/******************************************************************** * COPYRIGHT: * Copyright (c) 2001-2010, International Business Machines Corporation and * others. All Rights Reserved. ********************************************************************/ /******************************************************************************* * * File cmsccoll.C * *******************************************************************************/ /** * These are the tests specific to ICU 1.8 and above, that I didn't know where * to fit. */ #include <stdio.h> #include "unicode/utypes.h" #if !UCONFIG_NO_COLLATION #include "unicode/ucol.h" #include "unicode/ucoleitr.h" #include "unicode/uloc.h" #include "cintltst.h" #include "ccolltst.h" #include "callcoll.h" #include "unicode/ustring.h" #include "string.h" #include "ucol_imp.h" #include "ucol_tok.h" #include "cmemory.h" #include "cstring.h" #include "uassert.h" #include "unicode/parseerr.h" #include "unicode/ucnv.h" #include "unicode/ures.h" #include "uparse.h" #include "putilimp.h" #define LEN(a) (sizeof(a)/sizeof(a[0])) #define MAX_TOKEN_LEN 16 typedef UCollationResult tst_strcoll(void *collator, const int object, const UChar *source, const int sLen, const UChar *target, const int tLen); const static char cnt1[][10] = { "AA", "AC", "AZ", "AQ", "AB", "ABZ", "ABQ", "Z", "ABC", "Q", "B" }; const static char cnt2[][10] = { "DA", "DAD", "DAZ", "MAR", "Z", "DAVIS", "MARK", "DAV", "DAVI" }; static void IncompleteCntTest(void) { UErrorCode status = U_ZERO_ERROR; UChar temp[90]; UChar t1[90]; UChar t2[90]; UCollator *coll = NULL; uint32_t i = 0, j = 0; uint32_t size = 0; u_uastrcpy(temp, " & Z < ABC < Q < B"); coll = ucol_openRules(temp, u_strlen(temp), UCOL_OFF, UCOL_DEFAULT_STRENGTH, NULL,&status); if(U_SUCCESS(status)) { size = sizeof(cnt1)/sizeof(cnt1[0]); for(i = 0; i < size-1; i++) { for(j = i+1; j < size; j++) { UCollationElements *iter; u_uastrcpy(t1, cnt1[i]); u_uastrcpy(t2, cnt1[j]); doTest(coll, t1, t2, UCOL_LESS); /* synwee : added collation element iterator test */ iter = ucol_openElements(coll, t2, u_strlen(t2), &status); if (U_FAILURE(status)) { log_err("Creation of iterator failed\n"); break; } backAndForth(iter); ucol_closeElements(iter); } } } ucol_close(coll); u_uastrcpy(temp, " & Z < DAVIS < MARK <DAV"); coll = ucol_openRules(temp, u_strlen(temp), UCOL_OFF, UCOL_DEFAULT_STRENGTH,NULL, &status); if(U_SUCCESS(status)) { size = sizeof(cnt2)/sizeof(cnt2[0]); for(i = 0; i < size-1; i++) { for(j = i+1; j < size; j++) { UCollationElements *iter; u_uastrcpy(t1, cnt2[i]); u_uastrcpy(t2, cnt2[j]); doTest(coll, t1, t2, UCOL_LESS); /* synwee : added collation element iterator test */ iter = ucol_openElements(coll, t2, u_strlen(t2), &status); if (U_FAILURE(status)) { log_err("Creation of iterator failed\n"); break; } backAndForth(iter); ucol_closeElements(iter); } } } ucol_close(coll); } const static char shifted[][20] = { "black bird", "black-bird", "blackbird", "black Bird", "black-Bird", "blackBird", "black birds", "black-birds", "blackbirds" }; const static UCollationResult shiftedTert[] = { UCOL_EQUAL, UCOL_EQUAL, UCOL_EQUAL, UCOL_LESS, UCOL_EQUAL, UCOL_EQUAL, UCOL_LESS, UCOL_EQUAL, UCOL_EQUAL }; const static char nonignorable[][20] = { "black bird", "black Bird", "black birds", "black-bird", "black-Bird", "black-birds", "blackbird", "blackBird", "blackbirds" }; static void BlackBirdTest(void) { UErrorCode status = U_ZERO_ERROR; UChar t1[90]; UChar t2[90]; uint32_t i = 0, j = 0; uint32_t size = 0; UCollator *coll = ucol_open("en_US", &status); ucol_setAttribute(coll, UCOL_NORMALIZATION_MODE, UCOL_OFF, &status); ucol_setAttribute(coll, UCOL_ALTERNATE_HANDLING, UCOL_NON_IGNORABLE, &status); if(U_SUCCESS(status)) { size = sizeof(nonignorable)/sizeof(nonignorable[0]); for(i = 0; i < size-1; i++) { for(j = i+1; j < size; j++) { u_uastrcpy(t1, nonignorable[i]); u_uastrcpy(t2, nonignorable[j]); doTest(coll, t1, t2, UCOL_LESS); } } } ucol_setAttribute(coll, UCOL_ALTERNATE_HANDLING, UCOL_SHIFTED, &status); ucol_setAttribute(coll, UCOL_STRENGTH, UCOL_QUATERNARY, &status); if(U_SUCCESS(status)) { size = sizeof(shifted)/sizeof(shifted[0]); for(i = 0; i < size-1; i++) { for(j = i+1; j < size; j++) { u_uastrcpy(t1, shifted[i]); u_uastrcpy(t2, shifted[j]); doTest(coll, t1, t2, UCOL_LESS); } } } ucol_setAttribute(coll, UCOL_STRENGTH, UCOL_TERTIARY, &status); if(U_SUCCESS(status)) { size = sizeof(shifted)/sizeof(shifted[0]); for(i = 1; i < size; i++) { u_uastrcpy(t1, shifted[i-1]); u_uastrcpy(t2, shifted[i]); doTest(coll, t1, t2, shiftedTert[i]); } } ucol_close(coll); } const static UChar testSourceCases[][MAX_TOKEN_LEN] = { {0x0041/*'A'*/, 0x0300, 0x0301, 0x0000}, {0x0041/*'A'*/, 0x0300, 0x0316, 0x0000}, {0x0041/*'A'*/, 0x0300, 0x0000}, {0x00C0, 0x0301, 0x0000}, /* this would work with forced normalization */ {0x00C0, 0x0316, 0x0000} }; const static UChar testTargetCases[][MAX_TOKEN_LEN] = { {0x0041/*'A'*/, 0x0301, 0x0300, 0x0000}, {0x0041/*'A'*/, 0x0316, 0x0300, 0x0000}, {0x00C0, 0}, {0x0041/*'A'*/, 0x0301, 0x0300, 0x0000}, /* this would work with forced normalization */ {0x0041/*'A'*/, 0x0316, 0x0300, 0x0000} }; const static UCollationResult results[] = { UCOL_GREATER, UCOL_EQUAL, UCOL_EQUAL, UCOL_GREATER, UCOL_EQUAL }; static void FunkyATest(void) { int32_t i; UErrorCode status = U_ZERO_ERROR; UCollator *myCollation; myCollation = ucol_open("en_US", &status); if(U_FAILURE(status)){ log_err_status(status, "ERROR: in creation of rule based collator: %s\n", myErrorName(status)); return; } log_verbose("Testing some A letters, for some reason\n"); ucol_setAttribute(myCollation, UCOL_NORMALIZATION_MODE, UCOL_ON, &status); ucol_setStrength(myCollation, UCOL_TERTIARY); for (i = 0; i < 4 ; i++) { doTest(myCollation, testSourceCases[i], testTargetCases[i], results[i]); } ucol_close(myCollation); } UColAttributeValue caseFirst[] = { UCOL_OFF, UCOL_LOWER_FIRST, UCOL_UPPER_FIRST }; UColAttributeValue alternateHandling[] = { UCOL_NON_IGNORABLE, UCOL_SHIFTED }; UColAttributeValue caseLevel[] = { UCOL_OFF, UCOL_ON }; UColAttributeValue strengths[] = { UCOL_PRIMARY, UCOL_SECONDARY, UCOL_TERTIARY, UCOL_QUATERNARY, UCOL_IDENTICAL }; #if 0 static const char * strengthsC[] = { "UCOL_PRIMARY", "UCOL_SECONDARY", "UCOL_TERTIARY", "UCOL_QUATERNARY", "UCOL_IDENTICAL" }; static const char * caseFirstC[] = { "UCOL_OFF", "UCOL_LOWER_FIRST", "UCOL_UPPER_FIRST" }; static const char * alternateHandlingC[] = { "UCOL_NON_IGNORABLE", "UCOL_SHIFTED" }; static const char * caseLevelC[] = { "UCOL_OFF", "UCOL_ON" }; /* not used currently - does not test only prints */ static void PrintMarkDavis(void) { UErrorCode status = U_ZERO_ERROR; UChar m[256]; uint8_t sortkey[256]; UCollator *coll = ucol_open("en_US", &status); uint32_t h,i,j,k, sortkeysize; uint32_t sizem = 0; char buffer[512]; uint32_t len = 512; log_verbose("PrintMarkDavis"); u_uastrcpy(m, "Mark Davis"); sizem = u_strlen(m); m[1] = 0xe4; for(i = 0; i<sizem; i++) { fprintf(stderr, "\\u%04X ", m[i]); } fprintf(stderr, "\n"); for(h = 0; h<sizeof(caseFirst)/sizeof(caseFirst[0]); h++) { ucol_setAttribute(coll, UCOL_CASE_FIRST, caseFirst[i], &status); fprintf(stderr, "caseFirst: %s\n", caseFirstC[h]); for(i = 0; i<sizeof(alternateHandling)/sizeof(alternateHandling[0]); i++) { ucol_setAttribute(coll, UCOL_ALTERNATE_HANDLING, alternateHandling[i], &status); fprintf(stderr, " AltHandling: %s\n", alternateHandlingC[i]); for(j = 0; j<sizeof(caseLevel)/sizeof(caseLevel[0]); j++) { ucol_setAttribute(coll, UCOL_CASE_LEVEL, caseLevel[j], &status); fprintf(stderr, " caseLevel: %s\n", caseLevelC[j]); for(k = 0; k<sizeof(strengths)/sizeof(strengths[0]); k++) { ucol_setAttribute(coll, UCOL_STRENGTH, strengths[k], &status); sortkeysize = ucol_getSortKey(coll, m, sizem, sortkey, 256); fprintf(stderr, " strength: %s\n Sortkey: ", strengthsC[k]); fprintf(stderr, "%s\n", ucol_sortKeyToString(coll, sortkey, buffer, &len)); } } } } } #endif static void BillFairmanTest(void) { /* ** check for actual locale via ICU resource bundles ** ** lp points to the original locale ("fr_FR_....") */ UResourceBundle *lr,*cr; UErrorCode lec = U_ZERO_ERROR; const char *lp = "fr_FR_you_ll_never_find_this_locale"; log_verbose("BillFairmanTest\n"); lr = ures_open(NULL,lp,&lec); if (lr) { cr = ures_getByKey(lr,"collations",0,&lec); if (cr) { lp = ures_getLocaleByType(cr, ULOC_ACTUAL_LOCALE, &lec); if (lp) { if (U_SUCCESS(lec)) { if(strcmp(lp, "fr") != 0) { log_err("Wrong locale for French Collation Data, expected \"fr\" got %s", lp); } } } ures_close(cr); } ures_close(lr); } } static void testPrimary(UCollator* col, const UChar* p,const UChar* q){ UChar source[256] = { '\0'}; UChar target[256] = { '\0'}; UChar preP = 0x31a3; UChar preQ = 0x310d; /* UChar preP = (*p>0x0400 && *p<0x0500)?0x00e1:0x491; UChar preQ = (*p>0x0400 && *p<0x0500)?0x0041:0x413; */ /*log_verbose("Testing primary\n");*/ doTest(col, p, q, UCOL_LESS); /* UCollationResult result = ucol_strcoll(col,p,u_strlen(p),q,u_strlen(q)); if(result!=UCOL_LESS){ aescstrdup(p,utfSource,256); aescstrdup(q,utfTarget,256); fprintf(file,"Primary failed source: %s target: %s \n", utfSource,utfTarget); } */ source[0] = preP; u_strcpy(source+1,p); target[0] = preQ; u_strcpy(target+1,q); doTest(col, source, target, UCOL_LESS); /* fprintf(file,"Primary swamps 2nd failed source: %s target: %s \n", utfSource,utfTarget); */ } static void testSecondary(UCollator* col, const UChar* p,const UChar* q){ UChar source[256] = { '\0'}; UChar target[256] = { '\0'}; /*log_verbose("Testing secondary\n");*/ doTest(col, p, q, UCOL_LESS); /* fprintf(file,"secondary failed source: %s target: %s \n", utfSource,utfTarget); */ source[0] = 0x0053; u_strcpy(source+1,p); target[0]= 0x0073; u_strcpy(target+1,q); doTest(col, source, target, UCOL_LESS); /* fprintf(file,"secondary swamps 3rd failed source: %s target: %s \n",utfSource,utfTarget); */ u_strcpy(source,p); source[u_strlen(p)] = 0x62; source[u_strlen(p)+1] = 0; u_strcpy(target,q); target[u_strlen(q)] = 0x61; target[u_strlen(q)+1] = 0; doTest(col, source, target, UCOL_GREATER); /* fprintf(file,"secondary is swamped by 1 failed source: %s target: %s \n",utfSource,utfTarget); */ } static void testTertiary(UCollator* col, const UChar* p,const UChar* q){ UChar source[256] = { '\0'}; UChar target[256] = { '\0'}; /*log_verbose("Testing tertiary\n");*/ doTest(col, p, q, UCOL_LESS); /* fprintf(file,"Tertiary failed source: %s target: %s \n",utfSource,utfTarget); */ source[0] = 0x0020; u_strcpy(source+1,p); target[0]= 0x002D; u_strcpy(target+1,q); doTest(col, source, target, UCOL_LESS); /* fprintf(file,"Tertiary swamps 4th failed source: %s target: %s \n", utfSource,utfTarget); */ u_strcpy(source,p); source[u_strlen(p)] = 0xE0; source[u_strlen(p)+1] = 0; u_strcpy(target,q); target[u_strlen(q)] = 0x61; target[u_strlen(q)+1] = 0; doTest(col, source, target, UCOL_GREATER); /* fprintf(file,"Tertiary is swamped by 3rd failed source: %s target: %s \n",utfSource,utfTarget); */ } static void testEquality(UCollator* col, const UChar* p,const UChar* q){ /* UChar source[256] = { '\0'}; UChar target[256] = { '\0'}; */ doTest(col, p, q, UCOL_EQUAL); /* fprintf(file,"Primary failed source: %s target: %s \n", utfSource,utfTarget); */ } static void testCollator(UCollator *coll, UErrorCode *status) { const UChar *rules = NULL, *current = NULL; int32_t ruleLen = 0; uint32_t strength = 0; uint32_t chOffset = 0; uint32_t chLen = 0; uint32_t exOffset = 0; uint32_t exLen = 0; uint32_t prefixOffset = 0; uint32_t prefixLen = 0; uint32_t firstEx = 0; /* uint32_t rExpsLen = 0; */ uint32_t firstLen = 0; UBool varT = FALSE; UBool top_ = TRUE; uint16_t specs = 0; UBool startOfRules = TRUE; UBool lastReset = FALSE; UBool before = FALSE; uint32_t beforeStrength = 0; UColTokenParser src; UColOptionSet opts; UChar first[256]; UChar second[256]; UChar tempB[256]; uint32_t tempLen; UChar *rulesCopy = NULL; UParseError parseError; src.opts = &opts; rules = ucol_getRules(coll, &ruleLen); if(U_SUCCESS(*status) && ruleLen > 0) { rulesCopy = (UChar *)malloc((ruleLen+UCOL_TOK_EXTRA_RULE_SPACE_SIZE)*sizeof(UChar)); uprv_memcpy(rulesCopy, rules, ruleLen*sizeof(UChar)); src.current = src.source = rulesCopy; src.end = rulesCopy+ruleLen; src.extraCurrent = src.end; src.extraEnd = src.end+UCOL_TOK_EXTRA_RULE_SPACE_SIZE; *first = *second = 0; while ((current = ucol_tok_parseNextToken(&src, startOfRules,&parseError, status)) != NULL) { strength = src.parsedToken.strength; chOffset = src.parsedToken.charsOffset; chLen = src.parsedToken.charsLen; exOffset = src.parsedToken.extensionOffset; exLen = src.parsedToken.extensionLen; prefixOffset = src.parsedToken.prefixOffset; prefixLen = src.parsedToken.prefixLen; specs = src.parsedToken.flags; startOfRules = FALSE; varT = (UBool)((specs & UCOL_TOK_VARIABLE_TOP) != 0); top_ = (UBool)((specs & UCOL_TOK_TOP) != 0); if(top_) { /* if reset is on top, the sequence is broken. We should have an empty string */ second[0] = 0; } else { u_strncpy(second,rulesCopy+chOffset, chLen); second[chLen] = 0; if(exLen > 0 && firstEx == 0) { u_strncat(first, rulesCopy+exOffset, exLen); first[firstLen+exLen] = 0; } if(lastReset == TRUE && prefixLen != 0) { u_strncpy(first+prefixLen, first, firstLen); u_strncpy(first, rulesCopy+prefixOffset, prefixLen); first[firstLen+prefixLen] = 0; firstLen = firstLen+prefixLen; } if(before == TRUE) { /* swap first and second */ u_strcpy(tempB, first); u_strcpy(first, second); u_strcpy(second, tempB); tempLen = firstLen; firstLen = chLen; chLen = tempLen; tempLen = firstEx; firstEx = exLen; exLen = tempLen; if(beforeStrength < strength) { strength = beforeStrength; } } } lastReset = FALSE; switch(strength){ case UCOL_IDENTICAL: testEquality(coll,first,second); break; case UCOL_PRIMARY: testPrimary(coll,first,second); break; case UCOL_SECONDARY: testSecondary(coll,first,second); break; case UCOL_TERTIARY: testTertiary(coll,first,second); break; case UCOL_TOK_RESET: lastReset = TRUE; before = (UBool)((specs & UCOL_TOK_BEFORE) != 0); if(before) { beforeStrength = (specs & UCOL_TOK_BEFORE)-1; } break; default: break; } if(before == TRUE && strength != UCOL_TOK_RESET) { /* first and second were swapped */ before = FALSE; } else { firstLen = chLen; firstEx = exLen; u_strcpy(first, second); } } free(rulesCopy); } } static UCollationResult ucaTest(void *collator, const int object, const UChar *source, const int sLen, const UChar *target, const int tLen) { UCollator *UCA = (UCollator *)collator; return ucol_strcoll(UCA, source, sLen, target, tLen); } /* static UCollationResult winTest(void *collator, const int object, const UChar *source, const int sLen, const UChar *target, const int tLen) { #ifdef U_WINDOWS LCID lcid = (LCID)collator; return (UCollationResult)CompareString(lcid, 0, source, sLen, target, tLen); #else return 0; #endif } */ static UCollationResult swampEarlier(tst_strcoll* func, void *collator, int opts, UChar s1, UChar s2, const UChar *s, const uint32_t sLen, const UChar *t, const uint32_t tLen) { UChar source[256] = {0}; UChar target[256] = {0}; source[0] = s1; u_strcpy(source+1, s); target[0] = s2; u_strcpy(target+1, t); return func(collator, opts, source, sLen+1, target, tLen+1); } static UCollationResult swampLater(tst_strcoll* func, void *collator, int opts, UChar s1, UChar s2, const UChar *s, const uint32_t sLen, const UChar *t, const uint32_t tLen) { UChar source[256] = {0}; UChar target[256] = {0}; u_strcpy(source, s); source[sLen] = s1; u_strcpy(target, t); target[tLen] = s2; return func(collator, opts, source, sLen+1, target, tLen+1); } static uint32_t probeStrength(tst_strcoll* func, void *collator, int opts, const UChar *s, const uint32_t sLen, const UChar *t, const uint32_t tLen, UCollationResult result) { /*UChar fPrimary = 0x6d;*/ /*UChar sPrimary = 0x6e;*/ UChar fSecondary = 0x310d; UChar sSecondary = 0x31a3; UChar fTertiary = 0x310f; UChar sTertiary = 0x31b7; UCollationResult oposite; if(result == UCOL_EQUAL) { return UCOL_IDENTICAL; } else if(result == UCOL_GREATER) { oposite = UCOL_LESS; } else { oposite = UCOL_GREATER; } if(swampEarlier(func, collator, opts, sSecondary, fSecondary, s, sLen, t, tLen) == result) { return UCOL_PRIMARY; } else if((swampEarlier(func, collator, opts, sTertiary, 0x310f, s, sLen, t, tLen) == result) && (swampEarlier(func, collator, opts, 0x310f, sTertiary, s, sLen, t, tLen) == result)) { return UCOL_SECONDARY; } else if((swampLater(func, collator, opts, sTertiary, fTertiary, s, sLen, t, tLen) == result) && (swampLater(func, collator, opts, fTertiary, sTertiary, s, sLen, t, tLen) == result)) { return UCOL_TERTIARY; } else if((swampLater(func, collator, opts, sTertiary, 0x310f, s, sLen, t, tLen) == oposite) && (swampLater(func, collator, opts, fTertiary, sTertiary, s, sLen, t, tLen) == oposite)) { return UCOL_QUATERNARY; } else { return UCOL_IDENTICAL; } } static char *getRelationSymbol(UCollationResult res, uint32_t strength, char *buffer) { uint32_t i = 0; if(res == UCOL_EQUAL || strength == 0xdeadbeef) { buffer[0] = '='; buffer[1] = '='; buffer[2] = '\0'; } else if(res == UCOL_GREATER) { for(i = 0; i<strength+1; i++) { buffer[i] = '>'; } buffer[strength+1] = '\0'; } else { for(i = 0; i<strength+1; i++) { buffer[i] = '<'; } buffer[strength+1] = '\0'; } return buffer; } static void logFailure (const char *platform, const char *test, const UChar *source, const uint32_t sLen, const UChar *target, const uint32_t tLen, UCollationResult realRes, uint32_t realStrength, UCollationResult expRes, uint32_t expStrength, UBool error) { uint32_t i = 0; char sEsc[256], s[256], tEsc[256], t[256], b[256], output[512], relation[256]; static int32_t maxOutputLength = 0; int32_t outputLength; *sEsc = *tEsc = *s = *t = 0; if(error == TRUE) { log_err("Difference between expected and generated order. Run test with -v for more info\n"); } else if(VERBOSITY == 0) { return; } for(i = 0; i<sLen; i++) { sprintf(b, "%04X", source[i]); strcat(sEsc, "\\u"); strcat(sEsc, b); strcat(s, b); strcat(s, " "); if(source[i] < 0x80) { sprintf(b, "(%c)", source[i]); strcat(sEsc, b); } } for(i = 0; i<tLen; i++) { sprintf(b, "%04X", target[i]); strcat(tEsc, "\\u"); strcat(tEsc, b); strcat(t, b); strcat(t, " "); if(target[i] < 0x80) { sprintf(b, "(%c)", target[i]); strcat(tEsc, b); } } /* strcpy(output, "[[ "); strcat(output, sEsc); strcat(output, getRelationSymbol(expRes, expStrength, relation)); strcat(output, tEsc); strcat(output, " : "); strcat(output, sEsc); strcat(output, getRelationSymbol(realRes, realStrength, relation)); strcat(output, tEsc); strcat(output, " ]] "); log_verbose("%s", output); */ strcpy(output, "DIFF: "); strcat(output, s); strcat(output, " : "); strcat(output, t); strcat(output, test); strcat(output, ": "); strcat(output, sEsc); strcat(output, getRelationSymbol(expRes, expStrength, relation)); strcat(output, tEsc); strcat(output, " "); strcat(output, platform); strcat(output, ": "); strcat(output, sEsc); strcat(output, getRelationSymbol(realRes, realStrength, relation)); strcat(output, tEsc); outputLength = (int32_t)strlen(output); if(outputLength > maxOutputLength) { maxOutputLength = outputLength; U_ASSERT(outputLength < sizeof(output)); } log_verbose("%s\n", output); } /* static void printOutRules(const UChar *rules) { uint32_t len = u_strlen(rules); uint32_t i = 0; char toPrint; uint32_t line = 0; fprintf(stdout, "Rules:"); for(i = 0; i<len; i++) { if(rules[i]<0x7f && rules[i]>=0x20) { toPrint = (char)rules[i]; if(toPrint == '&') { line = 1; fprintf(stdout, "\n&"); } else if(toPrint == ';') { fprintf(stdout, "<<"); line+=2; } else if(toPrint == ',') { fprintf(stdout, "<<<"); line+=3; } else { fprintf(stdout, "%c", toPrint); line++; } } else if(rules[i]<0x3400 || rules[i]>=0xa000) { fprintf(stdout, "\\u%04X", rules[i]); line+=6; } if(line>72) { fprintf(stdout, "\n"); line = 0; } } log_verbose("\n"); } */ static uint32_t testSwitch(tst_strcoll* func, void *collator, int opts, uint32_t strength, const UChar *first, const UChar *second, const char* msg, UBool error) { uint32_t diffs = 0; UCollationResult realResult; uint32_t realStrength; uint32_t sLen = u_strlen(first); uint32_t tLen = u_strlen(second); realResult = func(collator, opts, first, sLen, second, tLen); realStrength = probeStrength(func, collator, opts, first, sLen, second, tLen, realResult); if(strength == UCOL_IDENTICAL && realResult != UCOL_IDENTICAL) { logFailure(msg, "tailoring", first, sLen, second, tLen, realResult, realStrength, UCOL_EQUAL, strength, error); diffs++; } else if(realResult != UCOL_LESS || realStrength != strength) { logFailure(msg, "tailoring", first, sLen, second, tLen, realResult, realStrength, UCOL_LESS, strength, error); diffs++; } return diffs; } static void testAgainstUCA(UCollator *coll, UCollator *UCA, const char *refName, UBool error, UErrorCode *status) { const UChar *rules = NULL, *current = NULL; int32_t ruleLen = 0; uint32_t strength = 0; uint32_t chOffset = 0; uint32_t chLen = 0; uint32_t exOffset = 0; uint32_t exLen = 0; uint32_t prefixOffset = 0; uint32_t prefixLen = 0; /* uint32_t rExpsLen = 0; */ uint32_t firstLen = 0, secondLen = 0; UBool varT = FALSE; UBool top_ = TRUE; uint16_t specs = 0; UBool startOfRules = TRUE; UColTokenParser src; UColOptionSet opts; UChar first[256]; UChar second[256]; UChar *rulesCopy = NULL; uint32_t UCAdiff = 0; uint32_t Windiff = 1; UParseError parseError; src.opts = &opts; rules = ucol_getRules(coll, &ruleLen); /*printOutRules(rules);*/ if(U_SUCCESS(*status) && ruleLen > 0) { rulesCopy = (UChar *)malloc((ruleLen+UCOL_TOK_EXTRA_RULE_SPACE_SIZE)*sizeof(UChar)); uprv_memcpy(rulesCopy, rules, ruleLen*sizeof(UChar)); src.current = src.source = rulesCopy; src.end = rulesCopy+ruleLen; src.extraCurrent = src.end; src.extraEnd = src.end+UCOL_TOK_EXTRA_RULE_SPACE_SIZE; *first = *second = 0; while ((current = ucol_tok_parseNextToken(&src, startOfRules, &parseError,status)) != NULL) { strength = src.parsedToken.strength; chOffset = src.parsedToken.charsOffset; chLen = src.parsedToken.charsLen; exOffset = src.parsedToken.extensionOffset; exLen = src.parsedToken.extensionLen; prefixOffset = src.parsedToken.prefixOffset; prefixLen = src.parsedToken.prefixLen; specs = src.parsedToken.flags; startOfRules = FALSE; varT = (UBool)((specs & UCOL_TOK_VARIABLE_TOP) != 0); top_ = (UBool)((specs & UCOL_TOK_TOP) != 0); u_strncpy(second,rulesCopy+chOffset, chLen); second[chLen] = 0; secondLen = chLen; if(exLen > 0) { u_strncat(first, rulesCopy+exOffset, exLen); first[firstLen+exLen] = 0; firstLen += exLen; } if(strength != UCOL_TOK_RESET) { if((*first<0x3400 || *first>=0xa000) && (*second<0x3400 || *second>=0xa000)) { UCAdiff += testSwitch(&ucaTest, (void *)UCA, 0, strength, first, second, refName, error); /*Windiff += testSwitch(&winTest, (void *)lcid, 0, strength, first, second, "Win32");*/ } } firstLen = chLen; u_strcpy(first, second); } if(UCAdiff != 0 && Windiff != 0) { log_verbose("\n"); } if(UCAdiff == 0) { log_verbose("No immediate difference with %s!\n", refName); } if(Windiff == 0) { log_verbose("No immediate difference with Win32!\n"); } free(rulesCopy); } } /* * Takes two CEs (lead and continuation) and * compares them as CEs should be compared: * primary vs. primary, secondary vs. secondary * tertiary vs. tertiary */ static int32_t compareCEs(uint32_t s1, uint32_t s2, uint32_t t1, uint32_t t2) { uint32_t s = 0, t = 0; if(s1 == t1 && s2 == t2) { return 0; } s = (s1 & 0xFFFF0000)|((s2 & 0xFFFF0000)>>16); t = (t1 & 0xFFFF0000)|((t2 & 0xFFFF0000)>>16); if(s < t) { return -1; } else if(s > t) { return 1; } else { s = (s1 & 0x0000FF00) | (s2 & 0x0000FF00)>>8; t = (t1 & 0x0000FF00) | (t2 & 0x0000FF00)>>8; if(s < t) { return -1; } else if(s > t) { return 1; } else { s = (s1 & 0x000000FF)<<8 | (s2 & 0x000000FF); t = (t1 & 0x000000FF)<<8 | (t2 & 0x000000FF); if(s < t) { return -1; } else { return 1; } } } } typedef struct { uint32_t startCE; uint32_t startContCE; uint32_t limitCE; uint32_t limitContCE; } indirectBoundaries; /* these values are used for finding CE values for indirect positioning. */ /* Indirect positioning is a mechanism for allowing resets on symbolic */ /* values. It only works for resets and you cannot tailor indirect names */ /* An indirect name can define either an anchor point or a range. An */ /* anchor point behaves in exactly the same way as a code point in reset */ /* would, except that it cannot be tailored. A range (we currently only */ /* know for the [top] range will explicitly set the upper bound for */ /* generated CEs, thus allowing for better control over how many CEs can */ /* be squeezed between in the range without performance penalty. */ /* In that respect, we use [top] for tailoring of locales that use CJK */ /* characters. Other indirect values are currently a pure convenience, */ /* they can be used to assure that the CEs will be always positioned in */ /* the same place relative to a point with known properties (e.g. first */ /* primary ignorable). */ static indirectBoundaries ucolIndirectBoundaries[15]; static UBool indirectBoundariesSet = FALSE; static void setIndirectBoundaries(uint32_t indexR, uint32_t *start, uint32_t *end) { /* Set values for the top - TODO: once we have values for all the indirects, we are going */ /* to initalize here. */ ucolIndirectBoundaries[indexR].startCE = start[0]; ucolIndirectBoundaries[indexR].startContCE = start[1]; if(end) { ucolIndirectBoundaries[indexR].limitCE = end[0]; ucolIndirectBoundaries[indexR].limitContCE = end[1]; } else { ucolIndirectBoundaries[indexR].limitCE = 0; ucolIndirectBoundaries[indexR].limitContCE = 0; } } static void testCEs(UCollator *coll, UErrorCode *status) { const UChar *rules = NULL, *current = NULL; int32_t ruleLen = 0; uint32_t strength = 0; uint32_t maxStrength = UCOL_IDENTICAL; uint32_t baseCE, baseContCE, nextCE, nextContCE, currCE, currContCE; uint32_t lastCE; uint32_t lastContCE; int32_t result = 0; uint32_t chOffset = 0; uint32_t chLen = 0; uint32_t exOffset = 0; uint32_t exLen = 0; uint32_t prefixOffset = 0; uint32_t prefixLen = 0; uint32_t oldOffset = 0; /* uint32_t rExpsLen = 0; */ /* uint32_t firstLen = 0; */ uint16_t specs = 0; UBool varT = FALSE; UBool top_ = TRUE; UBool startOfRules = TRUE; UBool before = FALSE; UColTokenParser src; UColOptionSet opts; UParseError parseError; UChar *rulesCopy = NULL; collIterate *c = uprv_new_collIterate(status); UCAConstants *consts = NULL; uint32_t UCOL_RESET_TOP_VALUE, /*UCOL_RESET_TOP_CONT, */ UCOL_NEXT_TOP_VALUE, UCOL_NEXT_TOP_CONT; const char *colLoc; UCollator *UCA = ucol_open("root", status); if (U_FAILURE(*status)) { log_err("Could not open root collator %s\n", u_errorName(*status)); uprv_delete_collIterate(c); return; } colLoc = ucol_getLocaleByType(coll, ULOC_ACTUAL_LOCALE, status); if (U_FAILURE(*status)) { log_err("Could not get collator name: %s\n", u_errorName(*status)); ucol_close(UCA); uprv_delete_collIterate(c); return; } consts = (UCAConstants *)((uint8_t *)UCA->image + UCA->image->UCAConsts); UCOL_RESET_TOP_VALUE = consts->UCA_LAST_NON_VARIABLE[0]; /*UCOL_RESET_TOP_CONT = consts->UCA_LAST_NON_VARIABLE[1]; */ UCOL_NEXT_TOP_VALUE = consts->UCA_FIRST_IMPLICIT[0]; UCOL_NEXT_TOP_CONT = consts->UCA_FIRST_IMPLICIT[1]; baseCE=baseContCE=nextCE=nextContCE=currCE=currContCE=lastCE=lastContCE = UCOL_NOT_FOUND; src.opts = &opts; rules = ucol_getRules(coll, &ruleLen); src.invUCA = ucol_initInverseUCA(status); if(indirectBoundariesSet == FALSE) { /* UCOL_RESET_TOP_VALUE */ setIndirectBoundaries(0, consts->UCA_LAST_NON_VARIABLE, consts->UCA_FIRST_IMPLICIT); /* UCOL_FIRST_PRIMARY_IGNORABLE */ setIndirectBoundaries(1, consts->UCA_FIRST_PRIMARY_IGNORABLE, 0); /* UCOL_LAST_PRIMARY_IGNORABLE */ setIndirectBoundaries(2, consts->UCA_LAST_PRIMARY_IGNORABLE, 0); /* UCOL_FIRST_SECONDARY_IGNORABLE */ setIndirectBoundaries(3, consts->UCA_FIRST_SECONDARY_IGNORABLE, 0); /* UCOL_LAST_SECONDARY_IGNORABLE */ setIndirectBoundaries(4, consts->UCA_LAST_SECONDARY_IGNORABLE, 0); /* UCOL_FIRST_TERTIARY_IGNORABLE */ setIndirectBoundaries(5, consts->UCA_FIRST_TERTIARY_IGNORABLE, 0); /* UCOL_LAST_TERTIARY_IGNORABLE */ setIndirectBoundaries(6, consts->UCA_LAST_TERTIARY_IGNORABLE, 0); /* UCOL_FIRST_VARIABLE */ setIndirectBoundaries(7, consts->UCA_FIRST_VARIABLE, 0); /* UCOL_LAST_VARIABLE */ setIndirectBoundaries(8, consts->UCA_LAST_VARIABLE, 0); /* UCOL_FIRST_NON_VARIABLE */ setIndirectBoundaries(9, consts->UCA_FIRST_NON_VARIABLE, 0); /* UCOL_LAST_NON_VARIABLE */ setIndirectBoundaries(10, consts->UCA_LAST_NON_VARIABLE, consts->UCA_FIRST_IMPLICIT); /* UCOL_FIRST_IMPLICIT */ setIndirectBoundaries(11, consts->UCA_FIRST_IMPLICIT, 0); /* UCOL_LAST_IMPLICIT */ setIndirectBoundaries(12, consts->UCA_LAST_IMPLICIT, consts->UCA_FIRST_TRAILING); /* UCOL_FIRST_TRAILING */ setIndirectBoundaries(13, consts->UCA_FIRST_TRAILING, 0); /* UCOL_LAST_TRAILING */ setIndirectBoundaries(14, consts->UCA_LAST_TRAILING, 0); ucolIndirectBoundaries[14].limitCE = (consts->UCA_PRIMARY_SPECIAL_MIN<<24); indirectBoundariesSet = TRUE; } if(U_SUCCESS(*status) && ruleLen > 0) { rulesCopy = (UChar *)malloc((ruleLen+UCOL_TOK_EXTRA_RULE_SPACE_SIZE)*sizeof(UChar)); uprv_memcpy(rulesCopy, rules, ruleLen*sizeof(UChar)); src.current = src.source = rulesCopy; src.end = rulesCopy+ruleLen; src.extraCurrent = src.end; src.extraEnd = src.end+UCOL_TOK_EXTRA_RULE_SPACE_SIZE; while ((current = ucol_tok_parseNextToken(&src, startOfRules, &parseError,status)) != NULL) { strength = src.parsedToken.strength; chOffset = src.parsedToken.charsOffset; chLen = src.parsedToken.charsLen; exOffset = src.parsedToken.extensionOffset; exLen = src.parsedToken.extensionLen; prefixOffset = src.parsedToken.prefixOffset; prefixLen = src.parsedToken.prefixLen; specs = src.parsedToken.flags; startOfRules = FALSE; varT = (UBool)((specs & UCOL_TOK_VARIABLE_TOP) != 0); top_ = (UBool)((specs & UCOL_TOK_TOP) != 0); uprv_init_collIterate(coll, rulesCopy+chOffset, chLen, c, status); currCE = ucol_getNextCE(coll, c, status); if(currCE == 0 && UCOL_ISTHAIPREVOWEL(*(rulesCopy+chOffset))) { log_verbose("Thai prevowel detected. Will pick next CE\n"); currCE = ucol_getNextCE(coll, c, status); } currContCE = ucol_getNextCE(coll, c, status); if(!isContinuation(currContCE)) { currContCE = 0; } /* we need to repack CEs here */ if(strength == UCOL_TOK_RESET) { before = (UBool)((specs & UCOL_TOK_BEFORE) != 0); if(top_ == TRUE) { int32_t index = src.parsedToken.indirectIndex; nextCE = baseCE = currCE = ucolIndirectBoundaries[index].startCE; nextContCE = baseContCE = currContCE = ucolIndirectBoundaries[index].startContCE; } else { nextCE = baseCE = currCE; nextContCE = baseContCE = currContCE; } maxStrength = UCOL_IDENTICAL; } else { if(strength < maxStrength) { maxStrength = strength; if(baseCE == UCOL_RESET_TOP_VALUE) { log_verbose("Resetting to [top]\n"); nextCE = UCOL_NEXT_TOP_VALUE; nextContCE = UCOL_NEXT_TOP_CONT; } else { result = ucol_inv_getNextCE(&src, baseCE & 0xFFFFFF3F, baseContCE, &nextCE, &nextContCE, maxStrength); } if(result < 0) { if(ucol_isTailored(coll, *(rulesCopy+oldOffset), status)) { log_verbose("Reset is tailored codepoint %04X, don't know how to continue, taking next test\n", *(rulesCopy+oldOffset)); return; } else { log_err("%s: couldn't find the CE\n", colLoc); return; } } } currCE &= 0xFFFFFF3F; currContCE &= 0xFFFFFFBF; if(maxStrength == UCOL_IDENTICAL) { if(baseCE != currCE || baseContCE != currContCE) { log_err("%s: current CE (initial strength UCOL_EQUAL)\n", colLoc); } } else { if(strength == UCOL_IDENTICAL) { if(lastCE != currCE || lastContCE != currContCE) { log_err("%s: current CE (initial strength UCOL_EQUAL)\n", colLoc); } } else { if(compareCEs(currCE, currContCE, nextCE, nextContCE) > 0) { /*if(currCE > nextCE || (currCE == nextCE && currContCE >= nextContCE)) {*/ log_err("%s: current CE is not less than base CE\n", colLoc); } if(!before) { if(compareCEs(currCE, currContCE, lastCE, lastContCE) < 0) { /*if(currCE < lastCE || (currCE == lastCE && currContCE <= lastContCE)) {*/ log_err("%s: sequence of generated CEs is broken\n", colLoc); } } else { before = FALSE; if(compareCEs(currCE, currContCE, lastCE, lastContCE) > 0) { /*if(currCE < lastCE || (currCE == lastCE && currContCE <= lastContCE)) {*/ log_err("%s: sequence of generated CEs is broken\n", colLoc); } } } } } oldOffset = chOffset; lastCE = currCE & 0xFFFFFF3F; lastContCE = currContCE & 0xFFFFFFBF; } free(rulesCopy); } ucol_close(UCA); uprv_delete_collIterate(c); } #if 0 /* these locales are now picked from index RB */ static const char* localesToTest[] = { "ar", "bg", "ca", "cs", "da", "el", "en_BE", "en_US_POSIX", "es", "et", "fi", "fr", "hi", "hr", "hu", "is", "iw", "ja", "ko", "lt", "lv", "mk", "mt", "nb", "nn", "nn_NO", "pl", "ro", "ru", "sh", "sk", "sl", "sq", "sr", "sv", "th", "tr", "uk", "vi", "zh", "zh_TW" }; #endif static const char* rulesToTest[] = { /* Funky fa rule */ "&\\u0622 < \\u0627 << \\u0671 < \\u0621", /*"& Z < p, P",*/ /* Cui Mins rules */ "&[top]<o,O<p,P<q,Q<'?'/u<r,R<u,U", /*"<o,O<p,P<q,Q<r,R<u,U & Qu<'?'",*/ "&[top]<o,O<p,P<q,Q;'?'/u<r,R<u,U", /*"<o,O<p,P<q,Q<r,R<u,U & Qu;'?'",*/ "&[top]<o,O<p,P<q,Q,'?'/u<r,R<u,U", /*"<o,O<p,P<q,Q<r,R<u,U&'Qu','?'",*/ "&[top]<3<4<5<c,C<f,F<m,M<o,O<p,P<q,Q;'?'/u<r,R<u,U", /*"<'?'<3<4<5<a,A<f,F<m,M<o,O<p,P<q,Q<r,R<u,U & Qu;'?'",*/ "&[top]<'?';Qu<3<4<5<c,C<f,F<m,M<o,O<p,P<q,Q<r,R<u,U", /*"<'?'<3<4<5<a,A<f,F<m,M<o,O<p,P<q,Q<r,R<u,U & '?';Qu",*/ "&[top]<3<4<5<c,C<f,F<m,M<o,O<p,P<q,Q;'?'/um<r,R<u,U", /*"<'?'<3<4<5<a,A<f,F<m,M<o,O<p,P<q,Q<r,R<u,U & Qum;'?'",*/ "&[top]<'?';Qum<3<4<5<c,C<f,F<m,M<o,O<p,P<q,Q<r,R<u,U" /*"<'?'<3<4<5<a,A<f,F<m,M<o,O<p,P<q,Q<r,R<u,U & '?';Qum"*/ }; static void TestCollations(void) { int32_t noOfLoc = uloc_countAvailable(); int32_t i = 0, j = 0; UErrorCode status = U_ZERO_ERROR; char cName[256]; UChar name[256]; int32_t nameSize; const char *locName = NULL; UCollator *coll = NULL; UCollator *UCA = ucol_open("", &status); UColAttributeValue oldStrength = ucol_getAttribute(UCA, UCOL_STRENGTH, &status); if (U_FAILURE(status)) { log_err_status(status, "Could not open UCA collator %s\n", u_errorName(status)); return; } ucol_setAttribute(UCA, UCOL_STRENGTH, UCOL_QUATERNARY, &status); for(i = 0; i<noOfLoc; i++) { status = U_ZERO_ERROR; locName = uloc_getAvailable(i); if(uprv_strcmp("ja", locName) == 0) { log_verbose("Don't know how to test prefixes\n"); continue; } if(hasCollationElements(locName)) { nameSize = uloc_getDisplayName(locName, NULL, name, 256, &status); for(j = 0; j<nameSize; j++) { cName[j] = (char)name[j]; } cName[nameSize] = 0; log_verbose("\nTesting locale %s (%s)\n", locName, cName); coll = ucol_open(locName, &status); if(U_SUCCESS(status)) { testAgainstUCA(coll, UCA, "UCA", FALSE, &status); ucol_close(coll); } else { log_err("Couldn't instantiate collator for locale %s, error: %s\n", locName, u_errorName(status)); status = U_ZERO_ERROR; } } } ucol_setAttribute(UCA, UCOL_STRENGTH, oldStrength, &status); ucol_close(UCA); } static void RamsRulesTest(void) { UErrorCode status = U_ZERO_ERROR; int32_t i = 0; UCollator *coll = NULL; UChar rule[2048]; uint32_t ruleLen; int32_t noOfLoc = uloc_countAvailable(); const char *locName = NULL; log_verbose("RamsRulesTest\n"); for(i = 0; i<noOfLoc; i++) { status = U_ZERO_ERROR; locName = uloc_getAvailable(i); if(hasCollationElements(locName)) { if (uprv_strcmp("ja", locName)==0) { log_verbose("Don't know how to test Japanese because of prefixes\n"); continue; } if (uprv_strcmp("de__PHONEBOOK", locName)==0) { log_verbose("Don't know how to test Phonebook because the reset is on an expanding character\n"); continue; } if (uprv_strcmp("km", locName)==0 || uprv_strcmp("km_KH", locName)==0 || uprv_strcmp("si", locName)==0 || uprv_strcmp("si_LK", locName)==0 || uprv_strcmp("zh", locName)==0 || uprv_strcmp("zh_Hant", locName)==0 ) { continue; /* TODO: enable these locale tests after trac#6040 is fixed. */ } log_verbose("Testing locale %s\n", locName); coll = ucol_open(locName, &status); if(U_SUCCESS(status)) { if(coll->image->jamoSpecial == TRUE) { log_err("%s has special JAMOs\n", locName); } ucol_setAttribute(coll, UCOL_CASE_FIRST, UCOL_OFF, &status); testCollator(coll, &status); testCEs(coll, &status); ucol_close(coll); } } } for(i = 0; i<sizeof(rulesToTest)/sizeof(rulesToTest[0]); i++) { log_verbose("Testing rule: %s\n", rulesToTest[i]); ruleLen = u_unescape(rulesToTest[i], rule, 2048); coll = ucol_openRules(rule, ruleLen, UCOL_OFF, UCOL_TERTIARY, NULL,&status); if(U_SUCCESS(status)) { testCollator(coll, &status); testCEs(coll, &status); ucol_close(coll); } } } static void IsTailoredTest(void) { UErrorCode status = U_ZERO_ERROR; uint32_t i = 0; UCollator *coll = NULL; UChar rule[2048]; UChar tailored[2048]; UChar notTailored[2048]; uint32_t ruleLen, tailoredLen, notTailoredLen; log_verbose("IsTailoredTest\n"); u_uastrcpy(rule, "&Z < A, B, C;c < d"); ruleLen = u_strlen(rule); u_uastrcpy(tailored, "ABCcd"); tailoredLen = u_strlen(tailored); u_uastrcpy(notTailored, "ZabD"); notTailoredLen = u_strlen(notTailored); coll = ucol_openRules(rule, ruleLen, UCOL_OFF, UCOL_TERTIARY, NULL,&status); if(U_SUCCESS(status)) { for(i = 0; i<tailoredLen; i++) { if(!ucol_isTailored(coll, tailored[i], &status)) { log_err("%i: %04X should be tailored - it is reported as not\n", i, tailored[i]); } } for(i = 0; i<notTailoredLen; i++) { if(ucol_isTailored(coll, notTailored[i], &status)) { log_err("%i: %04X should not be tailored - it is reported as it is\n", i, notTailored[i]); } } ucol_close(coll); } else { log_err_status(status, "Can't tailor rules\n"); } /* Code coverage */ status = U_ZERO_ERROR; coll = ucol_open("ja", &status); if(!ucol_isTailored(coll, 0x4E9C, &status)) { log_err_status(status, "0x4E9C should be tailored - it is reported as not\n"); } ucol_close(coll); } const static char chTest[][20] = { "c", "C", "ca", "cb", "cx", "cy", "CZ", "c\\u030C", "C\\u030C", "h", "H", "ha", "Ha", "harly", "hb", "HB", "hx", "HX", "hy", "HY", "ch", "cH", "Ch", "CH", "cha", "charly", "che", "chh", "chch", "chr", "i", "I", "iarly", "r", "R", "r\\u030C", "R\\u030C", "s", "S", "s\\u030C", "S\\u030C", "z", "Z", "z\\u030C", "Z\\u030C" }; static void TestChMove(void) { UChar t1[256] = {0}; UChar t2[256] = {0}; uint32_t i = 0, j = 0; uint32_t size = 0; UErrorCode status = U_ZERO_ERROR; UCollator *coll = ucol_open("cs", &status); if(U_SUCCESS(status)) { size = sizeof(chTest)/sizeof(chTest[0]); for(i = 0; i < size-1; i++) { for(j = i+1; j < size; j++) { u_unescape(chTest[i], t1, 256); u_unescape(chTest[j], t2, 256); doTest(coll, t1, t2, UCOL_LESS); } } } else { log_err("Can't open collator"); } ucol_close(coll); } const static char impTest[][20] = { "\\u4e00", "a", "A", "b", "B", "\\u4e01" }; static void TestImplicitTailoring(void) { static const struct { const char *rules; const char *data[10]; const uint32_t len; } tests[] = { { "&[before 1]\\u4e00 < b < c &[before 1]\\u4e00 < d < e", { "d", "e", "b", "c", "\\u4e00"}, 5 }, { "&\\u4e00 < a <<< A < b <<< B", { "\\u4e00", "a", "A", "b", "B", "\\u4e01"}, 6 }, { "&[before 1]\\u4e00 < \\u4e01 < \\u4e02", { "\\u4e01", "\\u4e02", "\\u4e00"}, 3}, { "&[before 1]\\u4e01 < \\u4e02 < \\u4e03", { "\\u4e02", "\\u4e03", "\\u4e01"}, 3} }; int32_t i = 0; for(i = 0; i < sizeof(tests)/sizeof(tests[0]); i++) { genericRulesStarter(tests[i].rules, tests[i].data, tests[i].len); } /* UChar t1[256] = {0}; UChar t2[256] = {0}; const char *rule = "&\\u4e00 < a <<< A < b <<< B"; uint32_t i = 0, j = 0; uint32_t size = 0; uint32_t ruleLen = 0; UErrorCode status = U_ZERO_ERROR; UCollator *coll = NULL; ruleLen = u_unescape(rule, t1, 256); coll = ucol_openRules(t1, ruleLen, UCOL_OFF, UCOL_TERTIARY,NULL, &status); if(U_SUCCESS(status)) { size = sizeof(impTest)/sizeof(impTest[0]); for(i = 0; i < size-1; i++) { for(j = i+1; j < size; j++) { u_unescape(impTest[i], t1, 256); u_unescape(impTest[j], t2, 256); doTest(coll, t1, t2, UCOL_LESS); } } } else { log_err("Can't open collator"); } ucol_close(coll); */ } static void TestFCDProblem(void) { UChar t1[256] = {0}; UChar t2[256] = {0}; const char *s1 = "\\u0430\\u0306\\u0325"; const char *s2 = "\\u04D1\\u0325"; UErrorCode status = U_ZERO_ERROR; UCollator *coll = ucol_open("", &status); u_unescape(s1, t1, 256); u_unescape(s2, t2, 256); ucol_setAttribute(coll, UCOL_NORMALIZATION_MODE, UCOL_OFF, &status); doTest(coll, t1, t2, UCOL_EQUAL); ucol_setAttribute(coll, UCOL_NORMALIZATION_MODE, UCOL_ON, &status); doTest(coll, t1, t2, UCOL_EQUAL); ucol_close(coll); } /* The largest normalization form is 18 for NFKC/NFKD, 4 for NFD and 3 for NFC We're only using NFC/NFD in this test. */ #define NORM_BUFFER_TEST_LEN 18 typedef struct { UChar32 u; UChar NFC[NORM_BUFFER_TEST_LEN]; UChar NFD[NORM_BUFFER_TEST_LEN]; } tester; static void TestComposeDecompose(void) { /* [[:NFD_Inert=false:][:NFC_Inert=false:]] */ static const UChar UNICODESET_STR[] = { 0x5B,0x5B,0x3A,0x4E,0x46,0x44,0x5F,0x49,0x6E,0x65,0x72,0x74,0x3D,0x66,0x61, 0x6C,0x73,0x65,0x3A,0x5D,0x5B,0x3A,0x4E,0x46,0x43,0x5F,0x49,0x6E,0x65,0x72, 0x74,0x3D,0x66,0x61,0x6C,0x73,0x65,0x3A,0x5D,0x5D,0 }; int32_t noOfLoc; int32_t i = 0, j = 0; UErrorCode status = U_ZERO_ERROR; const char *locName = NULL; uint32_t nfcSize; uint32_t nfdSize; tester **t; uint32_t noCases = 0; UCollator *coll = NULL; UChar32 u = 0; UChar comp[NORM_BUFFER_TEST_LEN]; uint32_t len = 0; UCollationElements *iter; USet *charsToTest = uset_openPattern(UNICODESET_STR, -1, &status); int32_t charsToTestSize; noOfLoc = uloc_countAvailable(); coll = ucol_open("", &status); if (U_FAILURE(status)) { log_data_err("Error opening collator -> %s (Are you missing data?)