// Copyright 2009 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "accessors.h" #include "api.h" #include "arguments.h" #include "bootstrapper.h" #include "codegen.h" #include "compiler.h" #include "debug.h" #include "execution.h" #include "global-handles.h" #include "natives.h" #include "runtime.h" #include "stub-cache.h" namespace v8 { namespace internal { v8::ImplementationUtilities::HandleScopeData HandleScope::current_ = { -1, NULL, NULL }; int HandleScope::NumberOfHandles() { int n = HandleScopeImplementer::instance()->blocks()->length(); if (n == 0) return 0; return ((n - 1) * kHandleBlockSize) + static_cast<int>( (current_.next - HandleScopeImplementer::instance()->blocks()->last())); } Object** HandleScope::Extend() { Object** result = current_.next; ASSERT(result == current_.limit); // Make sure there's at least one scope on the stack and that the // top of the scope stack isn't a barrier. if (current_.extensions < 0) { Utils::ReportApiFailure("v8::HandleScope::CreateHandle()", "Cannot create a handle without a HandleScope"); return NULL; } HandleScopeImplementer* impl = HandleScopeImplementer::instance(); // If there's more room in the last block, we use that. This is used // for fast creation of scopes after scope barriers. if (!impl->blocks()->is_empty()) { Object** limit = &impl->blocks()->last()[kHandleBlockSize]; if (current_.limit != limit) { current_.limit = limit; } } // If we still haven't found a slot for the handle, we extend the // current handle scope by allocating a new handle block. if (result == current_.limit) { // If there's a spare block, use it for growing the current scope. result = impl->GetSpareOrNewBlock(); // Add the extension to the global list of blocks, but count the // extension as part of the current scope. impl->blocks()->Add(result); current_.extensions++; current_.limit = &result[kHandleBlockSize]; } return result; } void HandleScope::DeleteExtensions() { ASSERT(current_.extensions != 0); HandleScopeImplementer::instance()->DeleteExtensions(current_.extensions); } void HandleScope::ZapRange(Object** start, Object** end) { if (start == NULL) return; for (Object** p = start; p < end; p++) { *reinterpret_cast<Address*>(p) = v8::internal::kHandleZapValue; } } Address HandleScope::current_extensions_address() { return reinterpret_cast<Address>(¤t_.extensions); } Address HandleScope::current_next_address() { return reinterpret_cast<Address>(¤t_.next); } Address HandleScope::current_limit_address() { return reinterpret_cast<Address>(¤t_.limit); } Handle<FixedArray> AddKeysFromJSArray(Handle<FixedArray> content, Handle<JSArray> array) { CALL_HEAP_FUNCTION(content->AddKeysFromJSArray(*array), FixedArray); } Handle<FixedArray> UnionOfKeys(Handle<FixedArray> first, Handle<FixedArray> second) { CALL_HEAP_FUNCTION(first->UnionOfKeys(*second), FixedArray); } Handle<JSGlobalProxy> ReinitializeJSGlobalProxy( Handle<JSFunction> constructor, Handle<JSGlobalProxy> global) { CALL_HEAP_FUNCTION(Heap::ReinitializeJSGlobalProxy(*constructor, *global), JSGlobalProxy); } void SetExpectedNofProperties(Handle<JSFunction> func, int nof) { func->shared()->set_expected_nof_properties(nof); if (func->has_initial_map()) { Handle<Map> new_initial_map = Factory::CopyMapDropTransitions(Handle<Map>(func->initial_map())); new_initial_map->set_unused_property_fields(nof); func->set_initial_map(*new_initial_map); } } void SetPrototypeProperty(Handle<JSFunction> func, Handle<JSObject> value) { CALL_HEAP_FUNCTION_VOID(func->SetPrototype(*value)); } static int ExpectedNofPropertiesFromEstimate(int