// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/disk_cache/backend_impl.h" #include "base/field_trial.h" #include "base/file_path.h" #include "base/file_util.h" #include "base/histogram.h" #include "base/message_loop.h" #include "base/rand_util.h" #include "base/string_util.h" #include "base/sys_info.h" #include "base/timer.h" #include "base/worker_pool.h" #include "net/base/net_errors.h" #include "net/disk_cache/cache_util.h" #include "net/disk_cache/entry_impl.h" #include "net/disk_cache/errors.h" #include "net/disk_cache/hash.h" #include "net/disk_cache/file.h" // This has to be defined before including histogram_macros.h from this file. #define NET_DISK_CACHE_BACKEND_IMPL_CC_ #include "net/disk_cache/histogram_macros.h" using base::Time; using base::TimeDelta; namespace { const char* kIndexName = "index"; const int kMaxOldFolders = 100; // Seems like ~240 MB correspond to less than 50k entries for 99% of the people. const int k64kEntriesStore = 240 * 1000 * 1000; const int kBaseTableLen = 64 * 1024; const int kDefaultCacheSize = 80 * 1024 * 1024; int DesiredIndexTableLen(int32 storage_size) { if (storage_size <= k64kEntriesStore) return kBaseTableLen; if (storage_size <= k64kEntriesStore * 2) return kBaseTableLen * 2; if (storage_size <= k64kEntriesStore * 4) return kBaseTableLen * 4; if (storage_size <= k64kEntriesStore * 8) return kBaseTableLen * 8; // The biggest storage_size for int32 requires a 4 MB table. return kBaseTableLen * 16; } int MaxStorageSizeForTable(int table_len) { return table_len * (k64kEntriesStore / kBaseTableLen); } size_t GetIndexSize(int table_len) { size_t table_size = sizeof(disk_cache::CacheAddr) * table_len; return sizeof(disk_cache::IndexHeader) + table_size; } // ------------------------------------------------------------------------ // Returns a fully qualified name from path and name, using a given name prefix // and index number. For instance, if the arguments are "/foo", "bar" and 5, it // will return "/foo/old_bar_005". FilePath GetPrefixedName(const FilePath& path, const std::string& name, int index) { std::string tmp = StringPrintf("%s%s_%03d", "old_", name.c_str(), index); return path.AppendASCII(tmp); } // This is a simple Task to cleanup old caches. class CleanupTask : public Task { public: CleanupTask(const FilePath& path, const std::string& name) : path_(path), name_(name) {} virtual void Run(); private: FilePath path_; std::string name_; DISALLOW_EVIL_CONSTRUCTORS(CleanupTask); }; void CleanupTask::Run() { for (int i = 0; i < kMaxOldFolders; i++) { FilePath to_delete = GetPrefixedName(path_, name_, i); disk_cache::DeleteCache(to_delete, true); } } // Returns a full path to rename the current cache, in order to delete it. path // is the current folder location, and name is the current folder name. FilePath GetTempCacheName(const FilePath& path, const std::string& name) { // We'll attempt to have up to kMaxOldFolders folders for deletion. for (int i = 0; i < kMaxOldFolders; i++) { FilePath to_delete = GetPrefixedName(path, name, i); if (!file_util::PathExists(to_delete)) return to_delete; } return FilePath(); } // Moves the cache files to a new folder and creates a task to delete them. bool DelayedCacheCleanup(const FilePath& full_path) { FilePath current_path = full_path.StripTrailingSeparators(); FilePath path = current_path.DirName(); FilePath name = current_path.BaseName(); #if defined(OS_POSIX) std::string name_str = name.value(); #elif defined(OS_WIN) // We created this file so it should only contain ASCII. std::string name_str = WideToASCII(name.value()); #endif FilePath to_delete = GetTempCacheName(path, name_str); if (to_delete.empty()) { LOG(ERROR) << "Unable to get another cache folder"; return false; } if (!disk_cache::MoveCache(full_path, to_delete)) { LOG(ERROR) << "Unable to rename cache folder"; return false; } #if defined(OS_WIN) WorkerPool::PostTask(FROM_HERE, new CleanupTask(path, name_str), true); #elif defined(OS_POSIX) // TODO(rvargas): Use the worker pool. MessageLoop::current()->PostTask(FROM_HERE, new CleanupTask(path, name_str)); #endif return true; } // Sets |current_group| for the current experiment. Returns false if the files // should be discarded. bool InitExperiment(int* current_group) { if (*current_group == 3 || *current_group == 4) { // Discard current cache for groups 3 and 4. return false; } // There is no experiment. *current_group = 0; return true; } // Initializes the field trial structures to allow performance measurements // for the current cache configuration. void SetFieldTrialInfo(int size_group) { static bool first = true; if (!first) return; // Field trials involve static objects so we have to do this only once. first = false; scoped_refptr<FieldTrial> trial1 = new FieldTrial("CacheSize", 10); std::string group1 = StringPrintf("CacheSizeGroup_%d", size_group); trial1->AppendGroup(group1, FieldTrial::kAllRemainingProbability); } } // namespace // ------------------------------------------------------------------------ namespace disk_cache { Backend* CreateCacheBackend(const FilePath& full_path, bool force, int max_bytes, net::CacheType type) { // Create a backend without extra flags. return BackendImpl::CreateBackend(full_path, force, max_bytes, type, kNone); } int PreferedCacheSize(int64 available) { // If there is not enough space to use kDefaultCacheSize, use 80% of the // available space. if (available < kDefaultCacheSize) return static_cast<int32>(available * 8 / 10); // Don't use more than 10% of the available space. if (available < 10 * kDefaultCacheSize) return kDefaultCacheSize; // Use 10% of the free space until we reach 2.5 * kDefaultCacheSize. if (available < static_cast<int64>(kDefaultCacheSize) * 25) return static_cast<int32>(available / 10); // After reaching our target size (2.5 * kDefaultCacheSize), attempt to use // 1% of the availabe space. if (available < static_cast<int64>(kDefaultCacheSize) * 100) return kDefaultCacheSize * 5 / 2; int64 one_percent = available / 100; if (one_percent > kint32max) return kint32max; return static_cast<int32>(one_percent); } // ------------------------------------------------------------------------ // If the initialization of the cache fails, and force is true, we will discard // the whole cache and create a new one. In order to process a potentially large // number of files, we'll rename the cache folder to old_ + original_name + // number, (located on the same parent folder), and spawn a worker thread to // delete all the files on all the stale cache folders. The whole process can // still fail if we are not able to rename the cache folder (for instance due to // a sharing violation), and in that case a cache for this profile (on the // desired path) cannot be created. // // Static. Backend* BackendImpl::CreateBackend(const FilePath& full_path, bool force, int max_bytes, net::CacheType type, BackendFlags flags) { BackendImpl* cache = new BackendImpl(full_path); cache->SetMaxSize(max_bytes); cache->SetType(type); cache->SetFlags(flags); if (cache->Init()) return cache; delete cache; if (!force) return NULL; if (!DelayedCacheCleanup(full_path)) return NULL; // The worker thread will start deleting files soon, but the original folder // is not there anymore... let's create a new set of files. cache = new BackendImpl(full_path); cache->SetMaxSize(max_bytes); cache->SetType(type); cache->SetFlags(flags); if (cache->Init()) return cache; delete cache; LOG(ERROR) << "Unable to create cache"; return NULL; } bool BackendImpl::Init() { DCHECK(!init_); if (init_) return false; bool create_files = false; if (!InitBackingStore(&create_files)) { ReportError(ERR_STORAGE_ERROR); return false; } num_refs_ = num_pending_io_ = max_refs_ = 0; if (!restarted_) { trace_object_ = TraceObject::GetTraceObject(); // Create a recurrent timer of 30 secs. int timer_delay = unit_test_ ? 1000 : 30000; timer_.Start(TimeDelta::FromMilliseconds(timer_delay), this, &BackendImpl::OnStatsTimer); } init_ = true; if (data_->header.experiment != 0 && cache_type_ != net::DISK_CACHE) { // No experiment for other caches. return false; } if (!(user_flags_ & disk_cache::kNoRandom)) { // The unit test controls directly what to test. if (!InitExperiment(&data_->header.experiment)) return false; new_eviction_ = (cache_type_ == net::DISK_CACHE); } if (!CheckIndex()) { ReportError(ERR_INIT_FAILED); return false; } // We don't care if the value overflows. The only thing we care about is that // the id cannot be zero, because that value is used as "not dirty". // Increasing the value once per second gives us many years before a we start // having collisions. data_->header.this_id++; if (!data_->header.this_id) data_->header.this_id++; if (data_->header.crash) { ReportError(ERR_PREVIOUS_CRASH); } else { ReportError(0); data_->header.crash = 1; } if (!block_files_.Init(create_files)) return false; // stats_ and rankings_ may end up calling back to us so we better be enabled. disabled_ = false; if (!stats_.Init(this, &data_->header.stats)) return