\n", u_errorName(status)); return; } charsToTestSize = uset_size(charsToTest); if (charsToTestSize <= 0) { log_err("Set was zero. Missing data?\n"); return; } t = malloc(charsToTestSize * sizeof(tester *)); t[0] = (tester *)malloc(sizeof(tester)); log_verbose("Testing UCA extensively for %d characters\n", charsToTestSize); for(u = 0; u < charsToTestSize; u++) { UChar32 ch = uset_charAt(charsToTest, u); len = 0; UTF_APPEND_CHAR_UNSAFE(comp, len, ch); nfcSize = unorm_normalize(comp, len, UNORM_NFC, 0, t[noCases]->NFC, NORM_BUFFER_TEST_LEN, &status); nfdSize = unorm_normalize(comp, len, UNORM_NFD, 0, t[noCases]->NFD, NORM_BUFFER_TEST_LEN, &status); if(nfcSize != nfdSize || (uprv_memcmp(t[noCases]->NFC, t[noCases]->NFD, nfcSize * sizeof(UChar)) != 0) || (len != nfdSize || (uprv_memcmp(comp, t[noCases]->NFD, nfdSize * sizeof(UChar)) != 0))) { t[noCases]->u = ch; if(len != nfdSize || (uprv_memcmp(comp, t[noCases]->NFD, nfdSize * sizeof(UChar)) != 0)) { u_strncpy(t[noCases]->NFC, comp, len); t[noCases]->NFC[len] = 0; } noCases++; t[noCases] = (tester *)malloc(sizeof(tester)); uprv_memset(t[noCases], 0, sizeof(tester)); } } log_verbose("Testing %d/%d of possible test cases\n", noCases, charsToTestSize); uset_close(charsToTest); charsToTest = NULL; for(u=0; u<(UChar32)noCases; u++) { if(!ucol_equal(coll, t[u]->NFC, -1, t[u]->NFD, -1)) { log_err("Failure: codePoint %05X fails TestComposeDecompose in the UCA\n", t[u]->u); doTest(coll, t[u]->NFC, t[u]->NFD, UCOL_EQUAL); } } /* for(u = 0; u < charsToTestSize; u++) { if(!(u&0xFFFF)) { log_verbose("%08X ", u); } uprv_memset(t[noCases], 0, sizeof(tester)); t[noCases]->u = u; len = 0; UTF_APPEND_CHAR_UNSAFE(comp, len, u); comp[len] = 0; nfcSize = unorm_normalize(comp, len, UNORM_NFC, 0, t[noCases]->NFC, NORM_BUFFER_TEST_LEN, &status); nfdSize = unorm_normalize(comp, len, UNORM_NFD, 0, t[noCases]->NFD, NORM_BUFFER_TEST_LEN, &status); doTest(coll, comp, t[noCases]->NFD, UCOL_EQUAL); doTest(coll, comp, t[noCases]->NFC, UCOL_EQUAL); } */ ucol_close(coll); log_verbose("Testing locales, number of cases = %i\n", noCases); for(i = 0; i<noOfLoc; i++) { status = U_ZERO_ERROR; locName = uloc_getAvailable(i); if(hasCollationElements(locName)) { char cName[256]; UChar name[256]; int32_t nameSize = uloc_getDisplayName(locName, NULL, name, sizeof(cName), &status); for(j = 0; j<nameSize; j++) { cName[j] = (char)name[j]; } cName[nameSize] = 0; log_verbose("\nTesting locale %s (%s)\n", locName, cName); coll = ucol_open(locName, &status); ucol_setStrength(coll, UCOL_IDENTICAL); iter = ucol_openElements(coll, t[u]->NFD, u_strlen(t[u]->NFD), &status); for(u=0; u<(UChar32)noCases; u++) { if(!ucol_equal(coll, t[u]->NFC, -1, t[u]->NFD, -1)) { log_err("Failure: codePoint %05X fails TestComposeDecompose for locale %s\n", t[u]->u, cName); doTest(coll, t[u]->NFC, t[u]->NFD, UCOL_EQUAL); log_verbose("Testing NFC\n"); ucol_setText(iter, t[u]->NFC, u_strlen(t[u]->NFC), &status); backAndForth(iter); log_verbose("Testing NFD\n"); ucol_setText(iter, t[u]->NFD, u_strlen(t[u]->NFD), &status); backAndForth(iter); } } ucol_closeElements(iter); ucol_close(coll); } } for(u = 0; u <= (UChar32)noCases; u++) { free(t[u]); } free(t); } static void TestEmptyRule(void) { UErrorCode status = U_ZERO_ERROR; UChar rulez[] = { 0 }; UCollator *coll = ucol_openRules(rulez, 0, UCOL_OFF, UCOL_TERTIARY,NULL, &status); ucol_close(coll); } static void TestUCARules(void) { UErrorCode status = U_ZERO_ERROR; UChar b[256]; UChar *rules = b; uint32_t ruleLen = 0; UCollator *UCAfromRules = NULL; UCollator *coll = ucol_open("", &status); if(status == U_FILE_ACCESS_ERROR) { log_data_err("Is your data around?\n"); return; } else if(U_FAILURE(status)) { log_err("Error opening collator\n"); return; } ruleLen = ucol_getRulesEx(coll, UCOL_FULL_RULES, rules, 256); log_verbose("TestUCARules\n"); if(ruleLen > 256) { rules = (UChar *)malloc((ruleLen+1)*sizeof(UChar)); ruleLen = ucol_getRulesEx(coll, UCOL_FULL_RULES, rules, ruleLen); } log_verbose("Rules length is %d\n", ruleLen); UCAfromRules = ucol_openRules(rules, ruleLen, UCOL_OFF, UCOL_TERTIARY, NULL,&status); if(U_SUCCESS(status)) { ucol_close(UCAfromRules); } else { log_verbose("Unable to create a collator from UCARules!\n"); } /* u_unescape(blah, b, 256); ucol_getSortKey(coll, b, 1, res, 256); */ ucol_close(coll); if(rules != b) { free(rules); } } /* Pinyin tonal order */ /* A < .. (\u0101) < .. (\u00e1) < .. (\u01ce) < .. (\u00e0) (w/macron)< (w/acute)< (w/caron)< (w/grave) E < .. (\u0113) < .. (\u00e9) < .. (\u011b) < .. (\u00e8) I < .. (\u012b) < .. (\u00ed) < .. (\u01d0) < .. (\u00ec) O < .. (\u014d) < .. (\u00f3) < .. (\u01d2) < .. (\u00f2) U < .. (\u016b) < .. (\u00fa) < .. (\u01d4) < .. (\u00f9) < .. (\u01d6) < .. (\u01d8) < .. (\u01da) < .. (\u01dc) < .. (\u00fc) However, in testing we got the following order: A < .. (\u00e1) < .. (\u00e0) < .. (\u01ce) < .. (\u0101) (w/acute)< (w/grave)< (w/caron)< (w/macron) E < .. (\u00e9) < .. (\u00e8) < .. (\u00ea) < .. (\u011b) < .. (\u0113) I < .. (\u00ed) < .. (\u00ec) < .. (\u01d0) < .. (\u012b) O < .. (\u00f3) < .. (\u00f2) < .. (\u01d2) < .. (\u014d) U < .. (\u00fa) < .. (\u00f9) < .. (\u01d4) < .. (\u00fc) < .. (\u01d8) < .. (\u01dc) < .. (\u01da) < .. (\u01d6) < .. (\u016b) */ static void TestBefore(void) { const static char *data[] = { "\\u0101", "\\u00e1", "\\u01ce", "\\u00e0", "A", "\\u0113", "\\u00e9", "\\u011b", "\\u00e8", "E", "\\u012b", "\\u00ed", "\\u01d0", "\\u00ec", "I", "\\u014d", "\\u00f3", "\\u01d2", "\\u00f2", "O", "\\u016b", "\\u00fa", "\\u01d4", "\\u00f9", "U", "\\u01d6", "\\u01d8", "\\u01da", "\\u01dc", "\\u00fc" }; genericRulesStarter( "&[before 1]a<\\u0101<\\u00e1<\\u01ce<\\u00e0" "&[before 1]e<\\u0113<\\u00e9<\\u011b<\\u00e8" "&[before 1]i<\\u012b<\\u00ed<\\u01d0<\\u00ec" "&[before 1]o<\\u014d<\\u00f3<\\u01d2<\\u00f2" "&[before 1]u<\\u016b<\\u00fa<\\u01d4<\\u00f9" "&u<\\u01d6<\\u01d8<\\u01da<\\u01dc<\\u00fc", data, sizeof(data)/sizeof(data[0])); } #if 0 /* superceded by TestBeforePinyin */ static void TestJ784(void) { const static char *data[] = { "A", "\\u0101", "\\u00e1", "\\u01ce", "\\u00e0", "E", "\\u0113", "\\u00e9", "\\u011b", "\\u00e8", "I", "\\u012b", "\\u00ed", "\\u01d0", "\\u00ec", "O", "\\u014d", "\\u00f3", "\\u01d2", "\\u00f2", "U", "\\u016b", "\\u00fa", "\\u01d4", "\\u00f9", "\\u00fc", "\\u01d6", "\\u01d8", "\\u01da", "\\u01dc" }; genericLocaleStarter("zh", data, sizeof(data)/sizeof(data[0])); } #endif #if 0 /* superceded by the changes to the lv locale */ static void TestJ831(void) { const static char *data[] = { "I", "i", "Y", "y" }; genericLocaleStarter("lv", data, sizeof(data)/sizeof(data[0])); } #endif static void TestJ815(void) { const static char *data[] = { "aa", "Aa", "ab", "Ab", "ad", "Ad", "ae", "Ae", "\\u00e6", "\\u00c6", "af", "Af", "b", "B" }; genericLocaleStarter("fr", data, sizeof(data)/sizeof(data[0])); genericRulesStarter("[backwards 2]&A<<\\u00e6/e<<<\\u00c6/E", data, sizeof(data)/sizeof(data[0])); } /* "& a < b < c < d& r < c", "& a < b < d& r < c", "& a < b < c < d& c < m", "& a < b < c < m < d", "& a < b < c < d& a < m", "& a < m < b < c < d", "& a <<< b << c < d& a < m", "& a <<< b << c < m < d", "& a < b < c < d& [before 1] c < m", "& a < b < m < c < d", "& a < b <<< c << d <<< e& [before 3] e <<< x", "& a < b <<< c << d <<< x <<< e", "& a < b <<< c << d <<< e& [before 2] e <<< x", "& a < b <<< c <<< x << d <<< e", "& a < b <<< c << d <<< e& [before 1] e <<< x", "& a <<< x < b <<< c << d <<< e", "& a < b <<< c << d <<< e <<< f < g& [before 1] g < x", "& a < b <<< c << d <<< e <<< f < x < g", */ static void TestRedundantRules(void) { int32_t i; static const struct { const char *rules; const char *expectedRules; const char *testdata[8]; uint32_t testdatalen; } tests[] = { /* this test conflicts with positioning of CODAN placeholder */ /*{ "& a <<< b <<< c << d <<< e& [before 1] e <<< x", "&\\u2089<<<x", {"\\u2089", "x"}, 2 }, */ /* this test conflicts with the [before x] syntax tightening */ /*{ "& b <<< c <<< d << e <<< f& [before 1] f <<< x", "&\\u0252<<<x", {"\\u0252", "x"}, 2 }, */ /* this test conflicts with the [before x] syntax tightening */ /*{ "& a < b <<< c << d <<< e& [before 1] e <<< x", "& a <<< x < b <<< c << d <<< e", {"a", "x", "b", "c", "d", "e"}, 6 }, */ { "& a < b < c < d& [before 1] c < m", "& a < b < m < c < d", {"a", "b", "m", "c", "d"}, 5 }, { "& a < b <<< c << d <<< e& [before 3] e <<< x", "& a < b <<< c << d <<< x <<< e", {"a", "b", "c", "d", "x", "e"}, 6 }, /* this test conflicts with the [before x] syntax tightening */ /* { "& a < b <<< c << d <<< e& [before 2] e <<< x", "& a < b <<< c <<< x << d <<< e", {"a", "b", "c", "x", "d", "e"},, 6 }, */ { "& a < b <<< c << d <<< e <<< f < g& [before 1] g < x", "& a < b <<< c << d <<< e <<< f < x < g", {"a", "b", "c", "d", "e", "f", "x", "g"}, 8 }, { "& a <<< b << c < d& a < m", "& a <<< b << c < m < d", {"a", "b", "c", "m", "d"}, 5 }, { "&a<b<<b\\u0301 &z<b", "&a<b\\u0301 &z<b", {"a", "b\\u0301", "z", "b"}, 4 }, { "&z<m<<<q<<<m", "&z<q<<<m", {"z", "q", "m"},3 }, { "&z<<<m<q<<<m", "&z<q<<<m", {"z", "q", "m"}, 3 }, { "& a < b < c < d& r < c", "& a < b < d& r < c", {"a", "b", "d"}, 3 }, { "& a < b < c < d& r < c", "& a < b < d& r < c", {"r", "c"}, 2 }, { "& a < b < c < d& c < m", "& a < b < c < m < d", {"a", "b", "c", "m", "d"}, 5 }, { "& a < b < c < d& a < m", "& a < m < b < c < d", {"a", "m", "b", "c", "d"}, 5 } }; UCollator *credundant = NULL; UCollator *cresulting = NULL; UErrorCode status = U_ZERO_ERROR; UChar rlz[2048] = { 0 }; uint32_t rlen = 0; for(i = 0; i<sizeof(tests)/sizeof(tests[0]); i++) { log_verbose("testing rule %s, expected to be %s\n", tests[i].rules, tests[i].expectedRules); rlen = u_unescape(tests[i].rules, rlz, 2048); credundant = ucol_openRules(rlz, rlen, UCOL_DEFAULT, UCOL_DEFAULT, NULL,&status); if(status == U_FILE_ACCESS_ERROR) { log_data_err("Is your data around?\n"); return; } else if(U_FAILURE(status)) { log_err("Error opening collator\n"); return; } rlen = u_unescape(tests[i].expectedRules, rlz, 2048); cresulting = ucol_openRules(rlz, rlen, UCOL_DEFAULT, UCOL_DEFAULT, NULL,&status); testAgainstUCA(cresulting, credundant, "expected", TRUE, &status); ucol_close(credundant); ucol_close(cresulting); log_verbose("testing using data\n"); genericRulesStarter(tests[i].rules, tests[i].testdata, tests[i].testdatalen); } } static void TestExpansionSyntax(void) { int32_t i; const static char *rules[] = { "&AE <<< a << b <<< c &d <<< f", "&AE <<< a <<< b << c << d < e < f <<< g", "&AE <<< B <<< C / D <<< F" }; const static char *expectedRules[] = { "&A <<< a / E << b / E <<< c /E &d <<< f", "&A <<< a / E <<< b / E << c / E << d / E < e < f <<< g", "&A <<< B / E <<< C / ED <<< F / E" }; const static char *testdata[][8] = { {"AE", "a", "b", "c"}, {"AE", "a", "b", "c", "d", "e", "f", "g"}, {"AE", "B", "C"} /* / ED <<< F / E"},*/ }; const static uint32_t testdatalen[] = { 4, 8, 3 }; UCollator *credundant = NULL; UCollator *cresulting = NULL; UErrorCode status = U_ZERO_ERROR; UChar rlz[2048] = { 0 }; uint32_t rlen = 0; for(i = 0; i<sizeof(rules)/sizeof(rules[0]); i++) { log_verbose("testing rule %s, expected to be %s\n", rules[i], expectedRules[i]); rlen = u_unescape(rules[i], rlz, 2048); credundant = ucol_openRules(rlz, rlen, UCOL_DEFAULT, UCOL_DEFAULT, NULL, &status); if(status == U_FILE_ACCESS_ERROR) { log_data_err("Is your data around?\n"); return; } else if(U_FAILURE(status)) { log_err("Error opening collator\n"); return; } rlen = u_unescape(expectedRules[i], rlz, 2048); cresulting = ucol_openRules(rlz, rlen, UCOL_DEFAULT, UCOL_DEFAULT, NULL,&status); /* testAgainstUCA still doesn't handle expansions correctly, so this is not run */ /* as a hard error test, but only in information mode */ testAgainstUCA(cresulting, credundant, "expected", FALSE, &status); ucol_close(credundant); ucol_close(cresulting); log_verbose("testing using data\n"); genericRulesStarter(rules[i], testdata[i], testdatalen[i]); } } static void TestCase(void) { const static UChar gRules[MAX_TOKEN_LEN] = /*" & 0 < 1,\u2461<a,A"*/ { 0x0026, 0x0030, 0x003C, 0x0031, 0x002C, 0x2460, 0x003C, 0x0061, 0x002C, 0x0041, 0x0000 }; const static UChar testCase[][MAX_TOKEN_LEN] = { /*0*/ {0x0031 /*'1'*/, 0x0061/*'a'*/, 0x0000}, /*1*/ {0x0031 /*'1'*/, 0x0041/*'A'*/, 0x0000}, /*2*/ {0x2460 /*circ'1'*/, 0x0061/*'a'*/, 0x0000}, /*3*/ {0x2460 /*circ'1'*/, 0x0041/*'A'*/, 0x0000} }; const static UCollationResult caseTestResults[][9] = { { UCOL_LESS, UCOL_LESS, UCOL_LESS, UCOL_EQUAL, UCOL_LESS, UCOL_LESS, UCOL_EQUAL, UCOL_EQUAL, UCOL_LESS }, { UCOL_GREATER, UCOL_LESS, UCOL_LESS, UCOL_EQUAL, UCOL_LESS, UCOL_LESS, UCOL_EQUAL, UCOL_EQUAL, UCOL_GREATER }, { UCOL_LESS, UCOL_LESS, UCOL_LESS, UCOL_EQUAL, UCOL_GREATER, UCOL_LESS, UCOL_EQUAL, UCOL_EQUAL, UCOL_LESS }, { UCOL_GREATER, UCOL_LESS, UCOL_GREATER, UCOL_EQUAL, UCOL_LESS, UCOL_LESS, UCOL_EQUAL, UCOL_EQUAL, UCOL_GREATER } }; const static UColAttributeValue caseTestAttributes[][2] = { { UCOL_LOWER_FIRST, UCOL_OFF}, { UCOL_UPPER_FIRST, UCOL_OFF}, { UCOL_LOWER_FIRST, UCOL_ON}, { UCOL_UPPER_FIRST, UCOL_ON} }; int32_t i,j,k; UErrorCode status = U_ZERO_ERROR; UCollationElements *iter; UCollator *myCollation; myCollation = ucol_open("en_US", &status); if(U_FAILURE(status)){ log_err_status(status, "ERROR: in creation of rule based collator: %s\n", myErrorName(status)); return; } log_verbose("Testing different case settings\n"); ucol_setStrength(myCollation, UCOL_TERTIARY); for(k = 0; k<4; k++) { ucol_setAttribute(myCollation, UCOL_CASE_FIRST, caseTestAttributes[k][0], &status); ucol_setAttribute(myCollation, UCOL_CASE_LEVEL, caseTestAttributes[k][1], &status); log_verbose("Case first = %d, Case level = %d\n", caseTestAttributes[k][0], caseTestAttributes[k][1]); for (i = 0; i < 3 ; i++) { for(j = i+1; j<4; j++) { doTest(myCollation, testCase[i], testCase[j], caseTestResults[k][3*i+j-1]); } } } ucol_close(myCollation); myCollation = ucol_openRules(gRules, u_strlen(gRules), UCOL_OFF, UCOL_TERTIARY,NULL, &status); if(U_FAILURE(status)){ log_err("ERROR: in creation of rule based collator: %s\n", myErrorName(status)); return; } log_verbose("Testing different case settings with custom rules\n"); ucol_setStrength(myCollation, UCOL_TERTIARY); for(k = 0; k<4; k++) { ucol_setAttribute(myCollation, UCOL_CASE_FIRST, caseTestAttributes[k][0], &status); ucol_setAttribute(myCollation, UCOL_CASE_LEVEL, caseTestAttributes[k][1], &status); for (i = 0; i < 3 ; i++) { for(j = i+1; j<4; j++) { log_verbose("k:%d, i:%d, j:%d\n", k, i, j); doTest(myCollation, testCase[i], testCase[j], caseTestResults[k][3*i+j-1]); iter=ucol_openElements(myCollation, testCase[i], u_strlen(testCase[i]), &status); backAndForth(iter); ucol_closeElements(iter); iter=ucol_openElements(myCollation, testCase[j], u_strlen(testCase[j]), &status); backAndForth(iter); ucol_closeElements(iter); } } } ucol_close(myCollation); { const static char *lowerFirst[] = { "h", "H", "ch", "Ch", "CH", "cha", "chA", "Cha", "ChA", "CHa", "CHA", "i", "I" }; const static char *upperFirst[] = { "H", "h", "CH", "Ch", "ch", "CHA", "CHa", "ChA", "Cha", "chA", "cha", "I", "i" }; log_verbose("mixed case test\n"); log_verbose("lower first, case level off\n"); genericRulesStarter("[casefirst lower]&H<ch<<<Ch<<<CH", lowerFirst, sizeof(lowerFirst)/sizeof(lowerFirst[0])); log_verbose("upper first, case level off\n"); genericRulesStarter("[casefirst upper]&H<ch<<<Ch<<<CH", upperFirst, sizeof(upperFirst)/sizeof(upperFirst[0])); log_verbose("lower first, case level on\n"); genericRulesStarter("[casefirst lower][caselevel on]&H<ch<<<Ch<<<CH", lowerFirst, sizeof(lowerFirst)/sizeof(lowerFirst[0])); log_verbose("upper first, case level on\n"); genericRulesStarter("[casefirst upper][caselevel on]&H<ch<<<Ch<<<CH", upperFirst, sizeof(upperFirst)/sizeof(upperFirst[0])); } } static void TestIncrementalNormalize(void) { /*UChar baseA =0x61;*/ UChar baseA =0x41; /* UChar baseB = 0x42;*/ static const UChar ccMix[] = {0x316, 0x321, 0x300}; /*UChar ccMix[] = {0x61, 0x61, 0x61};*/ /* 0x316 is combining grave accent below, cc=220 0x321 is combining palatalized hook below, cc=202 0x300 is combining grave accent, cc=230 */ #define MAXSLEN 2000 /*int maxSLen = 64000;*/ int sLen; int i; UCollator *coll; UErrorCode status = U_ZERO_ERROR; UCollationResult result; int32_t myQ = QUICK; if(QUICK < 0) { QUICK = 1; } { /* Test 1. Run very long unnormalized strings, to force overflow of*/ /* most buffers along the way.*/ UChar strA[MAXSLEN+1]; UChar strB[MAXSLEN+1]; coll = ucol_open("en_US", &status); if(status == U_FILE_ACCESS_ERROR) { log_data_err("Is your data around?\n"); return; } else if(U_FAILURE(status)) { log_err("Error opening collator\n"); return; } ucol_setAttribute(coll, UCOL_NORMALIZATION_MODE, UCOL_ON, &status); /*for (sLen = 257; sLen<MAXSLEN; sLen++) {*/ /*for (sLen = 4; sLen<MAXSLEN; sLen++) {*/ /*for (sLen = 1000; sLen<1001; sLen++) {*/ for (sLen = 500; sLen<501; sLen++) { /*for (sLen = 40000; sLen<65000; sLen+=1000) {*/ strA[0] = baseA; strB[0] = baseA; for (i=1; i<=sLen-1; i++) { strA[i] = ccMix[i % 3]; strB[sLen-i] = ccMix[i % 3]; } strA[sLen] = 0; strB[sLen] = 0; ucol_setStrength(coll, UCOL_TERTIARY); /* Do test with default strength, which runs*/ doTest(coll, strA, strB, UCOL_EQUAL); /* optimized functions in the impl*/ ucol_setStrength(coll, UCOL_IDENTICAL); /* Do again with the slow, general impl.