estimate) { // TODO(1231235): We need dynamic feedback to estimate the number // of expected properties in an object. The static hack below // is barely a solution. if (estimate == 0) return 4; return estimate + 2; } void SetExpectedNofPropertiesFromEstimate(Handle<SharedFunctionInfo> shared, int estimate) { shared->set_expected_nof_properties( ExpectedNofPropertiesFromEstimate(estimate)); } void SetExpectedNofPropertiesFromEstimate(Handle<JSFunction> func, int estimate) { SetExpectedNofProperties( func, ExpectedNofPropertiesFromEstimate(estimate)); } void NormalizeProperties(Handle<JSObject> object, PropertyNormalizationMode mode, int expected_additional_properties) { CALL_HEAP_FUNCTION_VOID(object->NormalizeProperties( mode, expected_additional_properties)); } void NormalizeElements(Handle<JSObject> object) { CALL_HEAP_FUNCTION_VOID(object->NormalizeElements()); } void TransformToFastProperties(Handle<JSObject> object, int unused_property_fields) { CALL_HEAP_FUNCTION_VOID( object->TransformToFastProperties(unused_property_fields)); } void FlattenString(Handle<String> string) { CALL_HEAP_FUNCTION_VOID(string->TryFlattenIfNotFlat()); ASSERT(string->IsFlat()); } Handle<Object> SetPrototype(Handle<JSFunction> function, Handle<Object> prototype) { CALL_HEAP_FUNCTION(Accessors::FunctionSetPrototype(*function, *prototype, NULL), Object); } Handle<Object> SetProperty(Handle<JSObject> object, Handle<String> key, Handle<Object> value, PropertyAttributes attributes) { CALL_HEAP_FUNCTION(object->SetProperty(*key, *value, attributes), Object); } Handle<Object> SetProperty(Handle<Object> object, Handle<Object> key, Handle<Object> value, PropertyAttributes attributes) { CALL_HEAP_FUNCTION( Runtime::SetObjectProperty(object, key, value, attributes), Object); } Handle<Object> ForceSetProperty(Handle<JSObject> object, Handle<Object> key, Handle<Object> value, PropertyAttributes attributes) { CALL_HEAP_FUNCTION( Runtime::ForceSetObjectProperty(object, key, value, attributes), Object); } Handle<Object> SetNormalizedProperty(Handle<JSObject> object, Handle<String> key, Handle<Object> value, PropertyDetails details) { CALL_HEAP_FUNCTION(object->SetNormalizedProperty(*key, *value, details), Object); } Handle<Object> ForceDeleteProperty(Handle<JSObject> object, Handle<Object> key) { CALL_HEAP_FUNCTION(Runtime::ForceDeleteObjectProperty(object, key), Object); } Handle<Object> IgnoreAttributesAndSetLocalProperty( Handle<JSObject> object, Handle<String> key, Handle<Object> value, PropertyAttributes attributes) { CALL_HEAP_FUNCTION(object-> IgnoreAttributesAndSetLocalProperty(*key, *value, attributes), Object); } Handle<Object> SetPropertyWithInterceptor(Handle<JSObject> object, Handle<String> key, Handle<Object> value, PropertyAttributes attributes) { CALL_HEAP_FUNCTION(object->SetPropertyWithInterceptor(*key, *value, attributes), Object); } Handle<Object> GetProperty(Handle<JSObject> obj, const char* name) { Handle<String> str = Factory::LookupAsciiSymbol(name); CALL_HEAP_FUNCTION(obj->GetProperty(*str), Object); } Handle<Object> GetProperty(Handle<Object> obj, Handle<Object> key) { CALL_HEAP_FUNCTION(Runtime::GetObjectProperty(obj, key), Object); } Handle<Object> GetPropertyWithInterceptor(Handle<JSObject> receiver, Handle<JSObject> holder, Handle<String> name, PropertyAttributes* attributes) { CALL_HEAP_FUNCTION(holder->GetPropertyWithInterceptor(*receiver, *name, attributes), Object); } Handle<Object> GetPrototype(Handle<Object> obj) { Handle<Object> result(obj->GetPrototype()); return result; } Handle<Object> SetPrototype(Handle<JSObject> obj, Handle<Object> value) { const