false; disabled_ = !rankings_.Init(this, new_eviction_); eviction_.Init(this); // Setup load-time data only for the main cache. if (cache_type() == net::DISK_CACHE) SetFieldTrialInfo(GetSizeGroup()); return !disabled_; } BackendImpl::~BackendImpl() { Trace("Backend destructor"); if (!init_) return; if (data_) data_->header.crash = 0; timer_.Stop(); File::WaitForPendingIO(&num_pending_io_); DCHECK(!num_refs_); } // ------------------------------------------------------------------------ int32 BackendImpl::GetEntryCount() const { if (!index_) return 0; // num_entries includes entries already evicted. int32 not_deleted = data_->header.num_entries - data_->header.lru.sizes[Rankings::DELETED]; if (not_deleted < 0) { NOTREACHED(); not_deleted = 0; } return not_deleted; } bool BackendImpl::OpenEntry(const std::string& key, Entry** entry) { if (disabled_) return false; Time start = Time::Now(); uint32 hash = Hash(key); EntryImpl* cache_entry = MatchEntry(key, hash, false); if (!cache_entry) { stats_.OnEvent(Stats::OPEN_MISS); return false; } if (ENTRY_NORMAL != cache_entry->entry()->Data()->state) { // The entry was already evicted. cache_entry->Release(); stats_.OnEvent(Stats::OPEN_MISS); return false; } eviction_.OnOpenEntry(cache_entry); DCHECK(entry); *entry = cache_entry; CACHE_UMA(AGE_MS, "OpenTime", GetSizeGroup(), start); stats_.OnEvent(Stats::OPEN_HIT); return true; } int BackendImpl::OpenEntry(const std::string& key, Entry** entry, CompletionCallback* callback) { if (OpenEntry(key, entry)) return net::OK; return net::ERR_FAILED; } bool BackendImpl::CreateEntry(const std::string& key, Entry** entry) { if (disabled_ || key.empty()) return false; DCHECK(entry); *entry = NULL; Time start = Time::Now(); uint32 hash = Hash(key); scoped_refptr<EntryImpl> parent; Addr entry_address(data_->table[hash & mask_]); if (entry_address.is_initialized()) { // We have an entry already. It could be the one we are looking for, or just // a hash conflict. EntryImpl* old_entry = MatchEntry(key, hash, false); if (old_entry) return ResurrectEntry(old_entry, entry); EntryImpl* parent_entry = MatchEntry(key, hash, true); if (!parent_entry) { NOTREACHED(); return false; } parent.swap(&parent_entry); } int num_blocks; size_t key1_len = sizeof(EntryStore) - offsetof(EntryStore, key); if (key.size() < key1_len || key.size() > static_cast<size_t>(kMaxInternalKeyLength)) num_blocks = 1; else num_blocks = static_cast<int>((key.size() - key1_len) / 256 + 2); if (!block_files_.CreateBlock(BLOCK_256, num_blocks, &entry_address)) { LOG(ERROR) << "Create entry failed " << key.c_str(); stats_.OnEvent(Stats::CREATE_ERROR); return false; } Addr node_address(0); if (!block_files_.CreateBlock(RANKINGS, 1, &node_address)) { block_files_.DeleteBlock(entry_address, false); LOG(ERROR) << "Create entry failed " << key.c_str(); stats_.OnEvent(Stats::CREATE_ERROR); return false; } scoped_refptr<EntryImpl> cache_entry(new EntryImpl(this, entry_address)); IncreaseNumRefs(); if (!cache_entry->CreateEntry(node_address, key, hash)) { block_files_.DeleteBlock(entry_address, false); block_files_.DeleteBlock(node_address, false); LOG(ERROR) << "Create entry failed " << key.c_str(); stats_.OnEvent(Stats::CREATE_ERROR); return false; } // We are not failing the operation; let's add this to the map. open_entries_[entry_address.value()] = cache_entry; if (parent.get()) parent->SetNextAddress(entry_address); block_files_.GetFile(entry_address)->Store(cache_entry->entry()); block_files_.GetFile(node_address)->Store(cache_entry->rankings()); IncreaseNumEntries(); eviction_.OnCreateEntry(cache_entry); if (!parent.get()) data_->table[hash & mask_] = entry_address.value(); cache_entry.swap(reinterpret_cast<EntryImpl**>(entry)); CACHE_UMA(AGE_MS, "CreateTime", GetSizeGroup(), start); stats_.OnEvent(Stats::CREATE_HIT); Trace("create entry hit "); return true; } int BackendImpl::CreateEntry(const std::string& key, Entry** entry, CompletionCallback* callback) { if (CreateEntry(key, entry)) return net::OK; return net::ERR_FAILED; } bool BackendImpl::DoomEntry(const std::string& key) { if (disabled_) return false; Entry* entry; if (!OpenEntry(key, &entry)) return false; // Note that you'd think you could just pass &entry_impl to OpenEntry, // but that triggers strict aliasing problems with gcc. EntryImpl* entry_impl = reinterpret_cast<EntryImpl*>(entry); entry_impl->Doom(); entry_impl->Release(); return true; } int BackendImpl::DoomEntry(const std::string& key, CompletionCallback* callback) { if (DoomEntry(key)) return net::OK; return net::ERR_FAILED; } bool BackendImpl::DoomAllEntries() { if (!num_refs_) { PrepareForRestart(); DeleteCache(path_, false); return Init(); } else { if (disabled_) return false; eviction_.TrimCache(true); stats_.OnEvent(Stats::DOOM_CACHE); return true; } } int BackendImpl::DoomAllEntries(CompletionCallback* callback) { if (DoomAllEntries()) return net::OK; return net::ERR_FAILED; } bool BackendImpl::DoomEntriesBetween(const Time initial_time, const Time end_time) { if (end_time.is_null()) return DoomEntriesSince(initial_time); DCHECK(end_time >= initial_time); if (disabled_) return false; Entry* node, *next; void* iter = NULL; if (!OpenNextEntry(&iter, &next)) return true; while (next) { node = next; if (!OpenNextEntry(&iter, &next)) next = NULL; if (node->GetLastUsed() >= initial_time && node->GetLastUsed() < end_time) { node->Doom(); } else if (node->GetLastUsed() < initial_time) { if (next) next->Close(); next = NULL; EndEnumeration(&iter); } node->Close(); } return true; } int BackendImpl::DoomEntriesBetween(const base::Time initial_time, const base::Time end_time, CompletionCallback* callback) { if (DoomEntriesBetween(initial_time, end_time)) return net::OK; return net::ERR_FAILED; } // We use OpenNextEntry to retrieve elements from the cache, until we get // entries that are too old. bool BackendImpl::DoomEntriesSince(const Time initial_time) { if (disabled_) return false; for (;;) { Entry* entry; void* iter = NULL; if (!OpenNextEntry(&iter, &entry)) return true; if (initial_time > entry->GetLastUsed()) { entry->Close(); EndEnumeration(&iter); return true; } entry->Doom(); entry->Close(); EndEnumeration(&iter); // Dooming the entry invalidates the iterator. } } int BackendImpl::DoomEntriesSince(const base::Time initial_time, CompletionCallback* callback) { if (DoomEntriesSince(initial_time)) return net::OK; return net::ERR_FAILED; } bool BackendImpl::OpenNextEntry(void** iter, Entry** next_entry) { return OpenFollowingEntry(true, iter, next_entry); } int BackendImpl::OpenNextEntry(void** iter, Entry** next_entry, CompletionCallback* callback) { if (OpenNextEntry(iter, next_entry)) return net::OK; return net::ERR_FAILED; } void BackendImpl::EndEnumeration(void** iter) { scoped_ptr<Rankings::Iterator> iterator( reinterpret_cast<Rankings::Iterator*>(*iter)); *iter = NULL; } void BackendImpl::GetStats(StatsItems* stats) { if (disabled_) return; std::pair<std::string, std::string> item; item.first = "Entries"; item.second = StringPrintf("%d", data_->header.num_entries); stats->push_back(item); item.first = "Pending IO"; item.second = StringPrintf("%d", num_pending_io_); stats->push_back(item); item.first = "Max size"; item.second = StringPrintf("%d", max_size_); stats->push_back(item); item.first = "Current size"; item.second = StringPrintf("%d", data_->header.num_bytes); stats->push_back(item); stats_.GetItems(stats); } // ------------------------------------------------------------------------ bool BackendImpl::SetMaxSize(int max_bytes) { COMPILE_ASSERT(sizeof(max_bytes) == sizeof(max_size_), unsupported_int_model); if (max_bytes < 0) return false; // Zero size means use the default. if (!max_bytes) return true; // Avoid a DCHECK later on. if (max_bytes >= kint32max - kint32max / 10) max_bytes = kint32max - kint32max / 10 - 1; user_flags_ |= kMaxSize; max_size_ = max_bytes; return true; } void BackendImpl::SetType(net::CacheType type) { DCHECK(type != net::MEMORY_CACHE); cache_type_ = type; } FilePath BackendImpl::GetFileName(Addr address) const { if (!address.is_separate_file() || !address.is_initialized()) { NOTREACHED(); return FilePath(); } std::string tmp = StringPrintf("f_%06x", address.FileNumber()); return path_.AppendASCII(tmp); } MappedFile* BackendImpl::File(Addr address) { if (disabled_) return NULL; return block_files_.GetFile(address); } bool BackendImpl::CreateExternalFile(Addr* address) { int file_number = data_->header.last_file + 1; Addr file_address(0); bool success = false; for (int i = 0; i < 0x0fffffff; i++, file_number++) { if (!file_address.SetFileNumber(file_number)) { file_number = 1; continue; } FilePath name = GetFileName(file_address); int flags = base::PLATFORM_FILE_READ | base::PLATFORM_FILE_WRITE | base::PLATFORM_FILE_CREATE | base::PLATFORM_FILE_EXCLUSIVE_WRITE; scoped_refptr<disk_cache::File> file(new disk_cache::File( base::CreatePlatformFile(name, flags, NULL))); if (!file->IsValid()) continue; success = true; break; } DCHECK(success); if (!success) return false; data_->header.last_file = file_number; address->set_value(file_address.value()); return true; } bool BackendImpl::CreateBlock(FileType block_type, int block_count, Addr* block_address) { return block_files_.CreateBlock(block_type, block_count, block_address); } void BackendImpl::DeleteBlock(Addr block_address, bool deep) { block_files_.DeleteBlock(block_address, deep); } LruData* BackendImpl::GetLruData() { return &data_->header.lru; } void BackendImpl::UpdateRank(EntryImpl* entry, bool modified) { if (!read_only_) { eviction_.UpdateRank(entry, modified); } } void BackendImpl::RecoveredEntry(CacheRankingsBlock* rankings) { Addr address(rankings->Data()->contents); EntryImpl* cache_entry = NULL; bool dirty; if (NewEntry(address, &cache_entry, &dirty)) return; uint32 hash = cache_entry->GetHash(); cache_entry->Release(); // Anything on the table means that this entry is there. if (data_->table[hash & mask_]) return; data_->table[hash & mask_] = address.value(); } void BackendImpl::InternalDoomEntry(EntryImpl* entry) { uint32 hash = entry->GetHash(); std::string key = entry->GetKey(); EntryImpl* parent_entry = MatchEntry(key, hash, true); CacheAddr child(entry->GetNextAddress()); Trace("Doom entry 0x%p", entry); eviction_.OnDoomEntry(entry); entry->InternalDoom(); if (parent_entry) { parent_entry->SetNextAddress(Addr(child)); parent_entry->Release(); } else { data_->table[hash & mask_] = child; } if (!new_eviction_) { DecreaseNumEntries(); } stats_.OnEvent(Stats::DOOM_ENTRY); } // An entry may be linked on the DELETED list for a while after being doomed. // This function is called when we want to remove it. void BackendImpl::RemoveEntry(EntryImpl* entry) { if (!new_eviction_) return; DCHECK(ENTRY_NORMAL != entry->entry()->Data()->state); Trace("Remove entry 0x%p", entry); eviction_.OnDestroyEntry(entry); DecreaseNumEntries(); } void BackendImpl::CacheEntryDestroyed(Addr address) { EntriesMap::iterator it = open_entries_.find(address.value()); if (it != open_entries_.end()) open_entries_.erase(it); DecreaseNumRefs(); } EntryImpl* BackendImpl::GetOpenEntry(CacheRankingsBlock* rankings) const { DCHECK(rankings->HasData()); EntriesMap::const_iterator it = open_entries_.find(rankings->Data()->contents); if (it != open_entries_.end()) { // We have this entry in memory. return it->second; } return NULL; } int32 BackendImpl::GetCurrentEntryId() const { return data_->header.this_id; } int BackendImpl::MaxFileSize() const { return max_size_ / 8; } void BackendImpl::ModifyStorageSize(int32 old_size, int32 new_size) { if (disabled_ || old_size == new_size) return; if (old_size > new_size) SubstractStorageSize(old_size - new_size); else AddStorageSize(new_size - old_size); // Update the usage statistics. stats_.ModifyStorageStats(old_size, new_size); } void BackendImpl::TooMuchStorageRequested(int32 size) { stats_.ModifyStorageStats(0, size); } bool BackendImpl::IsLoaded() const { CACHE_UMA(COUNTS, "PendingIO", GetSizeGroup(), num_pending_io_); if (user_flags_ & kNoLoadProtection) return false; return num_pending_io_ > 5; } std::string BackendImpl::HistogramName(const char* name, int experiment) const { if (!experiment) return StringPrintf("DiskCache.%d.%s", cache_type_, name); return StringPrintf("DiskCache.%d.%s_%d", cache_type_, name, experiment); } int BackendImpl::GetSizeGroup() const { if (disabled_) return 0; // We want to report times grouped by the current cache size (50 MB groups). int group = data_->header.num_bytes / (50 * 1024 * 1024); if (group > 6) group = 6; // Limit the number of groups, just in case. return group; } // We want to remove biases from some histograms so we only send data once per // week. bool BackendImpl::ShouldReportAgain() { if (uma_report_) return uma_report_ == 2; uma_report_++; int64 last_report = stats_.GetCounter(Stats::LAST_REPORT); Time last_time = Time::FromInternalValue(last_report); if (!last_report || (Time::Now() - last_time).InDays() >= 7) { stats_.SetCounter(Stats::LAST_REPORT, Time::Now().ToInternalValue()); uma_report_++; return true; } return false; } void BackendImpl::FirstEviction() { DCHECK(data_->header.create_time); Time create_time = Time::FromInternalValue(data_->header.create_time); CACHE_UMA(AGE, "FillupAge", 0, create_time); int64 use_hours = stats_.GetCounter(Stats::TIMER) / 120; CACHE_UMA(HOURS, "FillupTime", 0, static_cast<int>(use_hours)); CACHE_UMA(PERCENTAGE, "FirstHitRatio", 0, stats_.GetHitRatio()); int avg_size = data_->header.num_bytes / GetEntryCount(); CACHE_UMA(COUNTS, "FirstEntrySize", 0, avg_size); int large_entries_bytes = stats_.GetLargeEntriesSize(); int large_ratio = large_entries_bytes * 100 / data_->header.num_bytes; CACHE_UMA(PERCENTAGE, "FirstLargeEntriesRatio", 0, large_ratio); if (new_eviction_) { CACHE_UMA(PERCENTAGE, "FirstResurrectRatio", 0, stats_.GetResurrectRatio()); CACHE_UMA(PERCENTAGE, "FirstNoUseRatio", 0, data_->header.lru.sizes[0] * 100 / data_->header.num_entries); CACHE_UMA(PERCENTAGE, "FirstLowUseRatio", 0, data_->header.lru.sizes[1] * 100 / data_->header.num_entries); CACHE_UMA(PERCENTAGE, "FirstHighUseRatio", 0, data_->header.lru.sizes[2] * 100 / data_->header.num_entries); } stats_.ResetRatios(); } void BackendImpl::CriticalError(int error) { LOG(ERROR) << "Critical error found " << error; if (disabled_) return; LogStats(); ReportError(error); // Setting the index table length to an invalid value will force re-creation // of the cache files. data_->header.table_len = 1; disabled_ = true; if (!num_refs_) MessageLoop::current()->PostTask(FROM_HERE, factory_.NewRunnableMethod(&BackendImpl::RestartCache)); } void BackendImpl::ReportError(int error) { // We transmit positive numbers, instead of direct error codes. DCHECK(error <= 0); CACHE_UMA(CACHE_ERROR, "Error", 0, error * -1); } void BackendImpl::OnEvent(Stats::Counters an_event) { stats_.OnEvent(an_event); } void BackendImpl::OnStatsTimer() { stats_.OnEvent(Stats::TIMER); int64 time = stats_.GetCounter(Stats::TIMER); int64 current = stats_.GetCounter(Stats::OPEN_ENTRIES); // OPEN_ENTRIES is a sampled average of the number of open entries, avoiding // the bias towards 0. if (num_refs_ && (current != num_refs_)) { int64 diff = (num_refs_ - current) / 50; if (!diff) diff = num_refs_ > current ? 1 : -1; current = current + diff; stats_.SetCounter(Stats::OPEN_ENTRIES, current); stats_.SetCounter(Stats::MAX_ENTRIES, max_refs_); } CACHE_UMA(COUNTS, "NumberOfReferences", 0, num_refs_); if (!data_) first_timer_ = false; if (first_timer_) { first_timer_ = false; if (ShouldReportAgain()) ReportStats(); } // Save stats to disk at 5 min intervals. if (time % 10 == 0) stats_.Store(); } void BackendImpl::IncrementIoCount() { num_pending_io_++; } void BackendImpl::DecrementIoCount() { num_pending_io_--; } void BackendImpl::SetUnitTestMode() { user_flags_ |= kUnitTestMode; unit_test_ = true; } void BackendImpl::SetUpgradeMode() { user_flags_ |= kUpgradeMode; read_only_ = true; } void BackendImpl::SetNewEviction() { user_flags_ |= kNewEviction; new_eviction_ = true; } void BackendImpl::SetFlags(uint32 flags) { user_flags_ |= flags; } void BackendImpl::ClearRefCountForTest() { num_refs_ = 0; } int BackendImpl::SelfCheck() { if (!init_) { LOG(ERROR) << "Init failed"; return ERR_INIT_FAILED; } int num_entries = rankings_.SelfCheck(); if (num_entries < 0) { LOG(ERROR) << "Invalid rankings list, error " << num_entries; return num_entries; } if (num_entries != data_->header.num_entries) { LOG(ERROR) << "Number of entries mismatch"; return ERR_NUM_ENTRIES_MISMATCH; } return CheckAllEntries(); } bool BackendImpl::OpenPrevEntry(void** iter, Entry** prev_entry) { return OpenFollowingEntry(false, iter, prev_entry); } // ------------------------------------------------------------------------ // We just created a new file so we're going to write the header and set the // file length to include the hash table (zero filled). bool BackendImpl::CreateBackingStore(disk_cache::File* file) { AdjustMaxCacheSize(0); IndexHeader header; header.table_len = DesiredIndexTableLen(max_size_); // We need file version 2.1 for the new eviction algorithm. if (new_eviction_) header.version = 0x20001; header.create_time = Time::Now().ToInternalValue(); if (!file->Write(&header, sizeof(header), 0)) return false; return file->SetLength(GetIndexSize(header.table_len)); } bool BackendImpl::InitBackingStore(bool* file_created) { file_util::CreateDirectory(path_); FilePath index_name = path_.AppendASCII(kIndexName); int flags = base::PLATFORM_FILE_READ | base::PLATFORM_FILE_WRITE | base::PLATFORM_FILE_OPEN_ALWAYS | base::PLATFORM_FILE_EXCLUSIVE_WRITE; scoped_refptr<disk_cache::File> file(new disk_cache::File( base::CreatePlatformFile(index_name, flags, file_created))); if (!file->IsValid()) return false; bool ret = true; if (*file_created) ret = CreateBackingStore(file); file = NULL; if (!ret) return false; index_ = new MappedFile(); data_ = reinterpret_cast<Index*>(index_->Init(index_name, 0)); if (!data_) { LOG(ERROR) << "Unable