*/ doTest(coll, strA, strB, UCOL_EQUAL); } } QUICK = myQ; /* Test 2: Non-normal sequence in a string that extends to the last character*/ /* of the string. Checks a couple of edge cases.*/ { static const UChar strA[] = {0x41, 0x41, 0x300, 0x316, 0}; static const UChar strB[] = {0x41, 0xc0, 0x316, 0}; ucol_setStrength(coll, UCOL_TERTIARY); doTest(coll, strA, strB, UCOL_EQUAL); } /* Test 3: Non-normal sequence is terminated by a surrogate pair.*/ { /* New UCA 3.1.1. * test below used a code point from Desseret, which sorts differently * than d800 dc00 */ /*UChar strA[] = {0x41, 0x41, 0x300, 0x316, 0xD801, 0xDC00, 0};*/ static const UChar strA[] = {0x41, 0x41, 0x300, 0x316, 0xD800, 0xDC01, 0}; static const UChar strB[] = {0x41, 0xc0, 0x316, 0xD800, 0xDC00, 0}; ucol_setStrength(coll, UCOL_TERTIARY); doTest(coll, strA, strB, UCOL_GREATER); } /* Test 4: Imbedded nulls do not terminate a string when length is specified.*/ { static const UChar strA[] = {0x41, 0x00, 0x42, 0x00}; static const UChar strB[] = {0x41, 0x00, 0x00, 0x00}; char sortKeyA[50]; char sortKeyAz[50]; char sortKeyB[50]; char sortKeyBz[50]; int r; /* there used to be -3 here. Hmmmm.... */ /*result = ucol_strcoll(coll, strA, -3, strB, -3);*/ result = ucol_strcoll(coll, strA, 3, strB, 3); if (result != UCOL_GREATER) { log_err("ERROR 1 in test 4\n"); } result = ucol_strcoll(coll, strA, -1, strB, -1); if (result != UCOL_EQUAL) { log_err("ERROR 2 in test 4\n"); } ucol_getSortKey(coll, strA, 3, (uint8_t *)sortKeyA, sizeof(sortKeyA)); ucol_getSortKey(coll, strA, -1, (uint8_t *)sortKeyAz, sizeof(sortKeyAz)); ucol_getSortKey(coll, strB, 3, (uint8_t *)sortKeyB, sizeof(sortKeyB)); ucol_getSortKey(coll, strB, -1, (uint8_t *)sortKeyBz, sizeof(sortKeyBz)); r = strcmp(sortKeyA, sortKeyAz); if (r <= 0) { log_err("Error 3 in test 4\n"); } r = strcmp(sortKeyA, sortKeyB); if (r <= 0) { log_err("Error 4 in test 4\n"); } r = strcmp(sortKeyAz, sortKeyBz); if (r != 0) { log_err("Error 5 in test 4\n"); } ucol_setStrength(coll, UCOL_IDENTICAL); ucol_getSortKey(coll, strA, 3, (uint8_t *)sortKeyA, sizeof(sortKeyA)); ucol_getSortKey(coll, strA, -1, (uint8_t *)sortKeyAz, sizeof(sortKeyAz)); ucol_getSortKey(coll, strB, 3, (uint8_t *)sortKeyB, sizeof(sortKeyB)); ucol_getSortKey(coll, strB, -1, (uint8_t *)sortKeyBz, sizeof(sortKeyBz)); r = strcmp(sortKeyA, sortKeyAz); if (r <= 0) { log_err("Error 6 in test 4\n"); } r = strcmp(sortKeyA, sortKeyB); if (r <= 0) { log_err("Error 7 in test 4\n"); } r = strcmp(sortKeyAz, sortKeyBz); if (r != 0) { log_err("Error 8 in test 4\n"); } ucol_setStrength(coll, UCOL_TERTIARY); } /* Test 5: Null characters in non-normal source strings.*/ { static const UChar strA[] = {0x41, 0x41, 0x300, 0x316, 0x00, 0x42, 0x00}; static const UChar strB[] = {0x41, 0x41, 0x300, 0x316, 0x00, 0x00, 0x00}; char sortKeyA[50]; char sortKeyAz[50]; char sortKeyB[50]; char sortKeyBz[50]; int r; result = ucol_strcoll(coll, strA, 6, strB, 6); if (result != UCOL_GREATER) { log_err("ERROR 1 in test 5\n"); } result = ucol_strcoll(coll, strA, -1, strB, -1); if (result != UCOL_EQUAL) { log_err("ERROR 2 in test 5\n"); } ucol_getSortKey(coll, strA, 6, (uint8_t *)sortKeyA, sizeof(sortKeyA)); ucol_getSortKey(coll, strA, -1, (uint8_t *)sortKeyAz, sizeof(sortKeyAz)); ucol_getSortKey(coll, strB, 6, (uint8_t *)sortKeyB, sizeof(sortKeyB)); ucol_getSortKey(coll, strB, -1, (uint8_t *)sortKeyBz, sizeof(sortKeyBz)); r = strcmp(sortKeyA, sortKeyAz); if (r <= 0) { log_err("Error 3 in test 5\n"); } r = strcmp(sortKeyA, sortKeyB); if (r <= 0) { log_err("Error 4 in test 5\n"); } r = strcmp(sortKeyAz, sortKeyBz); if (r != 0) { log_err("Error 5 in test 5\n"); } ucol_setStrength(coll, UCOL_IDENTICAL); ucol_getSortKey(coll, strA, 6, (uint8_t *)sortKeyA, sizeof(sortKeyA)); ucol_getSortKey(coll, strA, -1, (uint8_t *)sortKeyAz, sizeof(sortKeyAz)); ucol_getSortKey(coll, strB, 6, (uint8_t *)sortKeyB, sizeof(sortKeyB)); ucol_getSortKey(coll, strB, -1, (uint8_t *)sortKeyBz, sizeof(sortKeyBz)); r = strcmp(sortKeyA, sortKeyAz); if (r <= 0) { log_err("Error 6 in test 5\n"); } r = strcmp(sortKeyA, sortKeyB); if (r <= 0) { log_err("Error 7 in test 5\n"); } r = strcmp(sortKeyAz, sortKeyBz); if (r != 0) { log_err("Error 8 in test 5\n"); } ucol_setStrength(coll, UCOL_TERTIARY); } /* Test 6: Null character as base of a non-normal combining sequence.*/ { static const UChar strA[] = {0x41, 0x0, 0x300, 0x316, 0x41, 0x302, 0x00}; static const UChar strB[] = {0x41, 0x0, 0x302, 0x316, 0x41, 0x300, 0x00}; result = ucol_strcoll(coll, strA, 5, strB, 5); if (result != UCOL_LESS) { log_err("Error 1 in test 6\n"); } result = ucol_strcoll(coll, strA, -1, strB, -1); if (result != UCOL_EQUAL) { log_err("Error 2 in test 6\n"); } } ucol_close(coll); } #if 0 static void TestGetCaseBit(void) { static const char *caseBitData[] = { "a", "A", "ch", "Ch", "CH", "\\uFF9E", "\\u0009" }; static const uint8_t results[] = { UCOL_LOWER_CASE, UCOL_UPPER_CASE, UCOL_LOWER_CASE, UCOL_MIXED_CASE, UCOL_UPPER_CASE, UCOL_UPPER_CASE, UCOL_LOWER_CASE }; uint32_t i, blen = 0; UChar b[256] = {0}; UErrorCode status = U_ZERO_ERROR; UCollator *UCA = ucol_open("", &status); uint8_t res = 0; for(i = 0; i<sizeof(results)/sizeof(results[0]); i++) { blen = u_unescape(caseBitData[i], b, 256); res = ucol_uprv_getCaseBits(UCA, b, blen, &status); if(results[i] != res) { log_err("Expected case = %02X, got %02X for %04X\n", results[i], res, b[0]); } } } #endif static void TestHangulTailoring(void) { static const char *koreanData[] = { "\\uac00", "\\u4f3d", "\\u4f73", "\\u5047", "\\u50f9", "\\u52a0", "\\u53ef", "\\u5475", "\\u54e5", "\\u5609", "\\u5ac1", "\\u5bb6", "\\u6687", "\\u67b6", "\\u67b7", "\\u67ef", "\\u6b4c", "\\u73c2", "\\u75c2", "\\u7a3c", "\\u82db", "\\u8304", "\\u8857", "\\u8888", "\\u8a36", "\\u8cc8", "\\u8dcf", "\\u8efb", "\\u8fe6", "\\u99d5", "\\u4EEE", "\\u50A2", "\\u5496", "\\u54FF", "\\u5777", "\\u5B8A", "\\u659D", "\\u698E", "\\u6A9F", "\\u73C8", "\\u7B33", "\\u801E", "\\u8238", "\\u846D", "\\u8B0C" }; const char *rules = "&\\uac00 <<< \\u4f3d <<< \\u4f73 <<< \\u5047 <<< \\u50f9 <<< \\u52a0 <<< \\u53ef <<< \\u5475 " "<<< \\u54e5 <<< \\u5609 <<< \\u5ac1 <<< \\u5bb6 <<< \\u6687 <<< \\u67b6 <<< \\u67b7 <<< \\u67ef " "<<< \\u6b4c <<< \\u73c2 <<< \\u75c2 <<< \\u7a3c <<< \\u82db <<< \\u8304 <<< \\u8857 <<< \\u8888 " "<<< \\u8a36 <<< \\u8cc8 <<< \\u8dcf <<< \\u8efb <<< \\u8fe6 <<< \\u99d5 " "<<< \\u4EEE <<< \\u50A2 <<< \\u5496 <<< \\u54FF <<< \\u5777 <<< \\u5B8A <<< \\u659D <<< \\u698E " "<<< \\u6A9F <<< \\u73C8 <<< \\u7B33 <<< \\u801E <<< \\u8238 <<< \\u846D <<< \\u8B0C"; UErrorCode status = U_ZERO_ERROR; UChar rlz[2048] = { 0 }; uint32_t rlen = u_unescape(rules, rlz, 2048); UCollator *coll = ucol_openRules(rlz, rlen, UCOL_DEFAULT, UCOL_DEFAULT,NULL, &status); if(status == U_FILE_ACCESS_ERROR) { log_data_err("Is your data around?\n"); return; } else if(U_FAILURE(status)) { log_err("Error opening collator\n"); return; } log_verbose("Using start of korean rules\n"); if(U_SUCCESS(status)) { genericOrderingTest(coll, koreanData, sizeof(koreanData)/sizeof(koreanData[0])); } else { log_err("Unable to open collator with rules %s\n", rules); } log_verbose("Setting jamoSpecial to TRUE and testing once more\n"); ((UCATableHeader *)coll->image)->jamoSpecial = TRUE; /* don't try this at home */ genericOrderingTest(coll, koreanData, sizeof(koreanData)/sizeof(koreanData[0])); ucol_close(coll); log_verbose("Using ko__LOTUS locale\n"); genericLocaleStarter("ko__LOTUS", koreanData, sizeof(koreanData)/sizeof(koreanData[0])); } static void TestCompressOverlap(void) { UChar secstr[150]; UChar tertstr[150]; UErrorCode status = U_ZERO_ERROR; UCollator *coll; char result[200]; uint32_t resultlen; int count = 0; char *tempptr; coll = ucol_open("", &status); if (U_FAILURE(status)) { log_err_status(status, "Collator can't be created -> %s\n", u_errorName(status)); return; } while (count < 149) { secstr[count] = 0x0020; /* [06, 05, 05] */ tertstr[count] = 0x0020; count ++; } /* top down compression ----------------------------------- */ secstr[count] = 0x0332; /* [, 87, 05] */ tertstr[count] = 0x3000; /* [06, 05, 07] */ /* no compression secstr should have 150 secondary bytes, tertstr should have 150 tertiary bytes. with correct overlapping compression, secstr should have 4 secondary bytes, tertstr should have > 2 tertiary bytes */ resultlen = ucol_getSortKey(coll, secstr, 150, (uint8_t *)result, 250); tempptr = uprv_strchr(result, 1) + 1; while (*(tempptr + 1) != 1) { /* the last secondary collation element is not checked since it is not part of the compression */ if (*tempptr < UCOL_COMMON_TOP2 - UCOL_TOP_COUNT2) { log_err("Secondary compression overlapped\n"); } tempptr ++; } /* tertiary top/bottom/common for en_US is similar to the secondary top/bottom/common */ resultlen = ucol_getSortKey(coll, tertstr, 150, (uint8_t *)result, 250); tempptr = uprv_strrchr(result, 1) + 1; while (*(tempptr + 1) != 0) { /* the last secondary collation element is not checked since it is not part of the compression */ if (*tempptr < coll->tertiaryTop - coll->tertiaryTopCount) { log_err("Tertiary compression overlapped\n"); } tempptr ++; } /* bottom up compression ------------------------------------- */ secstr[count] = 0; tertstr[count] = 0; resultlen = ucol_getSortKey(coll, secstr, 150, (uint8_t *)result, 250); tempptr = uprv_strchr(result, 1) + 1; while (*(tempptr + 1) != 1) { /* the last secondary collation element is not checked since it is not part of the compression */ if (*tempptr > UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2) { log_err("Secondary compression overlapped\n"); } tempptr ++; } /* tertiary top/bottom/common for en_US is similar to the secondary top/bottom/common */ resultlen = ucol_getSortKey(coll, tertstr, 150, (uint8_t *)result, 250); tempptr = uprv_strrchr(result, 1) + 1; while (*(tempptr + 1) != 0) { /* the last secondary collation element is not checked since it is not part of the compression */ if (*tempptr > coll->tertiaryBottom + coll->tertiaryBottomCount) { log_err("Tertiary compression overlapped\n"); } tempptr ++; } ucol_close(coll); } static void TestCyrillicTailoring(void) { static const char *test[] = { "\\u0410b", "\\u0410\\u0306a", "\\u04d0A" }; /* Russian overrides contractions, so this test is not valid anymore */ /*genericLocaleStarter("ru", test, 3);*/ genericLocaleStarter("root", test, 3); genericRulesStarter("&\\u0410 = \\u0410", test, 3); genericRulesStarter("&Z < \\u0410", test, 3); genericRulesStarter("&\\u0410 = \\u0410 < \\u04d0", test, 3); genericRulesStarter("&Z < \\u0410 < \\u04d0", test, 3); genericRulesStarter("&\\u0410 = \\u0410 < \\u0410\\u0301", test, 3); genericRulesStarter("&Z < \\u0410 < \\u0410\\u0301", test, 3); } static void TestSuppressContractions(void) { static const char *testNoCont2[] = { "\\u0410\\u0302a", "\\u0410\\u0306b", "\\u0410c" }; static const char *testNoCont[] = { "a\\u0410", "A\\u0410\\u0306", "\\uFF21\\u0410\\u0302" }; genericRulesStarter("[suppressContractions [\\u0400-\\u047f]]", testNoCont, 3); genericRulesStarter("[suppressContractions [\\u0400-\\u047f]]", testNoCont2, 3); } static void TestContraction(void) { const static char *testrules[] = { "&A = AB / B", "&A = A\\u0306/\\u0306", "&c = ch / h" }; const static UChar testdata[][2] = { {0x0041 /* 'A' */, 0x0042 /* 'B' */}, {0x0041 /* 'A' */, 0x0306 /* combining breve */}, {0x0063 /* 'c' */, 0x0068 /* 'h' */} }; const static UChar testdata2[][2] = { {0x0063 /* 'c' */, 0x0067 /* 'g' */}, {0x0063 /* 'c' */, 0x0068 /* 'h' */}, {0x0063 /* 'c' */, 0x006C /* 'l' */} }; const static char *testrules3[] = { "&z < xyz &xyzw << B", "&z < xyz &xyz << B / w", "&z < ch &achm << B", "&z < ch &a << B / chm", "&\\ud800\\udc00w << B", "&\\ud800\\udc00 << B / w", "&a\\ud800\\udc00m << B", "&a << B / \\ud800\\udc00m", }; UErrorCode status = U_ZERO_ERROR; UCollator *coll; UChar rule[256] = {0}; uint32_t rlen = 0; int i; for (i = 0; i < sizeof(testrules) / sizeof(testrules[0]); i ++) { UCollationElements *iter1; int j = 0; log_verbose("Rule %s for testing\n", testrules[i]); rlen = u_unescape(testrules[i], rule, 32); coll = ucol_openRules(rule, rlen, UCOL_ON, UCOL_TERTIARY,NULL, &status); if (U_FAILURE(status)) { log_err_status(status, "Collator creation failed %s -> %s\n", testrules[i], u_errorName(status)); return; } iter1 = ucol_openElements(coll, testdata[i], 2, &status); if (U_FAILURE(status)) { log_err("Collation iterator creation failed\n"); return; } while (j < 2) { UCollationElements *iter2 = ucol_openElements(coll, &(testdata[i][j]), 1, &status); uint32_t ce; if (U_FAILURE(status)) { log_err("Collation iterator creation failed\n"); return; } ce = ucol_next(iter2, &status); while (ce != UCOL_NULLORDER) { if ((uint32_t)ucol_next(iter1, &status) != ce) { log_err("Collation elements in contraction split does not match\n"); return; } ce = ucol_next(iter2, &status); } j ++; ucol_closeElements(iter2); } if (ucol_next(iter1, &status) != UCOL_NULLORDER) { log_err("Collation elements not exhausted\n"); return; } ucol_closeElements(iter1); ucol_close(coll); } rlen = u_unescape("& a < b < c < ch < d & c = ch / h", rule, 256); coll = ucol_openRules(rule, rlen, UCOL_ON, UCOL_TERTIARY,NULL, &status); if (ucol_strcoll(coll, testdata2[0], 2, testdata2[1], 2) != UCOL_LESS) { log_err("Expected \\u%04x\\u%04x < \\u%04x\\u%04x\n", testdata2[0][0], testdata2[0][1], testdata2[1][0], testdata2[1][1]); return; } if (ucol_strcoll(coll, testdata2[1], 2, testdata2[2], 2) != UCOL_LESS) { log_err("Expected \\u%04x\\u%04x < \\u%04x\\u%04x\n", testdata2[1][0], testdata2[1][1], testdata2[2][0], testdata2[2][1]); return; } ucol_close(coll); for (i = 0; i < sizeof(testrules3) / sizeof(testrules3[0]); i += 2) { UCollator *coll1, *coll2; UCollationElements *iter1, *iter2; UChar ch = 0x0042 /* 'B' */; uint32_t ce; rlen = u_unescape(testrules3[i], rule, 32); coll1 = ucol_openRules(rule, rlen, UCOL_ON, UCOL_TERTIARY,NULL, &status); rlen = u_unescape(testrules3[i + 1], rule, 32); coll2 = ucol_openRules(rule, rlen, UCOL_ON, UCOL_TERTIARY,NULL, &status); if (U_FAILURE(status)) { log_err("Collator creation failed %s\n", testrules[i]); return; } iter1 = ucol_openElements(coll1, &ch, 1, &status); iter2 = ucol_openElements(coll2, &ch, 1, &status); if (U_FAILURE(status)) { log_err("Collation iterator creation failed\n"); return; } ce = ucol_next(iter1, &status); if (U_FAILURE(status)) { log_err("Retrieving ces failed\n"); return; } while (ce != UCOL_NULLORDER) { if (ce != (uint32_t)ucol_next(iter2, &status)) { log_err("CEs does not match\n"); return; } ce = ucol_next(iter1, &status); if (U_FAILURE(status)) { log_err("Retrieving ces failed\n"); return; } } if (ucol_next(iter2, &status) != UCOL_NULLORDER) { log_err("CEs not exhausted\n"); return; } ucol_closeElements(iter1); ucol_closeElements(iter2); ucol_close(coll1); ucol_close(coll2); } } static void TestExpansion(void) { const static char *testrules[] = { "&J << K / B & K << M", "&J << K / B << M" }; const static UChar testdata[][3] = { {0x004A /*'J'*/, 0x0041 /*'A'*/, 0}, {0x004D /*'M'*/, 0x0041 /*'A'*/, 0}, {0x004B /*'K'*/, 0x0041 /*'A'*/, 0}, {0x004B /*'K'*/, 0x0043 /*'C'*/, 0}, {0x004A /*'J'*/, 0x0043 /*'C'*/, 0}, {0x004D /*'M'*/, 0x0043 /*'C'*/, 0} }; UErrorCode status = U_ZERO_ERROR; UCollator *coll; UChar rule[256] = {0}; uint32_t rlen = 0; int i; for (i = 0; i < sizeof(testrules) / sizeof(testrules[0]); i ++) { int j = 0; log_verbose("Rule %s for testing\n", testrules[i]); rlen = u_unescape(testrules[i], rule, 32); coll = ucol_openRules(rule, rlen, UCOL_ON, UCOL_TERTIARY,NULL, &status); if (U_FAILURE(status)) { log_err_status(status, "Collator creation failed %s -> %s\n", testrules[i], u_errorName(status)); return; } for (j = 0; j < 5; j ++) { doTest(coll, testdata[j], testdata[j + 1], UCOL_LESS); } ucol_close(coll); } } #if 0 /* this test tests the current limitations of the engine */ /* it always fail, so it is disabled by default */ static void TestLimitations(void) { /* recursive expansions */ { static const char *rule = "&a=b/c&d=c/e"; static const char *tlimit01[] = {"add","b","adf"}; static const char *tlimit02[] = {"aa","b","af"}; log_verbose("recursive expansions\n"); genericRulesStarter(rule, tlimit01, sizeof(tlimit01)/sizeof(tlimit01[0])); genericRulesStarter(rule, tlimit02, sizeof(tlimit02)/sizeof(tlimit02[0])); } /* contractions spanning expansions */ { static const char *rule = "&a<<<c/e&g<<<eh"; static const char *tlimit01[] = {"ad","c","af","f","ch","h"}; static const char *tlimit02[] = {"ad","c","ch","af","f","h"}; log_verbose("contractions spanning expansions\n"); genericRulesStarter(rule, tlimit01, sizeof(tlimit01)/sizeof(tlimit01[0])); genericRulesStarter(rule, tlimit02, sizeof(tlimit02)/sizeof(tlimit02[0])); } /* normalization: nulls in contractions */ { static const char *rule = "&a<<<\\u0000\\u0302"; static const char *tlimit01[] = {"a","\\u0000\\u0302\\u0327"}; static const char *tlimit02[] = {"\\u0000\\u0302\\u0327","a"}; static const UColAttribute att[] = { UCOL_DECOMPOSITION_MODE }; static const UColAttributeValue valOn[] = { UCOL_ON }; static const UColAttributeValue valOff[] = { UCOL_OFF }; log_verbose("NULL in contractions\n"); genericRulesStarterWithOptions(rule, tlimit01, 2, att, valOn, 1); genericRulesStarterWithOptions(rule, tlimit02, 2, att, valOn, 1); genericRulesStarterWithOptions(rule, tlimit01, 2, att, valOff, 1); genericRulesStarterWithOptions(rule, tlimit02, 2, att, valOff, 1); } /* normalization: contractions spanning normalization */ { static const char *rule = "&a<<<\\u0000\\u0302"; static const char *tlimit01[] = {"a","\\u0000\\u0302\\u0327"}; static const char *tlimit02[] = {"\\u0000\\u0302\\u0327","a"}; static const UColAttribute att[] = { UCOL_DECOMPOSITION_MODE }; static const UColAttributeValue valOn[] = { UCOL_ON }; static const UColAttributeValue valOff[] = { UCOL_OFF }; log_verbose("contractions spanning normalization\n"); genericRulesStarterWithOptions(rule, tlimit01, 2, att, valOn, 1); genericRulesStarterWithOptions(rule, tlimit02, 2, att, valOn, 1); genericRulesStarterWithOptions(rule, tlimit01, 2, att, valOff, 1); genericRulesStarterWithOptions(rule, tlimit02, 2, att, valOff, 1); } /* variable top: */ { /*static const char *rule2 = "&\\u2010<x=[variable top]<z";*/ static const char *rule = "&\\u2010<x<[variable top]=z"; /*static const char *rule3 = "&' '<x<[variable top]=z";*/ static const char *tlimit01[] = {" ", "z", "zb", "a", " b", "xb", "b", "c" }; static const char *tlimit02[] = {"-", "-x", "x","xb", "-z", "z", "zb", "-a", "a", "-b", "b", "c"}; static const char *tlimit03[] = {" ", "xb", "z", "zb", "a", " b", "b", "c" }; static const UColAttribute att[] = { UCOL_ALTERNATE_HANDLING, UCOL_STRENGTH }; static const UColAttributeValue valOn[] = { UCOL_SHIFTED, UCOL_QUATERNARY }; static const UColAttributeValue valOff[] = { UCOL_NON_IGNORABLE, UCOL_TERTIARY }; log_verbose("variable top\n"); genericRulesStarterWithOptions(rule, tlimit03, sizeof(tlimit03)/sizeof(tlimit03[0]), att, valOn, sizeof(att)/sizeof(att[0])); genericRulesStarterWithOptions(rule, tlimit01, sizeof(tlimit01)/sizeof(tlimit01[0]), att, valOn, sizeof(att)/sizeof(att[0])); genericRulesStarterWithOptions(rule, tlimit02, sizeof(tlimit02)/sizeof(tlimit02[0]), att, valOn, sizeof(att)/sizeof(att[0])); genericRulesStarterWithOptions(rule, tlimit01, sizeof(tlimit01)/sizeof(tlimit01[0]), att, valOff, sizeof(att)/sizeof(att[0])); genericRulesStarterWithOptions(rule, tlimit02, sizeof(tlimit02)/sizeof(tlimit02[0]), att, valOff, sizeof(att)/sizeof(att[0])); } /* case level */ { static const char *rule = "&c<ch<<<cH<<<Ch<<<CH"; static const char *tlimit01[] = {"c","CH","Ch","cH","ch"}; static const char *tlimit02[] = {"c","CH","cH","Ch","ch"}; static const UColAttribute att[] = { UCOL_CASE_FIRST}; static const UColAttributeValue valOn[] = { UCOL_UPPER_FIRST}; /*static const UColAttributeValue valOff[] = { UCOL_OFF};*/ log_verbose("case level\n"); genericRulesStarterWithOptions(rule, tlimit01, sizeof(tlimit01)/sizeof(tlimit01[0]), att, valOn, sizeof(att)/sizeof(att[0])); genericRulesStarterWithOptions(rule, tlimit02, sizeof(tlimit02)/sizeof(tlimit02[0]), att, valOn, sizeof(att)/sizeof(att[0])); /*genericRulesStarterWithOptions(rule, tlimit01, sizeof(tlimit01)/sizeof(tlimit01[0]), att, valOff, sizeof(att)/sizeof(att[0]));*/ /*genericRulesStarterWithOptions(rule, tlimit02, sizeof(tlimit02)/sizeof(tlimit02[0]), att, valOff, sizeof(att)/sizeof(att[0]));*/ } } #endif static void TestBocsuCoverage(void) { UErrorCode status = U_ZERO_ERROR; const char *testString = "\\u0041\\u0441\\u4441\\U00044441\\u4441\\u0441\\u0041"; UChar test[256] = {0}; uint32_t tlen = u_unescape(testString, test, 32); uint8_t key[256] = {0}; uint32_t klen = 0; UCollator *coll = ucol_open("", &status); if(U_SUCCESS(status)) { ucol_setAttribute(coll, UCOL_STRENGTH, UCOL_IDENTICAL, &status); klen = ucol_getSortKey(coll, test, tlen, key, 256); ucol_close(coll); } else { log_data_err("Couldn't open UCA\n"); } } static void TestVariableTopSetting(void) { UErrorCode status = U_ZERO_ERROR; const UChar *current = NULL; uint32_t varTopOriginal = 0, varTop1, varTop2; UCollator *coll = ucol_open("", &status); if(U_SUCCESS(status)) { uint32_t strength = 0; uint16_t specs = 0; uint32_t chOffset = 0; uint32_t chLen = 0; uint32_t exOffset = 0; uint32_t exLen = 0; uint32_t oldChOffset = 0; uint32_t oldChLen = 0; uint32_t oldExOffset = 0; uint32_t oldExLen = 0; uint32_t prefixOffset = 0; uint32_t prefixLen = 0; UBool startOfRules = TRUE; UColTokenParser src; UColOptionSet opts; UChar *rulesCopy = NULL; uint32_t rulesLen; UCollationResult result; UChar first[256] = { 0 }; UChar second[256] = { 0 }; UParseError parseError; int32_t myQ = QUICK; src.opts = &opts; if(QUICK <= 0) { QUICK = 1; } /* this test will fail when normalization is turned on */ /* therefore we always turn off exhaustive mode for it */ { /* QUICK > 0*/ log_verbose("Slide variable top over UCARules\n"); rulesLen = ucol_getRulesEx(coll, UCOL_FULL_RULES, rulesCopy, 0); rulesCopy = (UChar *)malloc((rulesLen+UCOL_TOK_EXTRA_RULE_SPACE_SIZE)*sizeof(UChar)); rulesLen = ucol_getRulesEx(coll, UCOL_FULL_RULES, rulesCopy, rulesLen+UCOL_TOK_EXTRA_RULE_SPACE_SIZE); if(U_SUCCESS(status) && rulesLen > 0) { ucol_setAttribute(coll, UCOL_ALTERNATE_HANDLING, UCOL_SHIFTED, &status); src.current = src.source = rulesCopy; src.end = rulesCopy+rulesLen; src.extraCurrent = src.end; src.extraEnd = src.end+UCOL_TOK_EXTRA_RULE_SPACE_SIZE; while ((current = ucol_tok_parseNextToken(&src, startOfRules, &parseError,&status)) != NULL) { strength = src.parsedToken.strength; chOffset = src.parsedToken.charsOffset; chLen = src.parsedToken.charsLen; exOffset = src.parsedToken.extensionOffset; exLen = src.parsedToken.extensionLen; prefixOffset = src.parsedToken.prefixOffset; prefixLen = src.parsedToken.prefixLen; specs = src.parsedToken.flags; startOfRules = FALSE; { log_verbose("%04X %d ", *(rulesCopy+chOffset), chLen); } if(strength == UCOL_PRIMARY) { status = U_ZERO_ERROR; varTopOriginal = ucol_getVariableTop(coll, &status); varTop1 = ucol_setVariableTop(coll, rulesCopy+oldChOffset, oldChLen, &status); if(U_FAILURE(status)) { char buffer[256]; char *buf = buffer; uint32_t i = 0, j; uint32_t CE = UCOL_NO_MORE_CES; /* before we start screaming, let's see if there is a problem with the rules */ UErrorCode collIterateStatus = U_ZERO_ERROR; collIterate *s = uprv_new_collIterate(&collIterateStatus); uprv_init_collIterate(coll, rulesCopy+oldChOffset, oldChLen, s, &collIterateStatus); CE = ucol_getNextCE(coll, s, &status); for(i = 0; i < oldChLen; i++) { j = sprintf(buf, "%04X ", *(rulesCopy+oldChOffset+i)); buf += j; } if(status == U_PRIMARY_TOO_LONG_ERROR) { log_verbose("= Expected failure for %s =", buffer); } else { if(uprv_collIterateAtEnd(s)) { log_err("Unexpected failure setting variable top at offset %d. Error %s. Codepoints: %s\n", oldChOffset, u_errorName(status), buffer); } else { log_verbose("There is a goofy contraction in UCA rules that does not appear in the fractional UCA. Codepoints: %s\n", buffer); } } uprv_delete_collIterate(s); } varTop2 = ucol_getVariableTop(coll, &status); if((varTop1 & 0xFFFF0000) != (varTop2 & 0xFFFF0000)) { log_err("cannot retrieve set varTop value!\n"); continue; } if((varTop1 & 0xFFFF0000) > 0 && oldExLen == 0) { u_strncpy(first, rulesCopy+oldChOffset, oldChLen); u_strncpy(first+oldChLen, rulesCopy+chOffset, chLen); u_strncpy(first+oldChLen+chLen, rulesCopy+oldChOffset, oldChLen); first[2*oldChLen+chLen] = 0; if(oldExLen == 0) { u_strncpy(second, rulesCopy+chOffset, chLen); second[chLen] = 0; } else { /* This is skipped momentarily, but should work once UCARules are fully UCA conformant */ u_strncpy(second, rulesCopy+oldExOffset, oldExLen); u_strncpy(second+oldChLen, rulesCopy+chOffset, chLen); u_strncpy(second+oldChLen+chLen, rulesCopy+oldExOffset, oldExLen); second[2*oldExLen+chLen] = 0; } result = ucol_strcoll(coll, first, -1, second, -1); if(result == UCOL_EQUAL) { doTest(coll, first, second, UCOL_EQUAL); } else { log_verbose("Suspicious strcoll result for %04X and %04X\n", *(rulesCopy+oldChOffset), *(rulesCopy+chOffset)); } } } if(strength != UCOL_TOK_RESET) { oldChOffset = chOffset; oldChLen = chLen; oldExOffset = exOffset; oldExLen = exLen; } } status = U_ZERO_ERROR; } else { log_err("Unexpected failure getting rules %s\n", u_errorName(status)); return; } if (U_FAILURE(status)) { log_err("Error parsing rules %s\n", u_errorName(status)); return; } status = U_ZERO_ERROR; } QUICK = myQ; log_verbose("Testing setting variable top to contractions\n"); { /* uint32_t tailoredCE = UCOL_NOT_FOUND; */ /*UChar *conts = (UChar *)((uint8_t *)coll->image + coll->image->UCAConsts+sizeof(UCAConstants));*/ UChar *conts = (UChar *)((uint8_t *)coll->image + coll->image->contractionUCACombos); while(*conts != 0) { if((*(conts+2) == 0) || (*(conts+1)==0)) { /* contracts or pre-context contractions */ varTop1 = ucol_setVariableTop(coll, conts, -1, &status); } else { varTop1 = ucol_setVariableTop(coll, conts, 3, &status); } if(U_FAILURE(status)) { log_err("Couldn't set variable top to a contraction %04X %04X %04X\n", *conts, *(conts+1), *(conts+2)); status = U_ZERO_ERROR; } conts+=3; } status = U_ZERO_ERROR; first[0] = 0x0040; first[1] = 0x0050; first[2] = 0x0000; ucol_setVariableTop(coll, first, -1, &status); if(U_SUCCESS(status)) { log_err("Invalid contraction succeded in setting variable top!\n"); } } log_verbose("Test restoring variable top\n"); status = U_ZERO_ERROR; ucol_restoreVariableTop(coll, varTopOriginal, &status); if(varTopOriginal != ucol_getVariableTop(coll, &status)) { log_err("Couldn't restore old variable top\n"); } log_verbose("Testing calling with error set\n"); status = U_INTERNAL_PROGRAM_ERROR; varTop1 = ucol_setVariableTop(coll, first, 1, &status); varTop2 = ucol_getVariableTop(coll, &status); ucol_restoreVariableTop(coll, varTop2, &status); varTop1 = ucol_setVariableTop(NULL, first, 1, &status); varTop2 = ucol_getVariableTop(NULL, &status); ucol_restoreVariableTop(NULL, varTop2, &status); if(status != U_INTERNAL_PROGRAM_ERROR) { log_err("Bad reaction to passed error!\n"); } free(rulesCopy); ucol_close(coll); } else { log_data_err("Couldn't open UCA collator\n"); } } static void TestNonChars(void) { static const char *test[] = { "\\u0000", "\\uFFFE", "\\uFFFF", "\\U0001FFFE", "\\U0001FFFF", "\\U0002FFFE", "\\U0002FFFF", "\\U0003FFFE", "\\U0003FFFF", "\\U0004FFFE", "\\U0004FFFF", "\\U0005FFFE", "\\U0005FFFF", "\\U0006FFFE", "\\U0006FFFF", "\\U0007FFFE", "\\U0007FFFF", "\\U0008FFFE", "\\U0008FFFF", "\\U0009FFFE", "\\U0009FFFF", "\\U000AFFFE", "\\U000AFFFF", "\\U000BFFFE", "\\U000BFFFF", "\\U000CFFFE", "\\U000CFFFF", "\\U000DFFFE", "\\U000DFFFF", "\\U000EFFFE", "\\U000EFFFF", "\\U000FFFFE", "\\U000FFFFF", "\\U0010FFFE", "\\U0010FFFF" }; UErrorCode status = U_ZERO_ERROR; UCollator *coll = ucol_open("en_US", &status); log_verbose("Test non characters\n"); if(U_SUCCESS(status)) { genericOrderingTestWithResult(coll, test, 35, UCOL_EQUAL); } else { log_err_status(status, "Unable to open collator\n"); } ucol_close(coll); } static void TestExtremeCompression(void) { static char *test[4]; int32_t j = 0, i = 0; for(i = 0; i<4; i++) { test[i] = (char *)malloc(2048*sizeof(char)); } for(j = 20; j < 500; j++) { for(i = 0; i<4; i++) { uprv_memset(test[i], 'a', (j-1)*sizeof(char)); test[i][j-1] = (char)('a'+i); test[i][j] = 0; } genericLocaleStarter("en_US", (const char **)test, 4); } for(i = 0; i<4; i++) { free(test[i]); } } #if 0 static void TestExtremeCompression(void) { static char *test[4]; int32_t j = 0, i = 0; UErrorCode status = U_ZERO_ERROR; UCollator *coll = ucol_open("en_US", status); for(i = 0; i<4; i++) { test[i] = (char *)malloc(2048*sizeof(char)); } for(j = 10; j < 2048; j++) { for(i = 0; i<4; i++) { uprv_memset(test[i], 'a', (j-2)*sizeof(char)); test[i][j-1] = (char)('a'+i); test[i][j] = 0; } } genericLocaleStarter("en_US", (const char **)test, 4); for(j = 10; j < 2048; j++) { for(i = 0; i<1; i++) { uprv_memset(test[i], 'a', (j-1)*sizeof(char)); test[i][j] = 0; } } for(i = 0; i<4; i++) { free(test[i]); } } #endif static void TestSurrogates(void) { static const char *test[] = { "z","\\ud900\\udc25", "\\ud805\\udc50", "\\ud800\\udc00y", "\\ud800\\udc00r", "\\ud800\\udc00f", "\\ud800\\udc00", "\\ud800\\udc00c", "\\ud800\\udc00b", "\\ud800\\udc00fa", "\\ud800\\udc00fb", "\\ud800\\udc00a", "c", "b" }; static const char *rule = "&z < \\ud900\\udc25 < \\ud805\\udc50" "< \\ud800\\udc00y < \\ud800\\udc00r" "< \\ud800\\udc00f << \\ud800\\udc00" "< \\ud800\\udc00fa << \\ud800\\udc00fb" "< \\ud800\\udc00a < c < b" ; genericRulesStarter(rule, test, 14); } /* This is a test for prefix implementation, used by JIS X 4061 collation rules */ static void TestPrefix(void) { uint32_t i; static const struct { const char *rules; const char *data[50]; const uint32_t len; } tests[] = { { "&z <<< z|a", {"zz", "za"}, 2 }, { "&z <<< z| a", {"zz", "za"}, 2 }, { "[strength I]" "&a=\\ud900\\udc25" "&z<<<\\ud900\\udc25|a", {"aa", "az", "\\ud900\\udc25z", "\\ud900\\udc25a", "zz"}, 4 }, }; for(i = 0; i<(sizeof(tests)/sizeof(tests[0])); i++) { genericRulesStarter(tests[i].rules, tests[i].data, tests[i].len); } } /* This test uses data suplied by Masashiko Maedera to test the implementation */ /* JIS X 4061 collation order implementation */ static void TestNewJapanese(void) { static const char * const test1[] = { "\\u30b7\\u30e3\\u30fc\\u30ec", "\\u30b7\\u30e3\\u30a4", "\\u30b7\\u30e4\\u30a3", "\\u30b7\\u30e3\\u30ec", "\\u3061\\u3087\\u3053", "\\u3061\\u3088\\u3053", "\\u30c1\\u30e7\\u30b3\\u30ec\\u30fc\\u30c8", "\\u3066\\u30fc\\u305f", "\\u30c6\\u30fc\\u30bf", "\\u30c6\\u30a7\\u30bf", "\\u3066\\u3048\\u305f", "\\u3067\\u30fc\\u305f", "\\u30c7\\u30fc\\u30bf", "\\u30c7\\u30a7\\u30bf", "\\u3067\\u3048\\u305f", "\\u3066\\u30fc\\u305f\\u30fc", "\\u30c6\\u30fc\\u30bf\\u30a1", "\\u30c6\\u30a7\\u30bf\\u30fc", "\\u3066\\u3047\\u305f\\u3041", "\\u3066\\u3048\\u305f\\u30fc", "\\u3067\\u30fc\\u305f\\u30fc", "\\u30c7\\u30fc\\u30bf\\u30a1", "\\u3067\\u30a7\\u305f\\u30a1", "\\u30c7\\u3047\\u30bf\\u3041", "\\u30c7\\u30a8\\u30bf\\u30a2", "\\u3072\\u3086", "\\u3073\\u3085\\u3042", "\\u3074\\u3085\\u3042", "\\u3073\\u3085\\u3042\\u30fc", "\\u30d3\\u30e5\\u30a2\\u30fc", "\\u3074\\u3085\\u3042\\u30fc", "\\u30d4\\u30e5\\u30a2\\u30fc", "\\u30d2\\u30e5\\u30a6", "\\u30d2\\u30e6\\u30a6", "\\u30d4\\u30e5\\u30a6\\u30a2", "\\u3073\\u3085\\u30fc\\u3042\\u30fc", "\\u30d3\\u30e5\\u30fc\\u30a2\\u30fc", "\\u30d3\\u30e5\\u30a6\\u30a2\\u30fc", "\\u3072\\u3085\\u3093", "\\u3074\\u3085\\u3093", "\\u3075\\u30fc\\u308a", "\\u30d5\\u30fc\\u30ea", "\\u3075\\u3045\\u308a", "\\u3075\\u30a5\\u308a", "\\u3075\\u30a5\\u30ea", "\\u30d5\\u30a6\\u30ea", "\\u3076\\u30fc\\u308a", "\\u30d6\\u30fc\\u30ea", "\\u3076\\u3045\\u308a", "\\u30d6\\u30a5\\u308a", "\\u3077\\u3046\\u308a", "\\u30d7\\u30a6\\u30ea", "\\u3075\\u30fc\\u308a\\u30fc", "\\u30d5\\u30a5\\u30ea\\u30fc", "\\u3075\\u30a5\\u308a\\u30a3", "\\u30d5\\u3045\\u308a\\u3043", "\\u30d5\\u30a6\\u30ea\\u30fc", "\\u3075\\u3046\\u308a\\u3043", "\\u30d6\\u30a6\\u30ea\\u30a4", "\\u3077\\u30fc\\u308a\\u30fc", "\\u3077\\u30a5\\u308a\\u30a4", "\\u3077\\u3046\\u308a\\u30fc", "\\u30d7\\u30a6\\u30ea\\u30a4", "\\u30d5\\u30fd", "\\u3075\\u309e", "\\u3076\\u309d", "\\u3076\\u3075", "\\u3076\\u30d5", "\\u30d6\\u3075", "\\u30d6\\u30d5", "\\u3076\\u309e", "\\u3076\\u3077", "\\u30d6\\u3077", "\\u3077\\u309d", "\\u30d7\\u30fd", "\\u3077\\u3075", }; static const char *test2[] = { "\\u306f\\u309d", /* H\\u309d */ "\\u30cf\\u30fd", /* K\\u30fd */ "\\u306f\\u306f", /* HH */ "\\u306f\\u30cf", /* HK */ "\\u30cf\\u30cf", /* KK */ "\\u306f\\u309e", /* H\\u309e */ "\\u30cf\\u30fe", /* K\\u30fe */ "\\u306f\\u3070", /* HH\\u309b */ "\\u30cf\\u30d0", /* KK\\u309b */ "\\u306f\\u3071", /* HH\\u309c */ "\\u30cf\\u3071", /* KH\\u309c */ "\\u30cf\\u30d1", /* KK\\u309c */ "\\u3070\\u309d", /* H\\u309b\\u309d */ "\\u30d0\\u30fd", /* K\\u309b\\u30fd */ "\\u3070\\u306f", /* H\\u309bH */ "\\u30d0\\u30cf", /* K\\u309bK */ "\\u3070\\u309e", /* H\\u309b\\u309e */ "\\u30d0\\u30fe", /* K\\u309b\\u30fe */ "\\u3070\\u3070", /* H\\u309bH\\u309b */ "\\u30d0\\u3070", /* K\\u309bH\\u309b */ "\\u30d0\\u30d0", /* K\\u309bK\\u309b */ "\\u3070\\u3071", /* H\\u309bH\\u309c */ "\\u30d0\\u30d1", /* K\\u309bK\\u309c */ "\\u3071\\u309d", /* H\\u309c\\u309d */ "\\u30d1\\u30fd", /* K\\u309c\\u30fd */ "\\u3071\\u306f", /* H\\u309cH */ "\\u30d1\\u30cf", /* K\\u309cK */ "\\u3071\\u3070", /* H\\u309cH\\u309b */ "\\u3071\\u30d0", /* H\\u309cK\\u309b */ "\\u30d1\\u30d0", /* K\\u309cK\\u309b */ "\\u3071\\u3071", /* H\\u309cH\\u309c */ "\\u30d1\\u30d1", /* K\\u309cK\\u309c */ }; /* static const char *test3[] = { "\\u221er\\u221e", "\\u221eR#", "\\u221et\\u221e", "#r\\u221e", "#R#", "#t%", "#T%", "8t\\u221e", "8T\\u221e", "8t#", "8T#", "8t%", "8T%", "8t8", "8T8", "\\u03c9r\\u221e", "\\u03a9R%", "rr\\u221e", "rR\\u221e", "Rr\\u221e", "RR\\u221e", "RT%", "rt8", "tr\\u221e", "tr8", "TR8", "tt8", "\\u30b7\\u30e3\\u30fc\\u30ec", }; */ static const UColAttribute att[] = { UCOL_STRENGTH }; static const UColAttributeValue val[] = { UCOL_QUATERNARY }; static const UColAttribute attShifted[] = { UCOL_STRENGTH, UCOL_ALTERNATE_HANDLING}; static const UColAttributeValue valShifted[] = { UCOL_QUATERNARY, UCOL_SHIFTED }; genericLocaleStarterWithOptions("ja", test1, sizeof(test1)/sizeof(test1[0]), att, val, 1); genericLocaleStarterWithOptions("ja", test2, sizeof(test2)/sizeof(test2[0]), att, val, 1); /*genericLocaleStarter("ja", test3, sizeof(test3)/sizeof(test3[0]));*/ genericLocaleStarterWithOptions("ja", test1, sizeof(test1)/sizeof(test1[0]), attShifted, valShifted, 2); genericLocaleStarterWithOptions("ja", test2, sizeof(test2)/sizeof(test2[0]), attShifted, valShifted, 2); } static void TestStrCollIdenticalPrefix(void) { const char* rule = "&\\ud9b0\\udc70=\\ud9b0\\udc71"; const char* test[] = { "ab\\ud9b0\\udc70", "ab\\ud9b0\\udc71" }; genericRulesStarterWithResult(rule, test, sizeof(test)/sizeof(test[0]), UCOL_EQUAL); } /* Contractions should have all their canonically equivalent */ /* strings included */ static void TestContractionClosure(void) { static const struct { const char *rules; const char *data[10]; const uint32_t len; } tests[] = { { "&b=\\u00e4\\u00e4", { "b", "\\u00e4\\u00e4", "a\\u0308a\\u0308", "\\u00e4a\\u0308", "a\\u0308\\u00e4" }, 5}, { "&b=\\u00C5", { "b", "\\u00C5", "A\\u030A", "\\u212B" }, 4}, }; uint32_t i; for(i = 0; i<(sizeof(tests)/sizeof(tests[0])); i++) { genericRulesStarterWithResult(tests[i].rules, tests[i].data, tests[i].len, UCOL_EQUAL); } } /* This tests also fails*/ static void TestBeforePrefixFailure(void) { static const struct { const char *rules; const char *data[10]; const uint32_t len; } tests[] = { { "&g <<< a" "&[before 3]\\uff41 <<< x", {"x", "\\uff41"}, 2 }, { "&\\u30A7=\\u30A7=\\u3047=\\uff6a" "&\\u30A8=\\u30A8=\\u3048=\\uff74" "&[before 3]\\u30a7<<<\\u30a9", {"\\u30a9", "\\u30a7"}, 2 }, { "&[before 3]\\u30a7<<<\\u30a9" "&\\u30A7=\\u30A7=\\u3047=\\uff6a" "&\\u30A8=\\u30A8=\\u3048=\\uff74", {"\\u30a9", "\\u30a7"}, 2 }, }; uint32_t i; for(i = 0; i<(sizeof(tests)/sizeof(tests[0])); i++) { genericRulesStarter(tests[i].rules, tests[i].data, tests[i].len); } #if 0 const char* rule1 = "&\\u30A7=\\u30A7=\\u3047=\\uff6a" "&\\u30A8=\\u30A8=\\u3048=\\uff74" "&[before 3]\\u30a7<<<\\u30c6|\\u30fc"; const char* rule2 = "&[before 3]\\u30a7<<<\\u30c6|\\u30fc" "&\\u30A7=\\u30A7=\\u3047=\\uff6a" "&\\u30A8=\\u30A8=\\u3048=\\uff74"; const char* test[] = { "\\u30c6\\u30fc\\u30bf", "\\u30c6\\u30a7\\u30bf", }; genericRulesStarter(rule1, test, sizeof(test)/sizeof(test[0])); genericRulesStarter(rule2, test, sizeof(test)/sizeof(test[0])); /* this piece of code should be in some sort of verbose mode */ /* it gets the collation elements for elements and prints them */ /* This is useful when trying to see whether the problem is */ { UErrorCode status = U_ZERO_ERROR; uint32_t i = 0; UCollationElements *it = NULL; uint32_t CE; UChar string[256]; uint32_t uStringLen; UCollator *coll = NULL; uStringLen = u_unescape(rule1, string, 256); coll = ucol_openRules(string, uStringLen, UCOL_DEFAULT, UCOL_DEFAULT, NULL, &status); /*coll = ucol_open("ja_JP_JIS", &status);*/ it = ucol_openElements(coll, string, 0, &status); for(i = 0; i < sizeof(test)/sizeof(test[0]); i++) { log_verbose("%s\n", test[i]); uStringLen = u_unescape(test[i], string, 256); ucol_setText(it, string, uStringLen, &status); while((CE=ucol_next(it, &status)) != UCOL_NULLORDER) { log_verbose("%08X\n", CE); } log_verbose("\n"); } ucol_closeElements(it); ucol_close(coll); } #endif } static void TestPrefixCompose(void) { const char* rule1 = "&\\u30a7<<<\\u30ab|\\u30fc=\\u30ac|\\u30fc"; /* const char* test[] = { "\\u30c6\\u30fc\\u30bf", "\\u30c6\\u30a7\\u30bf", }; */ { UErrorCode status = U_ZERO_ERROR; /*uint32_t i = 0;*/ /*UCollationElements *it = NULL;*/ /* uint32_t CE;*/ UChar string[256]; uint32_t uStringLen; UCollator *coll = NULL; uStringLen = u_unescape(rule1, string, 256); coll = ucol_openRules(string, uStringLen, UCOL_DEFAULT, UCOL_DEFAULT, NULL, &status); ucol_close(coll); } } /* [last variable] last variable value [last primary ignorable] largest CE for primary ignorable [last secondary ignorable] largest CE for secondary ignorable [last tertiary ignorable] largest CE for tertiary ignorable [top] guaranteed to be above all implicit CEs, for now and in the future (in 1.8) */ static void TestRuleOptions(void) { /* values here are hardcoded and are correct for the current UCA * when the UCA changes, one might be forced to change these * values. (\\u02d0, \\U00010FFFC etc...) */ static const struct { const char *rules; const char *data[10]; const uint32_t len; } tests[] = { /* - all befores here amount to zero */ { "&[before 3][first tertiary ignorable]<<<a", { "\\u0000", "a"}, 2 }, /* you cannot go before first tertiary ignorable */ { "&[before 3][last tertiary ignorable]<<<a", { "\\u0000", "a"}, 2 }, /* you cannot go before last tertiary ignorable */ { "&[before 3][first secondary ignorable]<<<a", { "\\u0000", "a"}, 2 }, /* you cannot go before first secondary ignorable */ { "&[before 3][last secondary ignorable]<<<a", { "\\u0000", "a"}, 2 }, /* you cannot go before first secondary ignorable */ /* 'normal' befores */ { "&[before 3][first primary ignorable]<<<c<<<b &[first