bool skip_hidden_prototypes = false; CALL_HEAP_FUNCTION(obj->SetPrototype(*value, skip_hidden_prototypes), Object); } Handle<Object> GetHiddenProperties(Handle<JSObject> obj, bool create_if_needed) { Object* holder = obj->BypassGlobalProxy(); if (holder->IsUndefined()) return Factory::undefined_value(); obj = Handle<JSObject>(JSObject::cast(holder)); if (obj->HasFastProperties()) { // If the object has fast properties, check whether the first slot // in the descriptor array matches the hidden symbol. Since the // hidden symbols hash code is zero (and no other string has hash // code zero) it will always occupy the first entry if present. DescriptorArray* descriptors = obj->map()->instance_descriptors(); if ((descriptors->number_of_descriptors() > 0) && (descriptors->GetKey(0) == Heap::hidden_symbol()) && descriptors->IsProperty(0)) { ASSERT(descriptors->GetType(0) == FIELD); return Handle<Object>(obj->FastPropertyAt(descriptors->GetFieldIndex(0))); } } // Only attempt to find the hidden properties in the local object and not // in the prototype chain. Note that HasLocalProperty() can cause a GC in // the general case in the presence of interceptors. if (!obj->HasHiddenPropertiesObject()) { // Hidden properties object not found. Allocate a new hidden properties // object if requested. Otherwise return the undefined value. if (create_if_needed) { Handle<Object> hidden_obj = Factory::NewJSObject(Top::object_function()); CALL_HEAP_FUNCTION(obj->SetHiddenPropertiesObject(*hidden_obj), Object); } else { return Factory::undefined_value(); } } return Handle<Object>(obj->GetHiddenPropertiesObject()); } Handle<Object> DeleteElement(Handle<JSObject> obj, uint32_t index) { CALL_HEAP_FUNCTION(obj->DeleteElement(index, JSObject::NORMAL_DELETION), Object); } Handle<Object> DeleteProperty(Handle<JSObject> obj, Handle<String> prop) { CALL_HEAP_FUNCTION(obj->DeleteProperty(*prop, JSObject::NORMAL_DELETION), Object); } Handle<Object> LookupSingleCharacterStringFromCode(uint32_t index) { CALL_HEAP_FUNCTION(Heap::LookupSingleCharacterStringFromCode(index), Object); } Handle<String> SubString(Handle<String> str, int start, int end) { CALL_HEAP_FUNCTION(str->SubString(start, end), String); } Handle<Object> SetElement(Handle<JSObject> object, uint32_t index, Handle<Object> value) { if (object->HasPixelElements() || object->HasExternalArrayElements()) { if (!value->IsSmi() && !value->IsHeapNumber() && !value->IsUndefined()) { bool has_exception; Handle<Object> number = Execution::ToNumber(value, &has_exception); if (has_exception) return Handle<Object>(); value = number; } } CALL_HEAP_FUNCTION(object->SetElement(index, *value), Object); } Handle<JSObject> Copy(Handle<JSObject> obj) { CALL_HEAP_FUNCTION(Heap::CopyJSObject(*obj), JSObject); } // Wrappers for scripts are kept alive and cached in weak global // handles referred from proxy objects held by the scripts as long as // they are used. When they are not used anymore, the garbage // collector will call the weak callback on the global handle // associated with the wrapper and get rid of both the wrapper and the // handle. static void ClearWrapperCache(Persistent<v8::Value> handle, void*) { #ifdef ENABLE_HEAP_PROTECTION // Weak reference callbacks are called as if from outside V8. We // need to reeenter to unprotect the heap. VMState state(OTHER); #endif Handle<Object> cache = Utils::OpenHandle(*handle); JSValue* wrapper = JSValue::cast(*cache); Proxy* proxy = Script::cast(wrapper->value())->wrapper(); ASSERT(proxy->proxy() == reinterpret_cast<Address>(cache.location())); proxy->set_proxy(0); GlobalHandles::Destroy(cache.location()); Counters::script_wrappers.Decrement(); } Handle<JSValue> GetScriptWrapper(Handle<Script> script) { if (script->wrapper()->proxy() != NULL) { // Return the script wrapper directly from the cache. return Handle<JSValue>( reinterpret_cast<JSValue**>(script->wrapper()->proxy())); } // Construct a new script wrapper. Counters::script_wrappers.Increment(); Handle<JSFunction> constructor = Top::script_function(); Handle<JSValue> result = Handle<JSValue>::cast(Factory::NewJSObject(constructor)); result->set_value(*script); // Create a new weak global handle and use it to cache the wrapper // for future use. The cache will automatically be cleared by the // garbage collector when it is not used anymore. Handle<Object> handle = GlobalHandles::Create(*result); GlobalHandles::MakeWeak(handle.location(), NULL, &ClearWrapperCache); script->wrapper()->set_proxy(reinterpret_cast<Address>(handle.location())); return result; } // Init line_ends array with code positions of line ends inside script // source. void InitScriptLineEnds(Handle<Script> script) { if (!script->line_ends()->IsUndefined()) return; if (!script->source()->IsString()) { ASSERT(script->source()->IsUndefined()); script->set_line_ends(*(Factory::NewFixedArray(0))); ASSERT(script->line_ends()->IsFixedArray()); return; } Handle<String> src(String::cast(script->source())); const int src_len = src->length(); Handle<String> new_line = Factory::NewStringFromAscii(CStrVector("\n")); // Pass 1: Identify line count. int line_count = 0; int position = 0; while (position != -1 && position < src_len) { position = Runtime::StringMatch(src, new_line, position); if (position != -1) { position++; } // Even if the last line misses a line end, it is counted. line_count++; } // Pass 2: Fill in line ends positions Handle<FixedArray> array = Factory::NewFixedArray(line_count); int array_index = 0; position = 0; while (position != -1 && position < src_len) { position = Runtime::StringMatch(src, new_line, position); // If the script does not end with a line ending add the final end // position as just past the last line ending. array->set(array_index++, Smi::FromInt(position != -1 ? position++ : src_len)); } ASSERT(array_index == line_count); script->set_line_ends(*array); ASSERT(script->line_ends()->IsFixedArray()); } // Convert code position into line number. int GetScriptLineNumber(Handle<Script> script, int code_pos) { InitScriptLineEnds(script); AssertNoAllocation no_allocation; FixedArray* line_ends_array = FixedArray::cast(script->line_ends()); const int line_ends_len = line_ends_array->length(); if (!line_ends_len) return -1; if ((Smi::cast(line_ends_array->get(0)))->value() >= code_pos) return script->line_offset()->value(); int left = 0; int right = line_ends_len; while (int half = (right - left) / 2) { if ((Smi::cast(line_ends_array->get(left + half)))->value() > code_pos) { right -= half; } else { left += half; } } return right + script->line_offset()->value(); } void CustomArguments::IterateInstance(ObjectVisitor* v) { v->VisitPointers(values_, values_ + 4); } // Compute the property keys from the interceptor. v8::Handle<v8::Array> GetKeysForNamedInterceptor(Handle<JSObject> receiver, Handle<JSObject> object) { Handle<InterceptorInfo> interceptor(object->GetNamedInterceptor()); CustomArguments args(interceptor->data(), *receiver, *object); v8::AccessorInfo info(args.end()); v8::Handle<v8::Array> result; if (!interceptor->enumerator()->IsUndefined()) { v8::NamedPropertyEnumerator