#include "SkEdgeBuilder.h" #include "SkPath.h" #include "SkEdge.h" #include "SkEdgeClipper.h" #include "SkLineClipper.h" #include "SkGeometry.h" SkEdgeBuilder::SkEdgeBuilder() : fAlloc(16*1024) {} template <typename T> static T* typedAllocThrow(SkChunkAlloc& alloc) { return static_cast<T*>(alloc.allocThrow(sizeof(T))); } /////////////////////////////////////////////////////////////////////////////// void SkEdgeBuilder::addLine(const SkPoint pts[]) { SkEdge* edge = typedAllocThrow<SkEdge>(fAlloc); if (edge->setLine(pts[0], pts[1], NULL, fShiftUp)) { fList.push(edge); } else { // TODO: unallocate edge from storage... } } void SkEdgeBuilder::addQuad(const SkPoint pts[]) { SkQuadraticEdge* edge = typedAllocThrow<SkQuadraticEdge>(fAlloc); if (edge->setQuadratic(pts, fShiftUp)) { fList.push(edge); } else { // TODO: unallocate edge from storage... } } void SkEdgeBuilder::addCubic(const SkPoint pts[]) { SkCubicEdge* edge = typedAllocThrow<SkCubicEdge>(fAlloc); if (edge->setCubic(pts, NULL, fShiftUp)) { fList.push(edge); } else { // TODO: unallocate edge from storage... } } void SkEdgeBuilder::addClipper(SkEdgeClipper* clipper) { SkPoint pts[4]; SkPath::Verb verb; while ((verb = clipper->next(pts)) != SkPath::kDone_Verb) { switch (verb) { case SkPath::kLine_Verb: this->addLine(pts); break; case SkPath::kQuad_Verb: this->addQuad(pts); break; case SkPath::kCubic_Verb: this->addCubic(pts); break; default: break; } } } /////////////////////////////////////////////////////////////////////////////// static void setShiftedClip(SkRect* dst, const SkIRect& src, int shift) { dst->set(SkIntToScalar(src.fLeft >> shift), SkIntToScalar(src.fTop >> shift), SkIntToScalar(src.fRight >> shift), SkIntToScalar(src.fBottom >> shift)); } int SkEdgeBuilder::build(const SkPath& path, const SkIRect* iclip, int shiftUp) { fAlloc.reset(); fList.reset(); fShiftUp = shiftUp; SkPath::Iter iter(path, true); SkPoint pts[4]; SkPath::Verb verb; if (iclip) { SkRect clip; setShiftedClip(&clip, *iclip, shiftUp); SkEdgeClipper clipper; while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { switch (verb) { case SkPath::kMove_Verb: case SkPath::kClose_Verb: // we ignore these, and just get the whole segment from // the corresponding line/quad/cubic verbs break; case SkPath::kLine_Verb: { SkPoint lines[SkLineClipper::kMaxPoints]; int lineCount = SkLineClipper::ClipLine(pts, clip, lines); for (int i = 0; i < lineCount; i++) { this->addLine(&lines[i]); } break; } case SkPath::kQuad_Verb: if (clipper.clipQuad(pts, clip)) { this->addClipper(&clipper); } break; case SkPath::kCubic_Verb: if (clipper.clipCubic(pts, clip)) { this->addClipper(&clipper); } break; default: SkASSERT(!"unexpected verb"); break; } } } else { while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { switch (verb) { case SkPath::kMove_Verb: case SkPath::kClose_Verb: // we ignore these, and just get the whole segment from // the corresponding line/quad/cubic verbs break; case SkPath::kLine_Verb: this->addLine(pts); break; case SkPath::kQuad_Verb: { SkPoint monoX[5]; int n = SkChopQuadAtYExtrema(pts, monoX); for (int i = 0; i <= n; i++) { this->addQuad(&monoX[i * 2]); } break; } case SkPath::kCubic_Verb: { SkPoint monoY[10]; int n = SkChopCubicAtYExtrema(pts, monoY); for (int i = 0; i <= n; i++) { this->addCubic(&monoY[i * 3]); } break; } default: SkASSERT(!"unexpected verb"); break; } } } return fList.count(); }