primary ignorable]<a", { "c", "b", "\\u0332", "a" }, 4 }, /* we don't have a code point that corresponds to * the last primary ignorable */ { "&[before 3][last primary ignorable]<<<c<<<b &[last primary ignorable]<a", { "\\u0332", "\\u20e3", "c", "b", "a" }, 5 }, { "&[before 3][first variable]<<<c<<<b &[first variable]<a", { "c", "b", "\\u0009", "a", "\\u000a" }, 5 }, { "&[last variable]<a &[before 3][last variable]<<<c<<<b ", { "c", "b", "\\uD834\\uDF71", "a", "\\u02d0" }, 5 }, { "&[first regular]<a" "&[before 1][first regular]<b", { "b", "\\u02d0", "a", "\\u02d1"}, 4 }, /* * The character in the second ordering test string * has to match the character that has the [last regular] weight * which changes with each UCA version. * See the bottom of FractionalUCA.txt which says something like * [last regular [CE 27, 05, 05]] # U+1342E EGYPTIAN HIEROGLYPH AA032 */ { "&[before 1][last regular]<b" "&[last regular]<a", { "b", "\\U0001342E", "a", "\\u4e00" }, 4 }, { "&[before 1][first implicit]<b" "&[first implicit]<a", { "b", "\\u4e00", "a", "\\u4e01"}, 4 }, { "&[before 1][last implicit]<b" "&[last implicit]<a", { "b", "\\U0010FFFD", "a" }, 3 }, { "&[last variable]<z" "&[last primary ignorable]<x" "&[last secondary ignorable]<<y" "&[last tertiary ignorable]<<<w" "&[top]<u", {"\\ufffb", "w", "y", "\\u20e3", "x", "\\u137c", "z", "u"}, 7 } }; uint32_t i; for(i = 0; i<(sizeof(tests)/sizeof(tests[0])); i++) { genericRulesStarter(tests[i].rules, tests[i].data, tests[i].len); } } static void TestOptimize(void) { /* this is not really a test - just trying out * whether copying of UCA contents will fail * Cannot really test, since the functionality * remains the same. */ static const struct { const char *rules; const char *data[10]; const uint32_t len; } tests[] = { /* - all befores here amount to zero */ { "[optimize [\\uAC00-\\uD7FF]]", { "a", "b"}, 2} }; uint32_t i; for(i = 0; i<(sizeof(tests)/sizeof(tests[0])); i++) { genericRulesStarter(tests[i].rules, tests[i].data, tests[i].len); } } /* cycheng@ca.ibm.c... we got inconsistent results when using the UTF-16BE iterator and the UTF-8 iterator. weiv ucol_strcollIter? cycheng@ca.ibm.c... e.g. s1 = 0xfffc0062, and s2 = d8000021 weiv these are the input strings? cycheng@ca.ibm.c... yes, using the utf-16 iterator and UCA with normalization on, we have s1 > s2 weiv will check - could be a problem with utf-8 iterator cycheng@ca.ibm.c... but if we use the utf-8 iterator, i.e. s1 = efbfbc62 and s2 = eda08021, we have s1 < s2 weiv hmmm cycheng@ca.ibm.c... note that we have a standalone high surrogate weiv that doesn't sound right cycheng@ca.ibm.c... we got the same inconsistent results on AIX and Win2000 weiv so you have two strings, you convert them to utf-8 and to utf-16BE cycheng@ca.ibm.c... yes weiv and then do the comparison cycheng@ca.ibm.c... in one case, the input strings are in utf8, and in the other case the input strings are in utf-16be weiv utf-16 strings look like a little endian ones in the example you sent me weiv It could be a bug - let me try to test it out cycheng@ca.ibm.c... ok cycheng@ca.ibm.c... we can wait till the conf. call cycheng@ca.ibm.c... next weke weiv that would be great weiv hmmm weiv I might be wrong weiv let me play with it some more cycheng@ca.ibm.c... ok cycheng@ca.ibm.c... also please check s3 = 0x0e3a0062 and s4 = 0x0e400021. both are in utf-16be cycheng@ca.ibm.c... seems with icu 2.2 we have s3 > s4, but not in icu 2.4 that's built for db2 cycheng@ca.ibm.c... also s1 & s2 that I sent you earlier are also in utf-16be weiv ok cycheng@ca.ibm.c... i ask sherman to send you more inconsistent data weiv thanks cycheng@ca.ibm.c... the 4 strings we sent are just samples */ #if 0 static void Alexis(void) { UErrorCode status = U_ZERO_ERROR; UCollator *coll = ucol_open("", &status); const char utf16be[2][4] = { { (char)0xd8, (char)0x00, (char)0x00, (char)0x21 }, { (char)0xff, (char)0xfc, (char)0x00, (char)0x62 } }; const char utf8[2][4] = { { (char)0xed, (char)0xa0, (char)0x80, (char)0x21 }, { (char)0xef, (char)0xbf, (char)0xbc, (char)0x62 }, }; UCharIterator iterU161, iterU162; UCharIterator iterU81, iterU82; UCollationResult resU16, resU8; uiter_setUTF16BE(&iterU161, utf16be[0], 4); uiter_setUTF16BE(&iterU162, utf16be[1], 4); uiter_setUTF8(&iterU81, utf8[0], 4); uiter_setUTF8(&iterU82, utf8[1], 4); ucol_setAttribute(coll, UCOL_NORMALIZATION_MODE, UCOL_ON, &status); resU16 = ucol_strcollIter(coll, &iterU161, &iterU162, &status); resU8 = ucol_strcollIter(coll, &iterU81, &iterU82, &status); if(resU16 != resU8) { log_err("different results\n"); } ucol_close(coll); } #endif #define CMSCOLL_ALEXIS2_BUFFER_SIZE 256 static void Alexis2(void) { UErrorCode status = U_ZERO_ERROR; UChar U16Source[CMSCOLL_ALEXIS2_BUFFER_SIZE], U16Target[CMSCOLL_ALEXIS2_BUFFER_SIZE]; char U16BESource[CMSCOLL_ALEXIS2_BUFFER_SIZE], U16BETarget[CMSCOLL_ALEXIS2_BUFFER_SIZE]; char U8Source[CMSCOLL_ALEXIS2_BUFFER_SIZE], U8Target[CMSCOLL_ALEXIS2_BUFFER_SIZE]; int32_t U16LenS = 0, U16LenT = 0, U16BELenS = 0, U16BELenT = 0, U8LenS = 0, U8LenT = 0; UConverter *conv = NULL; UCharIterator U16BEItS, U16BEItT; UCharIterator U8ItS, U8ItT; UCollationResult resU16, resU16BE, resU8; static const char* const pairs[][2] = { { "\\ud800\\u0021", "\\uFFFC\\u0062"}, { "\\u0435\\u0308\\u0334", "\\u0415\\u0334\\u0340" }, { "\\u0E40\\u0021", "\\u00A1\\u0021"}, { "\\u0E40\\u0021", "\\uFE57\\u0062"}, { "\\u5F20", "\\u5F20\\u4E00\\u8E3F"}, { "\\u0000\\u0020", "\\u0000\\u0020\\u0000"}, { "\\u0020", "\\u0020\\u0000"} /* 5F20 (my result here) 5F204E008E3F 5F20 (your result here) */ }; int32_t i = 0; UCollator *coll = ucol_open("", &status); if(status == U_FILE_ACCESS_ERROR) { log_data_err("Is your data around?\n"); return; } else if(U_FAILURE(status)) { log_err("Error opening collator\n"); return; } ucol_setAttribute(coll, UCOL_NORMALIZATION_MODE, UCOL_ON, &status); conv = ucnv_open("UTF16BE", &status); for(i = 0; i < sizeof(pairs)/sizeof(pairs[0]); i++) { U16LenS = u_unescape(pairs[i][0], U16Source, CMSCOLL_ALEXIS2_BUFFER_SIZE); U16LenT = u_unescape(pairs[i][1], U16Target, CMSCOLL_ALEXIS2_BUFFER_SIZE); resU16 = ucol_strcoll(coll, U16Source, U16LenS, U16Target, U16LenT); log_verbose("Result of strcoll is %i\n", resU16); U16BELenS = ucnv_fromUChars(conv, U16BESource, CMSCOLL_ALEXIS2_BUFFER_SIZE, U16Source, U16LenS, &status); U16BELenT = ucnv_fromUChars(conv, U16BETarget, CMSCOLL_ALEXIS2_BUFFER_SIZE, U16Target, U16LenT, &status); /* use the original sizes, as the result from converter is in bytes */ uiter_setUTF16BE(&U16BEItS, U16BESource, U16LenS); uiter_setUTF16BE(&U16BEItT, U16BETarget, U16LenT); resU16BE = ucol_strcollIter(coll, &U16BEItS, &U16BEItT, &status); log_verbose("Result of U16BE is %i\n", resU16BE); if(resU16 != resU16BE) { log_verbose("Different results between UTF16 and UTF16BE for %s & %s\n", pairs[i][0], pairs[i][1]); } u_strToUTF8(U8Source, CMSCOLL_ALEXIS2_BUFFER_SIZE, &U8LenS, U16Source, U16LenS, &status); u_strToUTF8(U8Target, CMSCOLL_ALEXIS2_BUFFER_SIZE, &U8LenT, U16Target, U16LenT, &status); uiter_setUTF8(&U8ItS, U8Source, U8LenS); uiter_setUTF8(&U8ItT, U8Target, U8LenT); resU8 = ucol_strcollIter(coll, &U8ItS, &U8ItT, &status); if(resU16 != resU8) { log_verbose("Different results between UTF16 and UTF8 for %s & %s\n", pairs[i][0], pairs[i][1]); } } ucol_close(coll); ucnv_close(conv); } static void TestHebrewUCA(void) { UErrorCode status = U_ZERO_ERROR; static const char *first[] = { "d790d6b8d79cd795d6bcd7a9", "d790d79cd79ed7a7d799d799d7a1", "d790d6b4d79ed795d6bcd7a9", }; char utf8String[3][256]; UChar utf16String[3][256]; int32_t i = 0, j = 0; int32_t sizeUTF8[3]; int32_t sizeUTF16[3]; UCollator *coll = ucol_open("", &status); if (U_FAILURE(status)) { log_err_status(status, "Could not open UCA collation %s\n", u_errorName(status)); return; } /*ucol_setAttribute(coll, UCOL_NORMALIZATION_MODE, UCOL_ON, &status);*/ for(i = 0; i < sizeof(first)/sizeof(first[0]); i++) { sizeUTF8[i] = u_parseUTF8(first[i], -1, utf8String[i], 256, &status); u_strFromUTF8(utf16String[i], 256, &sizeUTF16[i], utf8String[i], sizeUTF8[i], &status); log_verbose("%i: "); for(j = 0; j < sizeUTF16[i]; j++) { /*log_verbose("\\u%04X", utf16String[i][j]);*/ log_verbose("%04X", utf16String[i][j]); } log_verbose("\n"); } for(i = 0; i < sizeof(first)/sizeof(first[0])-1; i++) { for(j = i + 1; j < sizeof(first)/sizeof(first[0]); j++) { doTest(coll, utf16String[i], utf16String[j], UCOL_LESS); } } ucol_close(coll); } static void TestPartialSortKeyTermination(void) { static const char* cases[] = { "\\u1234\\u1234\\udc00", "\\udc00\\ud800\\ud800" }; int32_t i = sizeof(UCollator); UErrorCode status = U_ZERO_ERROR; UCollator *coll = ucol_open("", &status); UCharIterator iter; UChar currCase[256]; int32_t length = 0; int32_t pKeyLen = 0; uint8_t key[256]; for(i = 0; i < sizeof(cases)/sizeof(cases[0]); i++) { uint32_t state[2] = {0, 0}; length = u_unescape(cases[i], currCase, 256); uiter_setString(&iter, currCase, length); pKeyLen = ucol_nextSortKeyPart(coll, &iter, state, key, 256, &status); log_verbose("Done\n"); } ucol_close(coll); } static void TestSettings(void) { static const char* cases[] = { "apple", "Apple" }; static const char* locales[] = { "", "en" }; UErrorCode status = U_ZERO_ERROR; int32_t i = 0, j = 0; UChar source[256], target[256]; int32_t sLen = 0, tLen = 0; UCollator *collateObject = NULL; for(i = 0; i < sizeof(locales)/sizeof(locales[0]); i++) { collateObject = ucol_open(locales[i], &status); ucol_setStrength(collateObject, UCOL_PRIMARY); ucol_setAttribute(collateObject, UCOL_CASE_LEVEL , UCOL_OFF, &status); for(j = 1; j < sizeof(cases)/sizeof(cases[0]); j++) { sLen = u_unescape(cases[j-1], source, 256); source[sLen] = 0; tLen = u_unescape(cases[j], target, 256); source[tLen] = 0; doTest(collateObject, source, target, UCOL_EQUAL); } ucol_close(collateObject); } } static int32_t TestEqualsForCollator(const char* locName, UCollator *source, UCollator *target) { UErrorCode status = U_ZERO_ERROR; int32_t errorNo = 0; /*const UChar *sourceRules = NULL;*/ /*int32_t sourceRulesLen = 0;*/ UColAttributeValue french = UCOL_OFF; int32_t cloneSize = 0; if(!ucol_equals(source, target)) { log_err("Same collators, different address not equal\n"); errorNo++; } ucol_close(target); if(uprv_strcmp(ucol_getLocaleByType(source, ULOC_REQUESTED_LOCALE, &status), ucol_getLocaleByType(source, ULOC_ACTUAL_LOCALE, &status)) == 0) { /* currently, safeClone is implemented through getRules/openRules * so it is the same as the test below - I will comment that test out. */ /* real thing */ target = ucol_safeClone(source, NULL, &cloneSize, &status); if(U_FAILURE(status)) { log_err("Error creating clone\n"); errorNo++; return errorNo; } if(!ucol_equals(source, target)) { log_err("Collator different from it's clone\n"); errorNo++; } french = ucol_getAttribute(source, UCOL_FRENCH_COLLATION, &status); if(french == UCOL_ON) { ucol_setAttribute(target, UCOL_FRENCH_COLLATION, UCOL_OFF, &status); } else { ucol_setAttribute(target, UCOL_FRENCH_COLLATION, UCOL_ON, &status); } if(U_FAILURE(status)) { log_err("Error setting attributes\n"); errorNo++; return errorNo; } if(ucol_equals(source, target)) { log_err("Collators same even when options changed\n"); errorNo++; } ucol_close(target); /* commented out since safeClone uses exactly the same technique */ /* sourceRules = ucol_getRules(source, &sourceRulesLen); target = ucol_openRules(sourceRules, sourceRulesLen, UCOL_DEFAULT, UCOL_DEFAULT, &parseError, &status); if(U_FAILURE(status)) { log_err("Error instantiating target from rules\n"); errorNo++; return errorNo; } if(!ucol_equals(source, target)) { log_err("Collator different from collator that was created from the same rules\n"); errorNo++; } ucol_close(target); */ } return errorNo; } static void TestEquals(void) { /* ucol_equals is not currently a public API. There is a chance that it will become * something like this, but currently it is only used by RuleBasedCollator::operator== */ /* test whether the two collators instantiated from the same locale are equal */ UErrorCode status = U_ZERO_ERROR; UParseError parseError; int32_t noOfLoc = uloc_countAvailable(); const char *locName = NULL; UCollator *source = NULL, *target = NULL; int32_t i = 0; const char* rules[] = { "&l < lj <<< Lj <<< LJ", "&n < nj <<< Nj <<< NJ", "&ae <<< \\u00e4", "&AE <<< \\u00c4" }; /* const char* badRules[] = { "&l <<< Lj", "&n < nj <<< nJ <<< NJ", "&a <<< \\u00e4", "&AE <<< \\u00c4 <<< x" }; */ UChar sourceRules[1024], targetRules[1024]; int32_t sourceRulesSize = 0, targetRulesSize = 0; int32_t rulesSize = sizeof(rules)/sizeof(rules[0]); for(i = 0; i < rulesSize; i++) { sourceRulesSize += u_unescape(rules[i], sourceRules+sourceRulesSize, 1024 - sourceRulesSize); targetRulesSize += u_unescape(rules[rulesSize-i-1], targetRules+targetRulesSize, 1024 - targetRulesSize); } source = ucol_openRules(sourceRules, sourceRulesSize, UCOL_DEFAULT, UCOL_DEFAULT, &parseError, &status); if(status == U_FILE_ACCESS_ERROR) { log_data_err("Is your data around?\n"); return; } else if(U_FAILURE(status)) { log_err("Error opening collator\n"); return; } target = ucol_openRules(targetRules, targetRulesSize, UCOL_DEFAULT, UCOL_DEFAULT, &parseError, &status); if(!ucol_equals(source, target)) { log_err("Equivalent collators not equal!\n"); } ucol_close(source); ucol_close(target); source = ucol_open("root", &status); target = ucol_open("root", &status); log_verbose("Testing root\n"); if(!ucol_equals(source, source)) { log_err("Same collator not equal\n"); } if(TestEqualsForCollator(locName, source, target)) { log_err("Errors for root\n", locName); } ucol_close(source); for(i = 0; i<noOfLoc; i++) { status = U_ZERO_ERROR; locName = uloc_getAvailable(i); /*if(hasCollationElements(locName)) {*/ log_verbose("Testing equality for locale %s\n", locName); source = ucol_open(locName, &status); target = ucol_open(locName, &status); if (U_FAILURE(status)) { log_err("Error opening collator for locale %s %s\n", locName, u_errorName(status)); continue; } if(TestEqualsForCollator(locName, source, target)) { log_err("Errors for locale %s\n", locName); } ucol_close(source); /*}*/ } } static void TestJ2726(void) { UChar a[2] = { 0x61, 0x00 }; /*"a"*/ UChar aSpace[3] = { 0x61, 0x20, 0x00 }; /*"a "*/ UChar spaceA[3] = { 0x20, 0x61, 0x00 }; /*" a"*/ UErrorCode status = U_ZERO_ERROR; UCollator *coll = ucol_open("en", &status); ucol_setAttribute(coll, UCOL_ALTERNATE_HANDLING, UCOL_SHIFTED, &status); ucol_setAttribute(coll, UCOL_STRENGTH, UCOL_PRIMARY, &status); doTest(coll, a, aSpace, UCOL_EQUAL); doTest(coll, aSpace, a, UCOL_EQUAL); doTest(coll, a, spaceA, UCOL_EQUAL); doTest(coll, spaceA, a, UCOL_EQUAL); doTest(coll, spaceA, aSpace, UCOL_EQUAL); doTest(coll, aSpace, spaceA, UCOL_EQUAL); ucol_close(coll); } static void NullRule(void) { UChar r[3] = {0}; UErrorCode status = U_ZERO_ERROR; UCollator *coll = ucol_openRules(r, 1, UCOL_DEFAULT, UCOL_DEFAULT, NULL, &status); if(U_SUCCESS(status)) { log_err("This should have been an error!\n"); ucol_close(coll); } else { status = U_ZERO_ERROR; } coll = ucol_openRules(r, 0, UCOL_DEFAULT, UCOL_DEFAULT, NULL, &status); if(U_FAILURE(status)) { log_err_status(status, "Empty rules should have produced a valid collator -> %s\n", u_errorName(status)); } else { ucol_close(coll); } } /** * Test for CollationElementIterator previous and next for the whole set of * unicode characters with normalization on. */ static void TestNumericCollation(void) { UErrorCode status = U_ZERO_ERROR; const static char *basicTestStrings[]={ "hello1", "hello2", "hello2002", "hello2003", "hello123456", "hello1234567", "hello10000000", "hello100000000", "hello1000000000", "hello10000000000", }; const static char *preZeroTestStrings[]={ "avery10000", "avery010000", "avery0010000", "avery00010000", "avery000010000", "avery0000010000", "avery00000010000", "avery000000010000", }; const static char *thirtyTwoBitNumericStrings[]={ "avery42949672960", "avery42949672961", "avery42949672962", "avery429496729610" }; const static char *longNumericStrings[]={ /* Some of these sort out of the order that would expected if digits-as-numbers handled arbitrarily-long digit strings. In fact, a single collation element can represent a maximum of 254 digits as a number. Digit strings longer than that are treated as multiple collation elements. */ "num9234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123z", /*253digits, num + 9.23E252 + z */ "num10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", /*254digits, num + 1.00E253 */ "num100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", /*255digits, num + 1.00E253 + 0, out of numeric order but expected */ "num12345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234", /*254digits, num + 1.23E253 */ "num123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345", /*255digits, num + 1.23E253 + 5 */ "num1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456", /*256digits, num + 1.23E253 + 56 */ "num12345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567", /*257digits, num + 1.23E253 + 567 */ "num12345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234a", /*254digits, num + 1.23E253 + a, out of numeric order but expected */ "num92345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234", /*254digits, num + 9.23E253, out of numeric order but expected */ "num92345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234a", /*254digits, num + 9.23E253 + a, out of numeric order but expected */ }; const static char *supplementaryDigits[] = { "\\uD835\\uDFCE", /* 0 */ "\\uD835\\uDFCF", /* 1 */ "\\uD835\\uDFD0", /* 2 */ "\\uD835\\uDFD1", /* 3 */ "\\uD835\\uDFCF\\uD835\\uDFCE", /* 10 */ "\\uD835\\uDFCF\\uD835\\uDFCF", /* 11 */ "\\uD835\\uDFCF\\uD835\\uDFD0", /* 12 */ "\\uD835\\uDFD0\\uD835\\uDFCE", /* 20 */ "\\uD835\\uDFD0\\uD835\\uDFCF", /* 21 */ "\\uD835\\uDFD0\\uD835\\uDFD0" /* 22 */ }; const static char *foreignDigits[] = { "\\u0661", "\\u0662", "\\u0663", "\\u0661\\u0660", "\\u0661\\u0662", "\\u0661\\u0663", "\\u0662\\u0660", "\\u0662\\u0662", "\\u0662\\u0663", "\\u0663\\u0660", "\\u0663\\u0662", "\\u0663\\u0663" }; const static char *evenZeroes[] = { "2000", "2001", "2002", "2003" }; UColAttribute att = UCOL_NUMERIC_COLLATION; UColAttributeValue val = UCOL_ON; /* Open our collator. */ UCollator* coll = ucol_open("root", &status); if (U_FAILURE(status)){ log_err_status(status, "ERROR: in using ucol_open() -> %s\n", myErrorName(status)); return; } genericLocaleStarterWithOptions("root", basicTestStrings, sizeof(basicTestStrings)/sizeof(basicTestStrings[0]), &att, &val, 1); genericLocaleStarterWithOptions("root", thirtyTwoBitNumericStrings, sizeof(thirtyTwoBitNumericStrings)/sizeof(thirtyTwoBitNumericStrings[0]), &att, &val, 1); genericLocaleStarterWithOptions("root", longNumericStrings, sizeof(longNumericStrings)/sizeof(longNumericStrings[0]), &att, &val, 1); genericLocaleStarterWithOptions("en_US", foreignDigits, sizeof(foreignDigits)/sizeof(foreignDigits[0]), &att, &val, 1); genericLocaleStarterWithOptions("root", supplementaryDigits, sizeof(supplementaryDigits)/sizeof(supplementaryDigits[0]), &att, &val, 1); genericLocaleStarterWithOptions("root", evenZeroes, sizeof(evenZeroes)/sizeof(evenZeroes[0]), &att, &val, 1); /* Setting up our collator to do digits. */ ucol_setAttribute(coll, UCOL_NUMERIC_COLLATION, UCOL_ON, &status); if (U_FAILURE(status)){ log_err("ERROR: in setting UCOL_NUMERIC_COLLATION as an attribute\n %s\n", myErrorName(status)); return; } /* Testing that prepended zeroes still yield the correct collation behavior. We expect that every element in our strings array will be equal. */ genericOrderingTestWithResult(coll, preZeroTestStrings, sizeof(preZeroTestStrings)/sizeof(preZeroTestStrings[0]), UCOL_EQUAL); ucol_close(coll); } static void TestTibetanConformance(void) { const char* test[] = { "\\u0FB2\\u0591\\u0F71\\u0061", "\\u0FB2\\u0F71\\u0061" }; UErrorCode status = U_ZERO_ERROR; UCollator *coll = ucol_open("", &status); UChar source[100]; UChar target[100]; int result; ucol_setAttribute(coll, UCOL_NORMALIZATION_MODE, UCOL_ON, &status); if (U_SUCCESS(status)) { u_unescape(test[0], source, 100); u_unescape(test[1], target, 100); doTest(coll, source, target, UCOL_EQUAL); result = ucol_strcoll(coll, source, -1, target, -1); log_verbose("result %d\n", result); if (UCOL_EQUAL != result) { log_err("Tibetan comparison error\n"); } } ucol_close(coll); genericLocaleStarterWithResult("", test, 2, UCOL_EQUAL); } static void TestPinyinProblem(void) { static const char *test[] = { "\\u4E56\\u4E56\\u7761", "\\u4E56\\u5B69\\u5B50" }; genericLocaleStarter("zh__PINYIN", test, sizeof(test)/sizeof(test[0])); } #define TST_UCOL_MAX_INPUT 0x220001 #define topByte 0xFF000000; #define bottomByte 0xFF; #define fourBytes 0xFFFFFFFF; static void showImplicit(UChar32 i) { if (i >= 0 && i <= TST_UCOL_MAX_INPUT) { log_verbose("%08X\t%08X\n", i, uprv_uca_getImplicitFromRaw(i)); } } static void TestImplicitGeneration(void) { UErrorCode status = U_ZERO_ERROR; UChar32 last = 0; UChar32 current; UChar32 i = 0, j = 0; UChar32 roundtrip = 0; UChar32 lastBottom = 0; UChar32 currentBottom = 0; UChar32 lastTop = 0; UChar32 currentTop = 0; UCollator *coll = ucol_open("root", &status); if(U_FAILURE(status)) { log_err_status(status, "Couldn't open UCA -> %s\n", u_errorName(status)); return; } uprv_uca_getRawFromImplicit(0xE20303E7); for (i = 0; i <= TST_UCOL_MAX_INPUT; ++i) { current = uprv_uca_getImplicitFromRaw(i) & fourBytes; /* check that it round-trips AND that all intervening ones are illegal*/ roundtrip = uprv_uca_getRawFromImplicit(current); if (roundtrip != i) { log_err("No roundtrip %08X\n", i); } if (last != 0) { for (j = last + 1; j < current; ++j) { roundtrip = uprv_uca_getRawFromImplicit(j); /* raise an error if it *doesn't* find an error*/ if (roundtrip != -1) { log_err("Fails to recognize illegal %08X\n", j); } } } /* now do other consistency checks*/ lastBottom = last & bottomByte; currentBottom = current & bottomByte; lastTop = last & topByte; currentTop = current & topByte; /* print out some values for spot-checking*/ if (lastTop != currentTop || i == 0x10000 || i == 0x110000) { showImplicit(i-3); showImplicit(i-2); showImplicit(i-1); showImplicit(i); showImplicit(i+1); showImplicit(i+2); } last = current; if(uprv_uca_getCodePointFromRaw(uprv_uca_getRawFromCodePoint(i)) != i) { log_err("No raw <-> code point roundtrip for 0x%08X\n", i); } } showImplicit(TST_UCOL_MAX_INPUT-2); showImplicit(TST_UCOL_MAX_INPUT-1); showImplicit(TST_UCOL_MAX_INPUT); ucol_close(coll); } /** * Iterate through the given iterator, checking to see that all the strings * in the expected array are present. * @param expected array of strings we expect to see, or NULL * @param expectedCount number of elements of expected, or 0 */ static int32_t checkUEnumeration(const char* msg, UEnumeration* iter, const char** expected, int32_t expectedCount) { UErrorCode ec = U_ZERO_ERROR; int32_t i = 0, n, j, bit; int32_t seenMask = 0; U_ASSERT(expectedCount >= 0 && expectedCount < 31); /* [sic] 31 not 32 */ n = uenum_count(iter, &ec); if (!assertSuccess("count", &ec)) return -1; log_verbose("%s = [", msg); for (;; ++i) { const char* s = uenum_next(iter, NULL, &ec); if (!assertSuccess("snext", &ec) || s == NULL) break; if (i != 0) log_verbose(","); log_verbose("%s", s); /* check expected list */ for (j=0, bit=1; j<expectedCount; ++j, bit<<=1) { if ((seenMask&bit) == 0 && uprv_strcmp(s, expected[j]) == 0) { seenMask |= bit; break; } } } log_verbose("] (%d)\n", i); assertTrue("count verified", i==n); /* did we see all expected strings? */ for (j=0, bit=1; j<expectedCount; ++j, bit<<=1) { if ((seenMask&bit)!=0) { log_verbose("Ok: \"%s\" seen\n", expected[j]); } else { log_err("FAIL: \"%s\" not seen\n", expected[j]); } } return n; } /** * Test new API added for separate collation tree. */ static void TestSeparateTrees(void) { UErrorCode ec = U_ZERO_ERROR; UEnumeration *e = NULL; int32_t n = -1; UBool isAvailable; char loc[256]; static const char* AVAIL[] = { "en", "de" }; static const char* KW[] = { "collation" }; static const char* KWVAL[] = { "phonebook", "stroke" }; #if !UCONFIG_NO_SERVICE e = ucol_openAvailableLocales(&ec); if (e != NULL) { assertSuccess("ucol_openAvailableLocales", &ec); assertTrue("ucol_openAvailableLocales!=0", e!=0); n = checkUEnumeration("ucol_openAvailableLocales", e, AVAIL, LEN(AVAIL)); /* Don't need to check n because we check list */ uenum_close(e); } else { log_data_err("Error calling ucol_openAvailableLocales() -> %s (Are you missing data?)\n", u_errorName(ec)); } #endif e = ucol_getKeywords(&ec); if (e != NULL) { assertSuccess("ucol_getKeywords", &ec); assertTrue("ucol_getKeywords!=0", e!=0); n = checkUEnumeration("ucol_getKeywords", e, KW, LEN(KW)); /* Don't need to check n because we check list */ uenum_close(e); } else { log_data_err("Error calling ucol_getKeywords() -> %s (Are you missing data?)\n", u_errorName(ec)); } e = ucol_getKeywordValues(KW[0], &ec); if (e != NULL) { assertSuccess("ucol_getKeywordValues", &ec); assertTrue("ucol_getKeywordValues!=0", e!=0); n = checkUEnumeration("ucol_getKeywordValues", e, KWVAL, LEN(KWVAL)); /* Don't need to check n because we check list */ uenum_close(e); } else { log_data_err("Error calling ucol_getKeywordValues() -> %s (Are you missing data?)\n", u_errorName(ec)); } /* Try setting a warning before calling ucol_getKeywordValues */ ec = U_USING_FALLBACK_WARNING; e = ucol_getKeywordValues(KW[0], &ec); if (assertSuccess("ucol_getKeywordValues [with warning code set]", &ec)) { assertTrue("ucol_getKeywordValues!=0 [with warning code set]", e!=0); n = checkUEnumeration("ucol_getKeywordValues [with warning code set]", e, KWVAL, LEN(KWVAL)); /* Don't need to check n because we check list */ uenum_close(e); } /* U_DRAFT int32_t U_EXPORT2 ucol_getFunctionalEquivalent(char* result, int32_t resultCapacity, const char* locale, UBool* isAvailable, UErrorCode* status); } */ n = ucol_getFunctionalEquivalent(loc, sizeof(loc), "collation", "fr", &isAvailable, &ec); if (assertSuccess("getFunctionalEquivalent", &ec)) { assertEquals("getFunctionalEquivalent(fr)", "fr", loc); assertTrue("getFunctionalEquivalent(fr).isAvailable==TRUE", isAvailable == TRUE); } n = ucol_getFunctionalEquivalent(loc, sizeof(loc), "collation", "fr_FR", &isAvailable, &ec); if (assertSuccess("getFunctionalEquivalent", &ec)) { assertEquals("getFunctionalEquivalent(fr_FR)", "fr", loc); assertTrue("getFunctionalEquivalent(fr_FR).isAvailable==TRUE", isAvailable == TRUE); } } /* supercedes TestJ784 */ static void TestBeforePinyin(void) { const static char rules[] = { "&[before 2]A<<\\u0101<<<\\u0100<<\\u00E1<<<\\u00C1<<\\u01CE<<<\\u01CD<<\\u00E0<<<\\u00C0" "&[before 2]e<<\\u0113<<<\\u0112<<\\u00E9<<<\\u00C9<<\\u011B<<<\\u011A<<\\u00E8<<<\\u00C8" "&[before 2]i<<\\u012B<<<\\u012A<<\\u00ED<<<\\u00CD<<\\u01D0<<<\\u01CF<<\\u00EC<<<\\u00CC" "&[before 2]o<<\\u014D<<<\\u014C<<\\u00F3<<<\\u00D3<<\\u01D2<<<\\u01D1<<\\u00F2<<<\\u00D2" "&[before 2]u<<\\u016B<<<\\u016A<<\\u00FA<<<\\u00DA<<\\u01D4<<<\\u01D3<<\\u00F9<<<\\u00D9" "&U<<\\u01D6<<<\\u01D5<<\\u01D8<<<\\u01D7<<\\u01DA<<<\\u01D9<<\\u01DC<<<\\u01DB<<\\u00FC" }; const static char *test[] = { "l\\u0101", "la", "l\\u0101n", "lan ", "l\\u0113", "le", "l\\u0113n", "len" }; const static char *test2[] = { "x\\u0101", "x\\u0100", "X\\u0101", "X\\u0100", "x\\u00E1", "x\\u00C1", "X\\u00E1", "X\\u00C1", "x\\u01CE", "x\\u01CD", "X\\u01CE", "X\\u01CD", "x\\u00E0", "x\\u00C0", "X\\u00E0", "X\\u00C0", "xa", "xA", "Xa", "XA", "x\\u0101x", "x\\u0100x", "x\\u00E1x", "x\\u00C1x", "x\\u01CEx", "x\\u01CDx", "x\\u00E0x", "x\\u00C0x", "xax", "xAx" }; genericRulesStarter(rules, test, sizeof(test)/sizeof(test[0])); genericLocaleStarter("zh", test, sizeof(test)/sizeof(test[0])); genericRulesStarter(rules, test2, sizeof(test2)/sizeof(test2[0])); genericLocaleStarter("zh", test2, sizeof(test2)/sizeof(test2[0])); } static void TestBeforeTightening(void) { static const struct { const char *rules; UErrorCode expectedStatus; } tests[] = { { "&[before 1]a<x", U_ZERO_ERROR }, { "&[before 1]a<<x", U_INVALID_FORMAT_ERROR }, { "&[before 1]a<<<x", U_INVALID_FORMAT_ERROR }, { "&[before 1]a=x", U_INVALID_FORMAT_ERROR }, { "&[before 2]a<x",U_INVALID_FORMAT_ERROR }, { "&[before 2]a<<x",U_ZERO_ERROR }, { "&[before 2]a<<<x",U_INVALID_FORMAT_ERROR }, { "&[before 2]a=x",U_INVALID_FORMAT_ERROR }, { "&[before 3]a<x",U_INVALID_FORMAT_ERROR }, { "&[before 3]a<<x",U_INVALID_FORMAT_ERROR }, { "&[before 3]a<<<x",U_ZERO_ERROR }, { "&[before 3]a=x",U_INVALID_FORMAT_ERROR }, { "&[before I]a = x",U_INVALID_FORMAT_ERROR } }; int32_t i = 0; UErrorCode status = U_ZERO_ERROR; UChar rlz[RULE_BUFFER_LEN] = { 0 }; uint32_t rlen = 0; UCollator *coll = NULL; for(i = 0; i < sizeof(tests)/sizeof(tests[0]); i++) { rlen = u_unescape(tests[i].rules, rlz, RULE_BUFFER_LEN); coll = ucol_openRules(rlz, rlen, UCOL_DEFAULT, UCOL_DEFAULT,NULL, &status); if(status != tests[i].expectedStatus) { log_err_status(status, "Opening a collator with rules %s returned error code %s, expected %s\n", tests[i].rules, u_errorName(status), u_errorName(tests[i].expectedStatus)); } ucol_close(coll); status = U_ZERO_ERROR; } } #if 0 &m < a &[before 1] a < x <<< X << q <<< Q < z assert: m <<< M < x <<< X << q <<< Q < z < a < n &m < a &[before 2] a << x <<< X << q <<< Q < z assert: m <<< M < x <<< X << q <<< Q << a < z < n &m < a &[before 3] a <<< x <<< X << q <<< Q < z assert: m <<< M < x <<< X <<< a << q <<< Q < z < n &m << a &[before 1] a < x <<< X << q <<< Q < z assert: x <<< X << q <<< Q < z < m <<< M << a < n &m << a &[before 2] a << x <<< X << q <<< Q < z assert: m <<< M << x <<< X << q <<< Q << a < z < n &m << a &[before 3] a <<< x <<< X << q <<< Q < z assert: m <<< M << x <<< X <<< a << q <<< Q < z < n &m <<< a &[before 1] a < x <<< X << q <<< Q < z assert: x <<< X << q <<< Q < z < n < m <<< a <<< M &m <<< a &[before 2] a << x <<< X << q <<< Q < z assert: x <<< X << q <<< Q << m <<< a <<< M < z < n &m <<< a &[before 3] a <<< x <<< X << q <<< Q < z assert: m <<< x <<< X <<< a <<< M << q <<< Q < z < n &[before 1] s < x <<< X << q <<< Q < z assert: r <<< R < x <<< X << q <<< Q < z < s < n &[before 2] s << x <<< X << q <<< Q < z assert: r <<< R < x <<< X << q <<< Q << s < z < n &[before 3] s <<< x <<< X << q <<< Q < z assert: r <<< R < x <<< X <<< s << q <<< Q < z < n &[before 1] \u24DC < x <<< X << q <<< Q < z assert: x <<< X << q <<< Q < z < n < m <<< \u24DC <<< M &[before 2] \u24DC << x <<< X << q <<< Q < z assert: x <<< X << q <<< Q << m <<< \u24DC <<< M < z < n &[before 3] \u24DC <<< x <<< X << q <<< Q < z assert: m <<< x <<< X <<< \u24DC <<< M << q <<< Q < z < n #endif #if 0 /* requires features not yet supported */ static void TestMoreBefore(void) { static const struct { const char* rules; const char* order[16]; int32_t size; } tests[] = { { "&m < a &[before 1] a < x <<< X << q <<< Q < z", { "m","M","x","X","q","Q","z","a","n" }, 9}, { "&m < a &[before 2] a << x <<< X << q <<< Q < z", { "m","M","x","X","q","Q","a","z","n" }, 9}, { "&m < a &[before 3] a <<< x <<< X << q <<< Q < z", { "m","M","x","X","a","q","Q","z","n" }, 9}, { "&m << a &[before 1] a < x <<< X << q <<< Q < z", { "x","X","q","Q","z","m","M","a","n" }, 9}, { "&m << a &[before 2] a << x <<< X << q <<< Q < z", { "m","M","x","X","q","Q","a","z","n" }, 9}, { "&m << a &[before 3] a <<< x <<< X << q <<< Q < z", { "m","M","x","X","a","q","Q","z","n" }, 9}, { "&m <<< a &[before 1] a < x <<< X << q <<< Q < z", { "x","X","q","Q","z","n","m","a","M" }, 9}, { "&m <<< a &[before 2] a << x <<< X << q <<< Q < z", { "x","X","q","Q","m","a","M","z","n" }, 9}, { "&m <<< a &[before 3] a <<< x <<< X << q <<< Q < z", { "m","x","X","a","M","q","Q","z","n" }, 9}, { "&[before 1] s < x <<< X << q <<< Q < z", { "r","R","x","X","q","Q","z","s","n" }, 9}, { "&[before 2] s << x <<< X << q <<< Q < z", { "r","R","x","X","q","Q","s","z","n" }, 9}, { "&[before 3] s <<< x <<< X << q <<< Q < z", { "r","R","x","X","s","q","Q","z","n" }, 9}, { "&[before 1] \\u24DC < x <<< X << q <<< Q < z", { "x","X","q","Q","z","n","m","\\u24DC","M" }, 9}, { "&[before 2] \\u24DC << x <<< X << q <<< Q < z", { "x","X","q","Q","m","\\u24DC","M","z","n" }, 9}, { "&[before 3] \\u24DC <<< x <<< X << q <<< Q < z", { "m","x","X","\\u24DC","M","q","Q","z","n" }, 9} }; int32_t i = 0; for(i = 0; i < sizeof(tests)/sizeof(tests[0]); i++) { genericRulesStarter(tests[i].rules, tests[i].order, tests[i].size); } } #endif static void TestTailorNULL( void ) { const static char* rule = "&a <<< '\\u0000'"; UErrorCode status = U_ZERO_ERROR; UChar rlz[RULE_BUFFER_LEN] = { 0 }; uint32_t rlen = 0; UChar a = 1, null = 0; UCollationResult res = UCOL_EQUAL; UCollator *coll = NULL; rlen = u_unescape(rule, rlz, RULE_BUFFER_LEN); coll = ucol_openRules(rlz, rlen, UCOL_DEFAULT, UCOL_DEFAULT,NULL, &status); if(U_FAILURE(status)) { log_err_status(status, "Could not open default collator! -> %s\n", u_errorName(status)); } else { res = ucol_strcoll(coll, &a, 1, &null, 1); if(res != UCOL_LESS) { log_err("NULL was not tailored properly!\n"); } } ucol_close(coll); } static void TestUpperFirstQuaternary(void) { const char* tests[] = { "B", "b", "Bb", "bB" }; UColAttribute att[] = { UCOL_STRENGTH, UCOL_CASE_FIRST }; UColAttributeValue attVals[] = { UCOL_QUATERNARY, UCOL_UPPER_FIRST }; genericLocaleStarterWithOptions("root", tests, sizeof(tests)/sizeof(tests[0]), att, attVals, sizeof(att)/sizeof(att[0])); } static void TestJ4960(void) { const char* tests[] = { "\\u00e2T", "aT" }; UColAttribute att[] = { UCOL_STRENGTH, UCOL_CASE_LEVEL }; UColAttributeValue attVals[] = { UCOL_PRIMARY, UCOL_ON }; const char* tests2[] = { "a", "A" }; const char* rule = "&[first tertiary ignorable]=A=a"; UColAttribute att2[] = { UCOL_CASE_LEVEL }; UColAttributeValue attVals2[] = { UCOL_ON }; /* Test whether we correctly ignore primary ignorables on case level when */ /* we have only primary & case level */ genericLocaleStarterWithOptionsAndResult("root", tests, sizeof(tests)/sizeof(tests[0]), att, attVals, sizeof(att)/sizeof(att[0]), UCOL_EQUAL); /* Test whether ICU4J will make case level for sortkeys that have primary strength */ /* and case level */ genericLocaleStarterWithOptions("root", tests2, sizeof(tests2)/sizeof(tests2[0]), att, attVals, sizeof(att)/sizeof(att[0])); /* Test whether completely ignorable letters have case level info (they shouldn't) */ genericRulesStarterWithOptionsAndResult(rule, tests2, sizeof(tests2)/sizeof(tests2[0]), att2, attVals2, sizeof(att2)/sizeof(att2[0]), UCOL_EQUAL); } static void TestJ5223(void) { static const char *test = "this is a test string"; UChar ustr[256]; int32_t ustr_length = u_unescape(test, ustr, 256); unsigned char sortkey[256]; int32_t sortkey_length; UErrorCode status = U_ZERO_ERROR; static UCollator *coll = NULL; coll = ucol_open("root", &status); if(U_FAILURE(status)) { log_err_status(status, "Couldn't open UCA -> %s\n", u_errorName(status)); return; } ucol_setStrength(coll, UCOL_PRIMARY); ucol_setAttribute(coll, UCOL_STRENGTH, UCOL_PRIMARY, &status); ucol_setAttribute(coll, UCOL_NORMALIZATION_MODE, UCOL_ON, &status); if (U_FAILURE(status)) { log_err("Failed setting atributes\n"); return; } sortkey_length = ucol_getSortKey(coll, ustr, ustr_length, NULL, 0); if (sortkey_length > 256) return; /* we mark the position where the null byte should be written in advance */ sortkey[sortkey_length-1] = 0xAA; /* we set the buffer size one byte higher than needed */ sortkey_length = ucol_getSortKey(coll, ustr, ustr_length, sortkey, sortkey_length+1); /* no error occurs (for me) */ if (sortkey[sortkey_length-1] == 0xAA) { log_err("Hit bug at first try\n"); } /* we mark the position where the null byte should be written again */ sortkey[sortkey_length-1] = 0xAA; /* this time we set the buffer size to the exact amount needed */ sortkey_length = ucol_getSortKey(coll, ustr, ustr_length, sortkey, sortkey_length); /* now the trailing null byte is not written */ if (sortkey[sortkey_length-1] == 0xAA) { log_err("Hit bug at second try\n"); } ucol_close(coll); } /* Regression test for Thai partial sort key problem */ static void TestJ5232(void) { const static char *test[] = { "\\u0e40\\u0e01\\u0e47\\u0e1a\\u0e40\\u0e25\\u0e47\\u0e21", "\\u0e40\\u0e01\\u0e47\\u0e1a\\u0e40\\u0e25\\u0e48\\u0e21" }; genericLocaleStarter("th", test, sizeof(test)/sizeof(test[0])); } static void TestJ5367(void) { const static char *test[] = { "a", "y" }; const char* rules = "&Ny << Y &[first secondary ignorable] <<< a"; genericRulesStarter(rules, test, sizeof(test)/sizeof(test[0])); } static void TestVI5913(void) { UErrorCode status = U_ZERO_ERROR; int32_t i, j; UCollator *coll =NULL; uint8_t resColl[100], expColl[100]; int32_t rLen, tLen, ruleLen, sLen, kLen; UChar rule[256]={0x26, 0x62, 0x3c, 0x1FF3, 0}; /* &a<0x1FF3-omega with Ypogegrammeni*/ UChar rule2[256]={0x26, 0x7a, 0x3c, 0x0161, 0}; /* &z<s with caron*/ UChar rule3[256]={0x26, 0x7a, 0x3c, 0x0061, 0x00ea, 0}; /* &z<a+e with circumflex.*/ static const UChar tData[][20]={ {0x1EAC, 0}, {0x0041, 0x0323, 0x0302, 0}, {0x1EA0, 0x0302, 0}, {0x00C2, 0x0323, 0}, {0x1ED8, 0}, /* O with dot and circumflex */ {0x1ECC, 0x0302, 0}, {0x1EB7, 0}, {0x1EA1, 0x0306, 0}, }; static const UChar tailorData[][20]={ {0x1FA2, 0}, /* Omega with 3 combining marks */ {0x03C9, 0x0313, 0x0300, 0x0345, 0}, {0x1FF3, 0x0313, 0x0300, 0}, {0x1F60, 0x0300, 0x0345, 0}, {0x1F62, 0x0345, 0}, {0x1FA0, 0x0300, 0}, }; static const UChar tailorData2[][20]={ {0x1E63, 0x030C, 0}, /* s with dot below + caron */ {0x0073, 0x0323, 0x030C, 0}, {0x0073, 0x030C, 0x0323, 0}, }; static const UChar tailorData3[][20]={ {0x007a, 0}, /* z */ {0x0061, 0x0065, 0}, /* a + e */ {0x0061, 0x00ea, 0}, /* a + e with circumflex */ {0x0061, 0x1EC7, 0}, /* a+ e with dot below and circumflex */ {0x0061, 0x1EB9, 0x0302, 0}, /* a + e with dot below + combining circumflex */ {0x0061, 0x00EA, 0x0323, 0}, /* a + e with circumflex + combining dot below */ {0x00EA, 0x0323, 0}, /* e with circumflex + combining dot below */ {0x00EA, 0}, /* e with circumflex */ }; /* Test Vietnamese sort. */ coll = ucol_open("vi", &status); if(U_FAILURE(status)) { log_err_status(status, "Couldn't open collator -> %s\n", u_errorName(status)); return; } log_verbose("\n\nVI collation:"); if ( !ucol_equal(coll, tData[0], u_strlen(tData[0]), tData[2], u_strlen(tData[2])) ) { log_err("\\u1EAC not equals to \\u1EA0+\\u0302\n"); } if ( !ucol_equal(coll, tData[0], u_strlen(tData[0]), tData[3], u_strlen(tData[3])) ) { log_err("\\u1EAC not equals to \\u00c2+\\u0323\n"); } if ( !ucol_equal(coll, tData[5], u_strlen(tData[5]), tData[4], u_strlen(tData[4])) ) { log_err("\\u1ED8 not equals to \\u1ECC+\\u0302\n"); } if ( !ucol_equal(coll, tData[7], u_strlen(tData[7]), tData[6], u_strlen(tData[6])) ) { log_err("\\u1EB7 not equals to \\u1EA1+\\u0306\n"); } for (j=0; j<8; j++) { tLen = u_strlen(tData[j]); log_verbose("\n Data :%s \tlen: %d key: ", tData[j], tLen); rLen = ucol_getSortKey(coll, tData[j], tLen, resColl, 100); for(i = 0; i<rLen; i++) { log_verbose(" %02X", resColl[i]); } } ucol_close(coll); /* Test Romanian sort. */ coll = ucol_open("ro", &status); log_verbose("\n\nRO collation:"); if ( !ucol_equal(coll, tData[0], u_strlen(tData[0]), tData[1], u_strlen(tData[1])) ) { log_err("\\u1EAC not equals to \\u1EA0+\\u0302\n"); } if ( !ucol_equal(coll, tData[4], u_strlen(tData[4]), tData[5], u_strlen(tData[5])) ) { log_err("\\u1EAC not equals to \\u00c2+\\u0323\n"); } if ( !ucol_equal(coll, tData[6], u_strlen(tData[6]), tData[7], u_strlen(tData[7])) ) { log_err("\\u1EB7 not equals to \\u1EA1+\\u0306\n"); } for (j=4; j<8; j++) { tLen = u_strlen(tData[j]); log_verbose("\n Data :%s \tlen: %d key: ", tData[j], tLen); rLen = ucol_getSortKey(coll, tData[j], tLen, resColl, 100); for(i = 0; i<rLen; i++) { log_verbose(" %02X", resColl[i]); } } ucol_close(coll); /* Test the precomposed Greek character with 3 combining marks. */ log_verbose("\n\nTailoring test: Greek character with 3 combining marks"); ruleLen = u_strlen(rule); coll = ucol_openRules(rule, ruleLen, UCOL_OFF, UCOL_TERTIARY, NULL,&status); if (U_FAILURE(status)) { log_err("ucol_openRules failed with %s\n", u_errorName(status)); return; } sLen = u_strlen(tailorData[0]); for (j=1; j<6; j++) { tLen = u_strlen(tailorData[j]); if ( !ucol_equal(coll, tailorData[0], sLen, tailorData[j], tLen)) { log_err("\n \\u1FA2 not equals to data[%d]:%s\n", j, tailorData[j]); } } /* Test getSortKey. */ tLen = u_strlen(tailorData[0]); kLen=ucol_getSortKey(coll, tailorData[0], tLen, expColl, 100); for (j=0; j<6; j++) { tLen = u_strlen(tailorData[j]); rLen = ucol_getSortKey(coll, tailorData[j], tLen, resColl, 100); if ( kLen!