enum_fun = v8::ToCData<v8::NamedPropertyEnumerator>(interceptor->enumerator()); LOG(ApiObjectAccess("interceptor-named-enum", *object)); { // Leaving JavaScript. VMState state(EXTERNAL); result = enum_fun(info); } } return result; } // Compute the element keys from the interceptor. v8::Handle<v8::Array> GetKeysForIndexedInterceptor(Handle<JSObject> receiver, Handle<JSObject> object) { Handle<InterceptorInfo> interceptor(object->GetIndexedInterceptor()); CustomArguments args(interceptor->data(), *receiver, *object); v8::AccessorInfo info(args.end()); v8::Handle<v8::Array> result; if (!interceptor->enumerator()->IsUndefined()) { v8::IndexedPropertyEnumerator enum_fun = v8::ToCData<v8::IndexedPropertyEnumerator>(interceptor->enumerator()); LOG(ApiObjectAccess("interceptor-indexed-enum", *object)); { // Leaving JavaScript. VMState state(EXTERNAL); result = enum_fun(info); } } return result; } Handle<FixedArray> GetKeysInFixedArrayFor(Handle<JSObject> object, KeyCollectionType type) { Handle<FixedArray> content = Factory::empty_fixed_array(); Handle<JSObject> arguments_boilerplate = Handle<JSObject>( Top::context()->global_context()->arguments_boilerplate()); Handle<JSFunction> arguments_function = Handle<JSFunction>( JSFunction::cast(arguments_boilerplate->map()->constructor())); // Only collect keys if access is permitted. for (Handle<Object> p = object; *p != Heap::null_value(); p = Handle<Object>(p->GetPrototype())) { Handle<JSObject> current(JSObject::cast(*p)); // Check access rights if required. if (current->IsAccessCheckNeeded() && !Top::MayNamedAccess(*current, Heap::undefined_value(), v8::ACCESS_KEYS)) { Top::ReportFailedAccessCheck(*current, v8::ACCESS_KEYS); break; } // Compute the element keys. Handle<FixedArray> element_keys = Factory::NewFixedArray(current->NumberOfEnumElements()); current->GetEnumElementKeys(*element_keys); content = UnionOfKeys(content, element_keys); // Add the element keys from the interceptor. if (current->HasIndexedInterceptor()) { v8::Handle<v8::Array> result = GetKeysForIndexedInterceptor(object, current); if (!result.IsEmpty()) content = AddKeysFromJSArray(content, v8::Utils::OpenHandle(*result)); } // We can cache the computed property keys if access checks are // not needed and no interceptors are involved. // // We do not use the cache if the object has elements and // therefore it does not make sense to cache the property names // for arguments objects. Arguments objects will always have // elements. bool cache_enum_keys = ((current->map()->constructor() != *arguments_function) && !current->IsAccessCheckNeeded() && !current->HasNamedInterceptor() && !current->HasIndexedInterceptor()); // Compute the property keys and cache them if possible. content = UnionOfKeys(content, GetEnumPropertyKeys(current, cache_enum_keys)); // Add the property keys from the interceptor. if (current->HasNamedInterceptor()) { v8::Handle<v8::Array> result = GetKeysForNamedInterceptor(object, current); if (!result.IsEmpty()) content = AddKeysFromJSArray(content, v8::Utils::OpenHandle(*result)); } // If we only want local properties we bail out after the first // iteration. if (type == LOCAL_ONLY) break; } return content; } Handle<JSArray> GetKeysFor(Handle<JSObject> object) { Counters::for_in.Increment(); Handle<FixedArray> elements = GetKeysInFixedArrayFor(object, INCLUDE_PROTOS); return Factory::NewJSArrayWithElements(elements); } Handle<FixedArray> GetEnumPropertyKeys(Handle<JSObject> object, bool cache_result) { int index = 0; if (object->HasFastProperties()) { if (object->map()->instance_descriptors()->HasEnumCache()) { Counters::enum_cache_hits.Increment(); DescriptorArray* desc = object->map()->instance_descriptors(); return Handle<FixedArray>(FixedArray::cast(desc->GetEnumCache())); } Counters::enum_cache_misses.Increment(); int num_enum = object->NumberOfEnumProperties(); Handle<FixedArray> storage = Factory::NewFixedArray(num_enum); Handle<FixedArray> sort_array = Factory::NewFixedArray(num_enum); Handle<DescriptorArray> descs = Handle<DescriptorArray>(object->map()->instance_descriptors()); for (int i = 0; i < descs->number_of_descriptors(); i++) { if (descs->IsProperty(i) && !descs->IsDontEnum(i)) { (*storage)->set(index, descs->GetKey(i)); PropertyDetails details(descs->GetDetails(i)); (*sort_array)->set(index, Smi::FromInt(details.index())); index++; } } (*storage)->SortPairs(*sort_array, sort_array->length()); if (cache_result) { Handle<FixedArray> bridge_storage = Factory::NewFixedArray(DescriptorArray::kEnumCacheBridgeLength); DescriptorArray* desc = object->map()->instance_descriptors(); desc->SetEnumCache(*bridge_storage, *storage); } ASSERT(storage->length() == index); return storage; } else { int num_enum = object->NumberOfEnumProperties(); Handle<FixedArray> storage = Factory::NewFixedArray(num_enum); Handle<FixedArray> sort_array = Factory::NewFixedArray(num_enum); object->property_dictionary()->CopyEnumKeysTo(*storage, *sort_array); return storage; } } bool EnsureCompiled(Handle<SharedFunctionInfo> shared, ClearExceptionFlag flag) { return shared->is_compiled() || CompileLazyShared(shared, flag); } static bool CompileLazyHelper(CompilationInfo* info, ClearExceptionFlag flag) { // Compile the source information to a code object. ASSERT(!info->shared_info()->is_compiled()); bool result = Compiler::CompileLazy(info); ASSERT(result != Top::has_pending_exception()); if (!result && flag == CLEAR_EXCEPTION) Top::clear_pending_exception(); return result; } bool CompileLazyShared(Handle<SharedFunctionInfo> shared, ClearExceptionFlag flag) { CompilationInfo info(shared); return CompileLazyHelper(&info, flag); } bool CompileLazy(Handle<JSFunction> function, Handle<Object> receiver, ClearExceptionFlag flag) { CompilationInfo info(function, 0, receiver); bool result = CompileLazyHelper(&info, flag); LOG(FunctionCreateEvent(*function)); return result; } bool CompileLazyInLoop(Handle<JSFunction> function, Handle<Object> receiver, ClearExceptionFlag flag) { CompilationInfo info(function, 1, receiver); bool result = CompileLazyHelper(&info, flag); LOG(FunctionCreateEvent(*function)); return result; } OptimizedObjectForAddingMultipleProperties:: OptimizedObjectForAddingMultipleProperties(Handle<JSObject> object, int expected_additional_properties, bool condition) { object_ = object; if (condition && object_->HasFastProperties()) { // Normalize the properties of object to avoid n^2 behavior // when extending the object multiple properties. Indicate the number of // properties to be added. unused_property_fields_ = object->map()->unused_property_fields(); NormalizeProperties(object_, KEEP_INOBJECT_PROPERTIES, expected_additional_properties); has_been_transformed_ = true; } else { has_been_transformed_ = false; } } Handle<Code> ComputeLazyCompile(int argc) { CALL_HEAP_FUNCTION(StubCache::ComputeLazyCompile(argc), Code); } OptimizedObjectForAddingMultipleProperties:: ~OptimizedObjectForAddingMultipleProperties() { // Reoptimize the object to allow fast property access. if (has_been_transformed_) { TransformToFastProperties(object_, unused_property_fields_); } } } } // namespace v8::internal