: first character of result // edx: first char of first argument // edi: length of first argument GenerateCopyCharacters(masm, ecx, edx, edi, ebx, true); // Load second argument and locate first character. __ mov(edx, Operand(esp, 1 * kPointerSize)); __ mov(edi, FieldOperand(edx, String::kLengthOffset)); __ add(Operand(edx), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); // eax: result string // ecx: next character of result // edx: first char of second argument // edi: length of second argument GenerateCopyCharacters(masm, ecx, edx, edi, ebx, true); __ IncrementCounter(&Counters::string_add_native, 1); __ ret(2 * kPointerSize); // Handle creating a flat two byte result. // eax: first string - known to be two byte // ebx: length of resulting flat string // edx: second string __ bind(&non_ascii_string_add_flat_result); __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset)); __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); __ and_(ecx, kAsciiStringTag); __ j(not_zero, &string_add_runtime); // Both strings are two byte strings. As they are short they are both // flat. __ AllocateTwoByteString(eax, ebx, ecx, edx, edi, &string_add_runtime); // eax: result string __ mov(ecx, eax); // Locate first character of result. __ add(Operand(ecx), Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); // Load first argument and locate first character. __ mov(edx, Operand(esp, 2 * kPointerSize)); __ mov(edi, FieldOperand(edx, String::kLengthOffset)); __ add(Operand(edx), Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); // eax: result string // ecx: first character of result // edx: first char of first argument // edi: length of first argument GenerateCopyCharacters(masm, ecx, edx, edi, ebx, false); // Load second argument and locate first character. __ mov(edx, Operand(esp, 1 * kPointerSize)); __ mov(edi, FieldOperand(edx, String::kLengthOffset)); __ add(Operand(edx), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); // eax: result string // ecx: next character of result // edx: first char of second argument // edi: length of second argument GenerateCopyCharacters(masm, ecx, edx, edi, ebx, false); __ IncrementCounter(&Counters::string_add_native, 1); __ ret(2 * kPointerSize); // Just jump to runtime to add the two strings. __ bind(&string_add_runtime); __ TailCallRuntime(ExternalReference(Runtime::kStringAdd), 2, 1); } void StringStubBase::GenerateCopyCharacters(MacroAssembler* masm, Register dest, Register src, Register count, Register scratch, bool ascii) { Label loop; __ bind(&loop); // This loop just copies one character at a time, as it is only used for very // short strings. if (ascii) { __ mov_b(scratch, Operand(src, 0)); __ mov_b(Operand(dest, 0), scratch); __ add(Operand(src), Immediate(1)); __ add(Operand(dest), Immediate(1)); } else { __ mov_w(scratch, Operand(src, 0)); __ mov_w(Operand(dest, 0), scratch); __ add(Operand(src), Immediate(2)); __ add(Operand(dest), Immediate(2)); } __ sub(Operand(count), Immediate(1)); __ j(not_zero, &loop); } void StringStubBase::GenerateCopyCharactersREP(MacroAssembler* masm, Register dest, Register src, Register count, Register scratch, bool ascii) { // Copy characters using rep movs of doublewords. Align destination on 4 byte // boundary before starting rep movs. Copy remaining characters after running // rep movs. ASSERT(dest.is(edi)); // rep movs destination ASSERT(src.is(esi)); // rep movs source ASSERT(count.is(ecx)); // rep movs count ASSERT(!scratch.is(dest)); ASSERT(!scratch.is(src)); ASSERT(!scratch.is(count)); // Nothing to do for zero characters. Label done; __ test(count, Operand(count)); __ j(zero, &done); // Make count the number of bytes to copy. if (!ascii) { __ shl(count, 1); } // Don't enter the rep movs if there are less than 4 bytes to copy. Label last_bytes; __ test(count, Immediate(~3)); __ j(zero, &last_bytes); // Copy from edi to esi using rep movs instruction. __ mov(scratch, count); __ sar(count, 2); // Number of doublewords to copy. __ rep_movs(); // Find number of bytes left. __ mov(count, scratch); __ and_(count, 3); // Check if there are more bytes to copy. __ bind(&last_bytes); __ test(count, Operand(count)); __ j(zero, &done); // Copy remaining characters. Label loop; __ bind(&loop); __ mov_b(scratch, Operand(src, 0)); __ mov_b(Operand(dest, 0), scratch); __ add(Operand(src), Immediate(1)); __ add(Operand(dest), Immediate(1)); __ sub(Operand(count), Immediate(1)); __ j(not_zero, &loop); __ bind(&done); } void StringStubBase::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm, Register c1, Register c2, Register scratch1, Register scratch2, Register scratch3, Label* not_found) { // Register scratch3 is the general scratch register in this function. Register scratch = scratch3; // Make sure that both characters are not digits as such strings has a // different hash algorithm. Don't try to look for these in the symbol table. Label not_array_index; __ mov(scratch, c1); __ sub(Operand(scratch), Immediate(static_cast<int>('0'))); __ cmp(Operand(scratch), Immediate(static_cast<int>('9' - '0'))); __ j(above, ¬_array_index); __ mov(scratch, c2); __ sub(Operand(scratch), Immediate(static_cast<int>('0'))); __ cmp(Operand(scratch), Immediate(static_cast<int>('9' - '0'))); __ j(below_equal, not_found); __ bind(¬_array_index); // Calculate the two character string hash. Register hash = scratch1; GenerateHashInit(masm, hash, c1, scratch); GenerateHashAddCharacter(masm, hash, c2, scratch); GenerateHashGetHash(masm, hash, scratch); // Collect the two characters in a register. Register chars = c1; __ shl(c2, kBitsPerByte); __ or_(chars, Operand(c2)); // chars: two character string, char 1 in byte 0 and char 2 in byte 1. // hash: hash of two character string. // Load the symbol table. Register symbol_table = c2; ExternalReference roots_address = ExternalReference::roots_address(); __ mov(scratch, Immediate(Heap::kSymbolTableRootIndex)); __ mov(symbol_table, Operand::StaticArray(scratch, times_pointer_size, roots_address)); // Calculate capacity mask from the symbol table capacity. Register mask = scratch2; static const int kCapacityOffset = FixedArray::kHeaderSize + SymbolTable::kCapacityIndex * kPointerSize; __ mov(mask, FieldOperand(symbol_table, kCapacityOffset)); __ SmiUntag(mask); __ sub(Operand(mask), Immediate(1)); // Registers // chars: two character string, char 1 in byte 0 and char 2 in byte 1. // hash: hash of two character string // symbol_table: symbol table // mask: capacity mask // scratch: - // Perform a number of probes in the symbol table. static const int kProbes = 4; Label found_in_symbol_table; Label next_probe[kProbes], next_probe_pop_mask[kProbes]; for (int i = 0; i < kProbes; i++) { // Calculate entry in symbol table. __ mov(scratch, hash); if (i > 0) { __ add(Operand(scratch), Immediate(SymbolTable::GetProbeOffset(i))); } __ and_(scratch, Operand(mask)); // Load the entry from the symble table. Register candidate = scratch; // Scratch register contains candidate. ASSERT_EQ(1, SymbolTableShape::kEntrySize); static const int kFirstElementOffset = FixedArray::kHeaderSize + SymbolTable::kPrefixStartIndex * kPointerSize + SymbolTableShape::kPrefixSize * kPointerSize; __ mov(candidate, FieldOperand(symbol_table, scratch, times_pointer_size, kFirstElementOffset)); // If entry is undefined no string with this hash can be found. __ cmp(candidate, Factory::undefined_value()); __ j(equal, not_found); // If length is not 2 the string is not a candidate. __ cmp(FieldOperand(candidate, String::kLengthOffset), Immediate(2)); __ j(not_equal, &next_probe[i]); // As we are out of registers save the mask on the stack and use that // register as a temporary. __ push(mask); Register temp = mask; // Check that the candidate is a non-external ascii string. __ mov(temp, FieldOperand(candidate, HeapObject::kMapOffset)); __ movzx_b(temp, FieldOperand(temp, Map::kInstanceTypeOffset)); __ JumpIfInstanceTypeIsNotSequentialAscii( temp, temp, &next_probe_pop_mask[i]); // Check if the two characters match. __ mov(temp, FieldOperand(candidate, SeqAsciiString::kHeaderSize)); __ and_(temp, 0x0000ffff); __ cmp(chars, Operand(temp)); __ j(equal, &found_in_symbol_table); __ bind(&next_probe_pop_mask[i]); __ pop(mask); __ bind(&next_probe[i]); } // No matching 2 character string found by probing. __ jmp(not_found); // Scratch register contains result when we fall through to here. Register result = scratch; __ bind(&found_in_symbol_table); __ pop(mask); // Pop temporally saved mask from the stack. if (!result.is(eax)) { __ mov(eax, result); } } void StringStubBase::GenerateHashInit(MacroAssembler* masm, Register hash, Register character, Register scratch) { // hash = character + (character << 10); __ mov(hash, character); __ shl(hash, 10); __ add(hash, Operand(character)); // hash ^= hash >> 6; __ mov(scratch, hash); __ sar(scratch, 6); __ xor_(hash, Operand(scratch)); } void StringStubBase::GenerateHashAddCharacter(MacroAssembler* masm, Register hash, Register character, Register scratch) { // hash += character; __ add(hash, Operand(character)); // hash += hash << 10; __ mov(scratch, hash); __ shl(scratch, 10); __ add(hash, Operand(scratch)); // hash ^= hash >> 6; __ mov(scratch, hash); __ sar(scratch, 6); __ xor_(hash, Operand(scratch)); } void StringStubBase::GenerateHashGetHash(MacroAssembler* masm, Register hash, Register scratch) { // hash += hash << 3; __ mov(scratch, hash); __ shl(scratch, 3); __ add(hash, Operand(scratch)); // hash ^= hash >> 11; __ mov(scratch, hash); __ sar(scratch, 11); __ xor_(hash, Operand(scratch)); // hash += hash << 15; __ mov(scratch, hash); __ shl(scratch, 15); __ add(hash, Operand(scratch)); // if (hash == 0) hash = 27; Label hash_not_zero; __ test(hash, Operand(hash)); __ j(not_zero, &hash_not_zero); __ mov(hash, Immediate(27)); __ bind(&hash_not_zero); } void SubStringStub::Generate(MacroAssembler* masm) { Label runtime; // Stack frame on entry. // esp[0]: return address // esp[4]: to // esp[8]: from // esp[12]: string // Make sure first argument is a string. __ mov(eax, Operand(esp, 3 * kPointerSize)); ASSERT_EQ(0, kSmiTag); __ test(eax, Immediate(kSmiTagMask)); __ j(zero, &runtime); Condition is_string = masm->IsObjectStringType(eax, ebx, ebx); __ j(NegateCondition(is_string), &runtime); // eax: string // ebx: instance type // Calculate length of sub string using the smi values. Label result_longer_than_two; __ mov(ecx, Operand(esp, 1 * kPointerSize)); // To index. __ test(ecx, Immediate(kSmiTagMask)); __ j(not_zero, &runtime); __ mov(edx, Operand(esp, 2 * kPointerSize)); // From index. __ test(edx, Immediate(kSmiTagMask)); __ j(not_zero, &runtime); __ sub(ecx, Operand(edx)); // Special handling of sub-strings of length 1 and 2. One character strings // are handled in the runtime system (looked up in the single character // cache). Two character strings are looked for in the symbol cache. __ SmiUntag(ecx); // Result length is no longer smi. __ cmp(ecx, 2); __ j(greater, &result_longer_than_two); __ j(less, &runtime); // Sub string of length 2 requested. // eax: string // ebx: instance type // ecx: sub string length (value is 2) // edx: from index (smi) __ JumpIfInstanceTypeIsNotSequentialAscii(ebx, ebx, &runtime); // Get the two characters forming the sub string. __ SmiUntag(edx); // From index is no longer smi. __ movzx_b(ebx, FieldOperand(eax, edx, times_1, SeqAsciiString::kHeaderSize)); __ movzx_b(ecx, FieldOperand(eax, edx, times_1, SeqAsciiString::kHeaderSize + 1)); // Try to lookup two character string in symbol table. Label make_two_character_string; GenerateTwoCharacterSymbolTableProbe(masm, ebx, ecx, eax, edx, edi, &make_two_character_string); __ ret(2 * kPointerSize); __ bind(&make_two_character_string); // Setup registers for allocating the two character string. __ mov(eax, Operand(esp, 3 * kPointerSize)); __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset)); __ Set(ecx, Immediate(2)); __ bind(&result_longer_than_two); // eax: string // ebx: instance type // ecx: result string length // Check for flat ascii string Label non_ascii_flat; __ JumpIfInstanceTypeIsNotSequentialAscii(ebx, ebx, &non_ascii_flat); // Allocate the result. __ AllocateAsciiString(eax, ecx, ebx, edx, edi, &runtime); // eax: result string // ecx: result string length __ mov(edx, esi); // esi used by following code. // Locate first character of result. __ mov(edi, eax); __ add(Operand(edi), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); // Load string argument and locate character of sub string start. __ mov(esi, Operand(esp, 3 * kPointerSize)); __ add(Operand(esi), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); __ mov(ebx, Operand(esp, 2 * kPointerSize)); // from __ SmiUntag(ebx); __ add(esi, Operand(ebx)); // eax: result string // ecx: result length // edx: original value of esi // edi: first character of result // esi: character of sub string start GenerateCopyCharactersREP(masm, edi, esi, ecx, ebx, true); __ mov(esi, edx); // Restore esi. __ IncrementCounter(&Counters::sub_string_native, 1); __ ret(3 * kPointerSize); __ bind(&non_ascii_flat); // eax: string // ebx: instance type & kStringRepresentationMask | kStringEncodingMask // ecx: result string length // Check for flat two byte string __ cmp(ebx, kSeqStringTag | kTwoByteStringTag); __ j(not_equal, &runtime); // Allocate the result. __ AllocateTwoByteString(eax, ecx, ebx, edx, edi, &runtime); // eax: result string // ecx: result string length __ mov(edx, esi); // esi used by following code. // Locate first character of result. __ mov(edi, eax); __ add(Operand(edi), Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); // Load string argument and locate character of sub string start. __ mov(esi, Operand(esp, 3 * kPointerSize)); __ add(Operand(esi), Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); __ mov(ebx, Operand(esp, 2 * kPointerSize)); // from // As from is a smi it is 2 times the value which matches the size of a two // byte character. ASSERT_EQ(0, kSmiTag); ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize); __ add(esi, Operand(ebx)); // eax: result string // ecx: result length // edx: original value of esi // edi: first character of result // esi: character of sub string start GenerateCopyCharactersREP(masm, edi, esi, ecx, ebx, false); __ mov(esi, edx); // Restore esi. __ IncrementCounter(&Counters::sub_string_native, 1); __ ret(3 * kPointerSize); // Just jump to runtime to create the sub string. __ bind(&runtime); __ TailCallRuntime(ExternalReference(Runtime::kSubString), 3, 1); } void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm, Register left, Register right, Register scratch1, Register scratch2, Register scratch3) { Label result_not_equal; Label result_greater; Label compare_lengths; // Find minimum length. Label left_shorter; __ mov(scratch1, FieldOperand(left, String::kLengthOffset)); __ mov(scratch3, scratch1); __ sub(scratch3, FieldOperand(right, String::kLengthOffset)); Register length_delta = scratch3; __ j(less_equal, &left_shorter); // Right string is shorter. Change scratch1 to be length of right string. __ sub(scratch1, Operand(length_delta)); __ bind(&left_shorter); Register min_length = scratch1; // If either length is zero, just compare lengths. __ test(min_length, Operand(min_length)); __ j(zero, &compare_lengths); // Change index to run from -min_length to -1 by adding min_length // to string start. This means that loop ends when index reaches zero, // which doesn't need an additional compare. __ lea(left, FieldOperand(left, min_length, times_1, SeqAsciiString::kHeaderSize)); __ lea(right, FieldOperand(right, min_length, times_1, SeqAsciiString::kHeaderSize)); __ neg(min_length); Register index = min_length; // index = -min_length; { // Compare loop. Label loop; __ bind(&loop); // Compare characters. __ mov_b(scratch2, Operand(left, index, times_1, 0)); __ cmpb(scratch2, Operand(right, index, times_1, 0)); __ j(not_equal, &result_not_equal); __ add(Operand(index), Immediate(1)); __ j(not_zero, &loop); } // Compare lengths - strings up to min-length are equal. __ bind(&compare_lengths); __ test(length_delta, Operand(length_delta)); __ j(not_zero, &result_not_equal); // Result is EQUAL. ASSERT_EQ(0, EQUAL); ASSERT_EQ(0, kSmiTag); __ Set(eax, Immediate(Smi::FromInt(EQUAL))); __ ret(2 * kPointerSize); __ bind(&result_not_equal); __ j(greater, &result_greater); // Result is LESS. __ Set(eax, Immediate(Smi::FromInt(LESS))); __ ret(2 * kPointerSize); // Result is GREATER. __ bind(&result_greater); __ Set(eax, Immediate(Smi::FromInt(GREATER))); __ ret(2 * kPointerSize); } void StringCompareStub::Generate(MacroAssembler* masm) { Label runtime; // Stack frame on entry. // esp[0]: return address // esp[4]: right string // esp[8]: left string __ mov(edx, Operand(esp, 2 * kPointerSize)); // left __ mov(eax, Operand(esp, 1 * kPointerSize)); // right Label not_same; __ cmp(edx, Operand(eax)); __ j(not_equal, ¬_same); ASSERT_EQ(0, EQUAL); ASSERT_EQ(0, kSmiTag); __ Set(eax, Immediate(Smi::FromInt(EQUAL))); __ IncrementCounter(&Counters::string_compare_native, 1); __ ret(2 * kPointerSize); __ bind(¬_same); // Check that both objects are sequential ascii strings. __ JumpIfNotBothSequentialAsciiStrings(edx, eax, ecx, ebx, &runtime); // Compare flat ascii strings. __ IncrementCounter(&Counters::string_compare_native, 1); GenerateCompareFlatAsciiStrings(masm, edx, eax, ecx, ebx, edi); // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater) // tagged as a small integer. __ bind(&runtime); __ TailCallRuntime(ExternalReference(Runtime::kStringCompare), 2, 1); } #undef __ } } // namespace v8::internal