=rLen || uprv_memcmp(expColl, resColl, rLen*sizeof(uint8_t))!=0 ) { log_err("\n Data[%d] :%s \tlen: %d key: ", j, tailorData[j], tLen); for(i = 0; i<rLen; i++) { log_err(" %02X", resColl[i]); } } } ucol_close(coll); log_verbose("\n\nTailoring test for s with caron:"); ruleLen = u_strlen(rule2); coll = ucol_openRules(rule2, ruleLen, UCOL_OFF, UCOL_TERTIARY, NULL,&status); tLen = u_strlen(tailorData2[0]); kLen=ucol_getSortKey(coll, tailorData2[0], tLen, expColl, 100); for (j=1; j<3; j++) { tLen = u_strlen(tailorData2[j]); rLen = ucol_getSortKey(coll, tailorData2[j], tLen, resColl, 100); if ( kLen!=rLen || uprv_memcmp(expColl, resColl, rLen*sizeof(uint8_t))!=0 ) { log_err("\n After tailoring Data[%d] :%s \tlen: %d key: ", j, tailorData[j], tLen); for(i = 0; i<rLen; i++) { log_err(" %02X", resColl[i]); } } } ucol_close(coll); log_verbose("\n\nTailoring test for &z< ae with circumflex:"); ruleLen = u_strlen(rule3); coll = ucol_openRules(rule3, ruleLen, UCOL_OFF, UCOL_TERTIARY, NULL,&status); tLen = u_strlen(tailorData3[3]); kLen=ucol_getSortKey(coll, tailorData3[3], tLen, expColl, 100); for (j=4; j<6; j++) { tLen = u_strlen(tailorData3[j]); rLen = ucol_getSortKey(coll, tailorData3[j], tLen, resColl, 100); if ( kLen!=rLen || uprv_memcmp(expColl, resColl, rLen*sizeof(uint8_t))!=0 ) { log_err("\n After tailoring Data[%d] :%s \tlen: %d key: ", j, tailorData[j], tLen); for(i = 0; i<rLen; i++) { log_err(" %02X", resColl[i]); } } log_verbose("\n Test Data[%d] :%s \tlen: %d key: ", j, tailorData[j], tLen); for(i = 0; i<rLen; i++) { log_verbose(" %02X", resColl[i]); } } ucol_close(coll); } static void TestTailor6179(void) { UErrorCode status = U_ZERO_ERROR; int32_t i; UCollator *coll =NULL; uint8_t resColl[100]; int32_t rLen, tLen, ruleLen; /* &[last primary ignorable]<< a &[first primary ignorable]<<b */ UChar rule1[256]={0x26,0x5B,0x6C,0x61,0x73,0x74,0x20,0x70,0x72,0x69,0x6D,0x61,0x72,0x79, 0x20,0x69,0x67,0x6E,0x6F,0x72,0x61,0x62,0x6C,0x65,0x5D,0x3C,0x3C,0x20,0x61,0x20, 0x26,0x5B,0x66,0x69,0x72,0x73,0x74,0x20,0x70,0x72,0x69,0x6D,0x61,0x72,0x79,0x20, 0x69,0x67,0x6E,0x6F,0x72,0x61,0x62,0x6C,0x65,0x5D,0x3C,0x3C,0x62,0x20, 0}; /* &[last secondary ignorable]<<< a &[first secondary ignorable]<<<b */ UChar rule2[256]={0x26,0x5B,0x6C,0x61,0x73,0x74,0x20,0x73,0x65,0x63,0x6F,0x6E,0x64,0x61, 0x72,0x79,0x20,0x69,0x67,0x6E,0x6F,0x72,0x61,0x62,0x6C,0x65,0x5D,0x3C,0x3C,0x3C, 0x61,0x20,0x26,0x5B,0x66,0x69,0x72,0x73,0x74,0x20,0x73,0x65,0x63,0x6F,0x6E, 0x64,0x61,0x72,0x79,0x20,0x69,0x67,0x6E,0x6F,0x72,0x61,0x62,0x6C,0x65,0x5D,0x3C, 0x3C,0x3C,0x20,0x62,0}; UChar tData1[][20]={ {0x61, 0}, {0x62, 0}, { 0xFDD0,0x009E, 0} }; UChar tData2[][20]={ {0x61, 0}, {0x62, 0}, { 0xFDD0,0x009E, 0} }; /* * These values from FractionalUCA.txt will change, * and need to be updated here. */ uint8_t firstPrimaryIgnCE[6]={1, 87, 1, 5, 1, 0}; uint8_t lastPrimaryIgnCE[6]={1, 0xE3, 0xC9, 1, 5, 0}; uint8_t firstSecondaryIgnCE[6]={1, 1, 0x3f, 0x03, 0}; uint8_t lastSecondaryIgnCE[6]={1, 1, 0x3f, 0x03, 0}; /* Test [Last Primary ignorable] */ log_verbose("\n\nTailoring test: &[last primary ignorable]<<a &[first primary ignorable]<<b "); ruleLen = u_strlen(rule1); coll = ucol_openRules(rule1, ruleLen, UCOL_OFF, UCOL_TERTIARY, NULL,&status); if (U_FAILURE(status)) { log_err_status(status, "Tailoring test: &[last primary ignorable] failed! -> %s\n", u_errorName(status)); return; } tLen = u_strlen(tData1[0]); rLen = ucol_getSortKey(coll, tData1[0], tLen, resColl, 100); if (uprv_memcmp(resColl, lastPrimaryIgnCE, uprv_min(rLen,6)) < 0) { log_err("\n Data[%d] :%s \tlen: %d key: ", 0, tData1[0], rLen); for(i = 0; i<rLen; i++) { log_err(" %02X", resColl[i]); } } tLen = u_strlen(tData1[1]); rLen = ucol_getSortKey(coll, tData1[1], tLen, resColl, 100); if (uprv_memcmp(resColl, firstPrimaryIgnCE, uprv_min(rLen, 6)) < 0) { log_err("\n Data[%d] :%s \tlen: %d key: ", 1, tData1[1], rLen); for(i = 0; i<rLen; i++) { log_err(" %02X", resColl[i]); } } ucol_close(coll); /* Test [Last Secondary ignorable] */ log_verbose("\n\nTailoring test: &[last secondary ignorable]<<<a &[first secondary ignorable]<<<b "); ruleLen = u_strlen(rule1); coll = ucol_openRules(rule2, ruleLen, UCOL_OFF, UCOL_TERTIARY, NULL,&status); if (U_FAILURE(status)) { log_err("Tailoring test: &[last primary ignorable] failed!"); return; } tLen = u_strlen(tData2[0]); rLen = ucol_getSortKey(coll, tData2[0], tLen, resColl, 100); log_verbose("\n Data[%d] :%s \tlen: %d key: ", 0, tData2[0], rLen); for(i = 0; i<rLen; i++) { log_verbose(" %02X", resColl[i]); } if (uprv_memcmp(resColl, lastSecondaryIgnCE, uprv_min(rLen, 3)) < 0) { log_err("\n Data[%d] :%s \tlen: %d key: ", 0, tData2[0], rLen); for(i = 0; i<rLen; i++) { log_err(" %02X", resColl[i]); } } tLen = u_strlen(tData2[1]); rLen = ucol_getSortKey(coll, tData2[1], tLen, resColl, 100); log_verbose("\n Data[%d] :%s \tlen: %d key: ", 1, tData2[1], rLen); for(i = 0; i<rLen; i++) { log_verbose(" %02X", resColl[i]); } if (uprv_memcmp(resColl, firstSecondaryIgnCE, uprv_min(rLen, 4)) < 0) { log_err("\n Data[%d] :%s \tlen: %d key: ", 1, tData2[1], rLen); for(i = 0; i<rLen; i++) { log_err(" %02X", resColl[i]); } } ucol_close(coll); } static void TestUCAPrecontext(void) { UErrorCode status = U_ZERO_ERROR; int32_t i, j; UCollator *coll =NULL; uint8_t resColl[100], prevColl[100]; int32_t rLen, tLen, ruleLen; UChar rule1[256]= {0x26, 0xb7, 0x3c, 0x61, 0}; /* & middle-dot < a */ UChar rule2[256]= {0x26, 0x4C, 0xb7, 0x3c, 0x3c, 0x61, 0}; /* & l middle-dot << a a is an expansion. */ UChar tData1[][20]={ { 0xb7, 0}, /* standalone middle dot(0xb7) */ { 0x387, 0}, /* standalone middle dot(0x387) */ { 0x61, 0}, /* a */ { 0x6C, 0}, /* l */ { 0x4C, 0x0332, 0}, /* l with [first primary ignorable] */ { 0x6C, 0xb7, 0}, /* l with middle dot(0xb7) */ { 0x6C, 0x387, 0}, /* l with middle dot(0x387) */ { 0x4C, 0xb7, 0}, /* L with middle dot(0xb7) */ { 0x4C, 0x387, 0}, /* L with middle dot(0x387) */ { 0x6C, 0x61, 0x387, 0}, /* la with middle dot(0x387) */ { 0x4C, 0x61, 0xb7, 0}, /* La with middle dot(0xb7) */ }; log_verbose("\n\nEN collation:"); coll = ucol_open("en", &status); if (U_FAILURE(status)) { log_err_status(status, "Tailoring test: &z <<a|- failed! -> %s\n", u_errorName(status)); return; } for (j=0; j<11; j++) { tLen = u_strlen(tData1[j]); rLen = ucol_getSortKey(coll, tData1[j], tLen, resColl, 100); if ((j>0) && (strcmp((char *)resColl, (char *)prevColl)<0)) { log_err("\n Expecting greater key than previous test case: Data[%d] :%s.", j, tData1[j]); } log_verbose("\n Data[%d] :%s \tlen: %d key: ", j, tData1[j], rLen); for(i = 0; i<rLen; i++) { log_verbose(" %02X", resColl[i]); } uprv_memcpy(prevColl, resColl, sizeof(uint8_t)*(rLen+1)); } ucol_close(coll); log_verbose("\n\nJA collation:"); coll = ucol_open("ja", &status); if (U_FAILURE(status)) { log_err("Tailoring test: &z <<a|- failed!"); return; } for (j=0; j<11; j++) { tLen = u_strlen(tData1[j]); rLen = ucol_getSortKey(coll, tData1[j], tLen, resColl, 100); if ((j>0) && (strcmp((char *)resColl, (char *)prevColl)<0)) { log_err("\n Expecting greater key than previous test case: Data[%d] :%s.", j, tData1[j]); } log_verbose("\n Data[%d] :%s \tlen: %d key: ", j, tData1[j], rLen); for(i = 0; i<rLen; i++) { log_verbose(" %02X", resColl[i]); } uprv_memcpy(prevColl, resColl, sizeof(uint8_t)*(rLen+1)); } ucol_close(coll); log_verbose("\n\nTailoring test: & middle dot < a "); ruleLen = u_strlen(rule1); coll = ucol_openRules(rule1, ruleLen, UCOL_OFF, UCOL_TERTIARY, NULL,&status); if (U_FAILURE(status)) { log_err("Tailoring test: & middle dot < a failed!"); return; } for (j=0; j<11; j++) { tLen = u_strlen(tData1[j]); rLen = ucol_getSortKey(coll, tData1[j], tLen, resColl, 100); if ((j>0) && (strcmp((char *)resColl, (char *)prevColl)<0)) { log_err("\n Expecting greater key than previous test case: Data[%d] :%s.", j, tData1[j]); } log_verbose("\n Data[%d] :%s \tlen: %d key: ", j, tData1[j], rLen); for(i = 0; i<rLen; i++) { log_verbose(" %02X", resColl[i]); } uprv_memcpy(prevColl, resColl, sizeof(uint8_t)*(rLen+1)); } ucol_close(coll); log_verbose("\n\nTailoring test: & l middle-dot << a "); ruleLen = u_strlen(rule2); coll = ucol_openRules(rule2, ruleLen, UCOL_OFF, UCOL_TERTIARY, NULL,&status); if (U_FAILURE(status)) { log_err("Tailoring test: & l middle-dot << a failed!"); return; } for (j=0; j<11; j++) { tLen = u_strlen(tData1[j]); rLen = ucol_getSortKey(coll, tData1[j], tLen, resColl, 100); if ((j>0) && (j!=3) && (strcmp((char *)resColl, (char *)prevColl)<0)) { log_err("\n Expecting greater key than previous test case: Data[%d] :%s.", j, tData1[j]); } if ((j==3)&&(strcmp((char *)resColl, (char *)prevColl)>0)) { log_err("\n Expecting smaller key than previous test case: Data[%d] :%s.", j, tData1[j]); } log_verbose("\n Data[%d] :%s \tlen: %d key: ", j, tData1[j], rLen); for(i = 0; i<rLen; i++) { log_verbose(" %02X", resColl[i]); } uprv_memcpy(prevColl, resColl, sizeof(uint8_t)*(rLen+1)); } ucol_close(coll); } static void TestOutOfBuffer5468(void) { static const char *test = "\\u4e00"; UChar ustr[256]; int32_t ustr_length = u_unescape(test, ustr, 256); unsigned char shortKeyBuf[1]; int32_t sortkey_length; UErrorCode status = U_ZERO_ERROR; static UCollator *coll = NULL; coll = ucol_open("root", &status); if(U_FAILURE(status)) { log_err_status(status, "Couldn't open UCA -> %s\n", u_errorName(status)); return; } ucol_setStrength(coll, UCOL_PRIMARY); ucol_setAttribute(coll, UCOL_STRENGTH, UCOL_PRIMARY, &status); ucol_setAttribute(coll, UCOL_NORMALIZATION_MODE, UCOL_ON, &status); if (U_FAILURE(status)) { log_err("Failed setting atributes\n"); return; } sortkey_length = ucol_getSortKey(coll, ustr, ustr_length, shortKeyBuf, sizeof(shortKeyBuf)); if (sortkey_length != 4) { log_err("expecting length of sortKey is 4 got:%d ", sortkey_length); } log_verbose("length of sortKey is %d", sortkey_length); ucol_close(coll); } #define TSKC_DATA_SIZE 5 #define TSKC_BUF_SIZE 50 static void TestSortKeyConsistency(void) { UErrorCode icuRC = U_ZERO_ERROR; UCollator* ucol; UChar data[] = { 0xFFFD, 0x0006, 0x0006, 0x0006, 0xFFFD}; uint8_t bufFull[TSKC_DATA_SIZE][TSKC_BUF_SIZE]; uint8_t bufPart[TSKC_DATA_SIZE][TSKC_BUF_SIZE]; int32_t i, j, i2; ucol = ucol_openFromShortString("LEN_S4", FALSE, NULL, &icuRC); if (U_FAILURE(icuRC)) { log_err_status(icuRC, "ucol_openFromShortString failed -> %s\n", u_errorName(icuRC)); return; } for (i = 0; i < TSKC_DATA_SIZE; i++) { UCharIterator uiter; uint32_t state[2] = { 0, 0 }; int32_t dataLen = i+1; for (j=0; j<TSKC_BUF_SIZE; j++) bufFull[i][j] = bufPart[i][j] = 0; /* Full sort key */ ucol_getSortKey(ucol, data, dataLen, bufFull[i], TSKC_BUF_SIZE); /* Partial sort key */ uiter_setString(&uiter, data, dataLen); ucol_nextSortKeyPart(ucol, &uiter, state, bufPart[i], TSKC_BUF_SIZE, &icuRC); if (U_FAILURE(icuRC)) { log_err("ucol_nextSortKeyPart failed\n"); ucol_close(ucol); return; } for (i2=0; i2<i; i2++) { UBool fullMatch = TRUE; UBool partMatch = TRUE; for (j=0; j<TSKC_BUF_SIZE; j++) { fullMatch = fullMatch && (bufFull[i][j] != bufFull[i2][j]); partMatch = partMatch && (bufPart[i][j] != bufPart[i2][j]); } if (fullMatch != partMatch) { log_err(fullMatch ? "full key was consistent, but partial key changed\n" : "partial key was consistent, but full key changed\n"); ucol_close(ucol); return; } } } /*=============================================*/ ucol_close(ucol); } /* ticket: 6101 */ static void TestCroatianSortKey(void) { const char* collString = "LHR_AN_CX_EX_FX_HX_NX_S3"; UErrorCode status = U_ZERO_ERROR; UCollator *ucol; UCharIterator iter; static const UChar text[] = { 0x0044, 0xD81A }; size_t length = sizeof(text)/sizeof(*text); uint8_t textSortKey[32]; size_t lenSortKey = 32; size_t actualSortKeyLen; uint32_t uStateInfo[2] = { 0, 0 }; ucol = ucol_openFromShortString(collString, FALSE, NULL, &status); if (U_FAILURE(status)) { log_err_status(status, "ucol_openFromShortString error in Craotian test. -> %s\n", u_errorName(status)); return; } uiter_setString(&iter, text, length); actualSortKeyLen = ucol_nextSortKeyPart( ucol, &iter, (uint32_t*)uStateInfo, textSortKey, lenSortKey, &status ); if (actualSortKeyLen == lenSortKey) { log_err("ucol_nextSortKeyPart did not give correct result in Croatian test.\n"); } ucol_close(ucol); } /* ticket: 6140 */ /* This test ensures that codepoints such as 0x3099 are flagged correctly by the collator since * they are both Hiragana and Katakana */ #define SORTKEYLEN 50 static void TestHiragana(void) { UErrorCode status = U_ZERO_ERROR; UCollator* ucol; UCollationResult strcollresult; UChar data1[] = { 0x3058, 0x30B8 }; /* Hiragana and Katakana letter Zi */ UChar data2[] = { 0x3057, 0x3099, 0x30B7, 0x3099 }; int32_t data1Len = sizeof(data1)/sizeof(*data1); int32_t data2Len = sizeof(data2)/sizeof(*data2); int32_t i, j; uint8_t sortKey1[SORTKEYLEN]; uint8_t sortKey2[SORTKEYLEN]; UCharIterator uiter1; UCharIterator uiter2; uint32_t state1[2] = { 0, 0 }; uint32_t state2[2] = { 0, 0 }; int32_t keySize1; int32_t keySize2; ucol = ucol_openFromShortString("LJA_AN_CX_EX_FX_HO_NX_S4", FALSE, NULL, &status); if (U_FAILURE(status)) { log_err_status(status, "Error status: %s; Unable to open collator from short string.\n", u_errorName(status)); return; } /* Start of full sort keys */ /* Full sort key1 */ keySize1 = ucol_getSortKey(ucol, data1, data1Len, sortKey1, SORTKEYLEN); /* Full sort key2 */ keySize2 = ucol_getSortKey(ucol, data2, data2Len, sortKey2, SORTKEYLEN); if (keySize1 == keySize2) { for (i = 0; i < keySize1; i++) { if (sortKey1[i] != sortKey2[i]) { log_err("Full sort keys are different. Should be equal."); } } } else { log_err("Full sort keys sizes doesn't match: %d %d", keySize1, keySize2); } /* End of full sort keys */ /* Start of partial sort keys */ /* Partial sort key1 */ uiter_setString(&uiter1, data1, data1Len); keySize1 = ucol_nextSortKeyPart(ucol, &uiter1, state1, sortKey1, SORTKEYLEN, &status); /* Partial sort key2 */ uiter_setString(&uiter2, data2, data2Len); keySize2 = ucol_nextSortKeyPart(ucol, &uiter2, state2, sortKey2, SORTKEYLEN, &status); if (U_SUCCESS(status) && keySize1 == keySize2) { for (j = 0; j < keySize1; j++) { if (sortKey1[j] != sortKey2[j]) { log_err("Partial sort keys are different. Should be equal"); } } } else { log_err("Error Status: %s or Partial sort keys sizes doesn't match: %d %d", u_errorName(status), keySize1, keySize2); } /* End of partial sort keys */ /* Start of strcoll */ /* Use ucol_strcoll() to determine ordering */ strcollresult = ucol_strcoll(ucol, data1, data1Len, data2, data2Len); if (strcollresult != UCOL_EQUAL) { log_err("Result from ucol_strcoll() should be UCOL_EQUAL."); } ucol_close(ucol); } const static UChar testSameStrengthSourceCases[][MAX_TOKEN_LEN] = { {0x0061}, {0x0061}, {0x006c, 0x0061}, {0x0061, 0x0061, 0x0061}, {0x0062} }; const static UChar testSameStrengthTargetCases[][MAX_TOKEN_LEN] = { {0x0031}, {0x006d}, {0x006b, 0x0062}, {0x0031, 0x0032, 0x0033}, {0x007a} }; const static UCollationResult sameStrengthResults[] = { UCOL_EQUAL, UCOL_LESS, UCOL_LESS, UCOL_EQUAL, UCOL_LESS }; static void TestSameStrengthList(void) { int32_t i; UParseError error; UErrorCode status = U_ZERO_ERROR; UCollator *myCollation; UChar rules[] = { 0x26, 0x61, 0x3c, 0x2a, 0x62, 0x63, 0x64, 0x20, 0x26, 0x62, 0x3c, 0x3c, 0x2a, 0x6b, 0x6c, 0x6d, 0x20, 0x26, 0x6b, 0x3c, 0x3c, 0x3c, 0x2a, 0x78, 0x79, 0x7a, 0x20, 0x26, 0x61, 0x3d, 0x2a, 0x31, 0x32, 0x33, 0x00 }; /* &a<*bcd &b<<*klm &k<<<*xyz &a=*123 */ myCollation = ucol_openRules(rules, u_strlen(rules), UCOL_ON, UCOL_TERTIARY, &error, &status); if(U_FAILURE(status)){ log_err_status(status, "ERROR: in creation of rule based collator: %s\n", myErrorName(status)); return; } log_verbose("Testing the <<* syntax\n"); /*ucol_setAttribute(myCollation, UCOL_NORMALIZATION_MODE, UCOL_ON, &status); ucol_setStrength(myCollation, UCOL_TERTIARY);*/ for (i = 0; i < 5 ; i++) { doTest(myCollation, testSameStrengthSourceCases[i], testSameStrengthTargetCases[i], sameStrengthResults[i]); } ucol_close(myCollation); } #define TEST(x) addTest(root, &x, "tscoll/cmsccoll/" # x) void addMiscCollTest(TestNode** root) { TEST(TestRuleOptions); TEST(TestBeforePrefixFailure); TEST(TestContractionClosure); TEST(TestPrefixCompose); TEST(TestStrCollIdenticalPrefix); TEST(TestPrefix); TEST(TestNewJapanese); /*TEST(TestLimitations);*/ TEST(TestNonChars); TEST(TestExtremeCompression); TEST(TestSurrogates); /* BEGIN android-removed To save space, Android does not include the collation tailoring rules. We skip the tailing tests for collations. */ /* TEST(TestVariableTopSetting); */ /* END android-removed */ TEST(TestBocsuCoverage); TEST(TestCyrillicTailoring); TEST(TestCase); TEST(IncompleteCntTest); TEST(BlackBirdTest); TEST(FunkyATest); TEST(BillFairmanTest); TEST(RamsRulesTest); TEST(IsTailoredTest); TEST(TestCollations); TEST(TestChMove); TEST(TestImplicitTailoring); TEST(TestFCDProblem); TEST(TestEmptyRule); /*TEST(TestJ784);*/ /* 'zh' locale has changed - now it is getting tested by TestBeforePinyin */ TEST(TestJ815); /*TEST(TestJ831);*/ /* we changed lv locale */ TEST(TestBefore); TEST(TestRedundantRules); TEST(TestExpansionSyntax); TEST(TestHangulTailoring); TEST(TestUCARules); TEST(TestIncrementalNormalize); TEST(TestComposeDecompose); TEST(TestCompressOverlap); TEST(TestContraction); TEST(TestExpansion); /*TEST(PrintMarkDavis);*/ /* this test doesn't test - just prints sortkeys */ /*TEST(TestGetCaseBit);*/ /*this one requires internal things to be exported */ TEST(TestOptimize); TEST(TestSuppressContractions); TEST(Alexis2); TEST(TestHebrewUCA); TEST(TestPartialSortKeyTermination); TEST(TestSettings); TEST(TestEquals); TEST(TestJ2726); TEST(NullRule); TEST(TestNumericCollation); TEST(TestTibetanConformance); TEST(TestPinyinProblem); TEST(TestImplicitGeneration); TEST(TestSeparateTrees); TEST(TestBeforePinyin); TEST(TestBeforeTightening); /*TEST(TestMoreBefore);*/ TEST(TestTailorNULL); TEST(TestUpperFirstQuaternary); TEST(TestJ4960); TEST(TestJ5223); TEST(TestJ5232); TEST(TestJ5367); TEST(TestHiragana); TEST(TestSortKeyConsistency); TEST(TestVI5913); /* VI, RO tailored rules */ TEST(TestCroatianSortKey); TEST(TestTailor6179); TEST(TestUCAPrecontext); TEST(TestOutOfBuffer5468); TEST(TestSameStrengthList); } #endif /* #if !UCONFIG_NO_COLLATION */