to map Index file"; return false; } return true; } // The maximum cache size will be either set explicitly by the caller, or // calculated by this code. void BackendImpl::AdjustMaxCacheSize(int table_len) { if (max_size_) return; // If table_len is provided, the index file exists. DCHECK(!table_len || data_->header.magic); // The user is not setting the size, let's figure it out. int64 available = base::SysInfo::AmountOfFreeDiskSpace(path_); if (available < 0) { max_size_ = kDefaultCacheSize; return; } if (table_len) available += data_->header.num_bytes; max_size_ = PreferedCacheSize(available); // Let's not use more than the default size while we tune-up the performance // of bigger caches. TODO(rvargas): remove this limit. if (max_size_ > kDefaultCacheSize * 4) max_size_ = kDefaultCacheSize * 4; if (!table_len) return; // If we already have a table, adjust the size to it. int current_max_size = MaxStorageSizeForTable(table_len); if (max_size_ > current_max_size) max_size_= current_max_size; } // We always execute this method from the message loop so that we can freely // release files, memory pointers etc. void BackendImpl::RestartCache() { DCHECK(!num_refs_); DCHECK(!open_entries_.size()); PrepareForRestart(); DelayedCacheCleanup(path_); int64 errors = stats_.GetCounter(Stats::FATAL_ERROR); // Don't call Init() if directed by the unit test: we are simulating a failure // trying to re-enable the cache. if (unit_test_) init_ = true; // Let the destructor do proper cleanup. else if (Init()) stats_.SetCounter(Stats::FATAL_ERROR, errors + 1); } void BackendImpl::PrepareForRestart() { // Reset the mask_ if it was not given by the user. if (!(user_flags_ & kMask)) mask_ = 0; if (!(user_flags_ & kNewEviction)) new_eviction_ = false; data_->header.crash = 0; index_ = NULL; data_ = NULL; block_files_.CloseFiles(); rankings_.Reset(); init_ = false; restarted_ = true; } int BackendImpl::NewEntry(Addr address, EntryImpl** entry, bool* dirty) { EntriesMap::iterator it = open_entries_.find(address.value()); if (it != open_entries_.end()) { // Easy job. This entry is already in memory. EntryImpl* this_entry = it->second; this_entry->AddRef(); *entry = this_entry; *dirty = false; return 0; } scoped_refptr<EntryImpl> cache_entry(new EntryImpl(this, address)); IncreaseNumRefs(); *entry = NULL; if (!address.is_initialized() || address.is_separate_file() || address.file_type() != BLOCK_256) { LOG(WARNING) << "Wrong entry address."; return ERR_INVALID_ADDRESS; } if (!cache_entry->entry()->Load()) return ERR_READ_FAILURE; if (!cache_entry->SanityCheck()) { LOG(WARNING) << "Messed up entry found."; return ERR_INVALID_ENTRY; } if (!cache_entry->LoadNodeAddress()) return ERR_READ_FAILURE; *dirty = cache_entry->IsDirty(GetCurrentEntryId()); // Prevent overwriting the dirty flag on the destructor. cache_entry->ClearDirtyFlag(); if (!rankings_.SanityCheck(cache_entry->rankings(), false)) return ERR_INVALID_LINKS; // We only add clean entries to the map. if (!*dirty) open_entries_[address.value()] = cache_entry; cache_entry.swap(entry); return 0; } EntryImpl* BackendImpl::MatchEntry(const std::string& key, uint32 hash, bool find_parent) { Addr address(data_->table[hash & mask_]); scoped_refptr<EntryImpl> cache_entry, parent_entry; EntryImpl* tmp = NULL; bool found = false; for (;;) { if (disabled_) break; if (!address.is_initialized()) { if (find_parent) found = true; break; } bool dirty; int error = NewEntry(address, &tmp, &dirty); cache_entry.swap(&tmp); if (error || dirty) { // This entry is dirty on disk (it was not properly closed): we cannot // trust it. Addr child(0); if (!error) child.set_value(cache_entry->GetNextAddress()); if (parent_entry) { parent_entry->SetNextAddress(child); parent_entry = NULL; } else { data_->table[hash & mask_] = child.value(); } if (!error) { // It is important to call DestroyInvalidEntry after removing this // entry from the table. DestroyInvalidEntry(cache_entry); cache_entry = NULL; } else { Trace("NewEntry failed on MatchEntry 0x%x", address.value()); } // Restart the search. address.set_value(data_->table[hash & mask_]); continue; } if (cache_entry->IsSameEntry(key, hash)) { if (!cache_entry->Update()) cache_entry = NULL; found = true; break; } if (!cache_entry->Update()) cache_entry = NULL; parent_entry = cache_entry; cache_entry = NULL; if (!parent_entry) break; address.set_value(parent_entry->GetNextAddress()); } if (parent_entry && (!find_parent || !found)) parent_entry = NULL; if (cache_entry && (find_parent || !found)) cache_entry = NULL; find_parent ? parent_entry.swap(&tmp) : cache_entry.swap(&tmp); return tmp; } // This is the actual implementation for OpenNextEntry and OpenPrevEntry. bool BackendImpl::OpenFollowingEntry(bool forward, void** iter, Entry** next_entry) { if (disabled_) return false; DCHECK(iter); DCHECK(next_entry); *next_entry = NULL; const int kListsToSearch = 3; scoped_refptr<EntryImpl> entries[kListsToSearch]; scoped_ptr<Rankings::Iterator> iterator( reinterpret_cast<Rankings::Iterator*>(*iter)); *iter = NULL; if (!iterator.get()) { iterator.reset(new Rankings::Iterator(&rankings_)); bool ret = false; // Get an entry from each list. for (int i = 0; i < kListsToSearch; i++) { EntryImpl* temp = NULL; ret |= OpenFollowingEntryFromList(forward, static_cast<Rankings::List>(i), &iterator->nodes[i], &temp); entries[i].swap(&temp); // The entry was already addref'd. } if (!ret) return false; } else { // Get the next entry from the last list, and the actual entries for the // elements on the other lists. for (int i = 0; i < kListsToSearch; i++) { EntryImpl* temp = NULL; if (iterator->list == i) { OpenFollowingEntryFromList(forward, iterator->list, &iterator->nodes[i], &temp); } else { temp = GetEnumeratedEntry(iterator->nodes[i], false); } entries[i].swap(&temp); // The entry was already addref'd. } } int newest = -1; int oldest = -1; Time access_times[kListsToSearch]; for (int i = 0; i < kListsToSearch; i++) { if (entries[i].get()) { access_times[i] = entries[i]->GetLastUsed(); if (newest < 0) { DCHECK(oldest < 0); newest = oldest = i; continue; } if (access_times[i] > access_times[newest]) newest = i; if (access_times[i] < access_times[oldest]) oldest = i; } } if (newest < 0 || oldest < 0) return false; if (forward) { entries[newest].swap(reinterpret_cast<EntryImpl**>(next_entry)); iterator->list = static_cast<Rankings::List>(newest); } else { entries[oldest].swap(reinterpret_cast<EntryImpl**>(next_entry)); iterator->list = static_cast<Rankings::List>(oldest); } *iter = iterator.release(); return true; } bool BackendImpl::OpenFollowingEntryFromList(bool forward, Rankings::List list, CacheRankingsBlock** from_entry, EntryImpl** next_entry) { if (disabled_) return false; if (!new_eviction_ && Rankings::NO_USE != list) return false; Rankings::ScopedRankingsBlock rankings(&rankings_, *from_entry); CacheRankingsBlock* next_block = forward ? rankings_.GetNext(rankings.get(), list) : rankings_.GetPrev(rankings.get(), list); Rankings::ScopedRankingsBlock next(&rankings_, next_block); *from_entry = NULL; *next_entry = GetEnumeratedEntry(next.get(), false); if (!*next_entry) return false; *from_entry = next.release(); return true; } EntryImpl* BackendImpl::GetEnumeratedEntry(CacheRankingsBlock* next, bool to_evict) { if (!next || disabled_) return NULL; EntryImpl* entry; bool dirty; if (NewEntry(Addr(next->Data()->contents), &entry, &dirty)) return NULL; if (dirty) { // We cannot trust this entry. This code also releases the reference. DestroyInvalidEntryFromEnumeration(entry); return NULL; } // There is no need to store the entry to disk if we want to delete it. if (!to_evict && !entry->Update()) { entry->Release(); return NULL; } return entry; } bool BackendImpl::ResurrectEntry(EntryImpl* deleted_entry, Entry** entry) { if (ENTRY_NORMAL == deleted_entry->entry()->Data()->state) { deleted_entry->Release(); stats_.OnEvent(Stats::CREATE_MISS); Trace("create entry miss "); return false; } // We are attempting to create an entry and found out that the entry was // previously deleted. eviction_.OnCreateEntry(deleted_entry); *entry = deleted_entry; stats_.OnEvent(Stats::CREATE_HIT); Trace("Resurrect entry hit "); return true; } void BackendImpl::DestroyInvalidEntry(EntryImpl* entry) { LOG(WARNING) << "Destroying invalid entry."; Trace("Destroying invalid entry 0x%p", entry); entry->SetPointerForInvalidEntry(GetCurrentEntryId()); eviction_.OnDoomEntry(entry); entry->InternalDoom(); if (!new_eviction_) DecreaseNumEntries(); stats_.OnEvent(Stats::INVALID_ENTRY); } // This is kind of ugly. The entry may or may not be part of the cache index // table, and it may even have corrupt fields. If we just doom it, we may end up // deleting it twice (if all fields are right, and when looking up the parent of // chained entries wee see this one... and we delete it because it is dirty). If // we ignore it, we may leave it here forever. So we're going to attempt to // delete it through the provided object, without touching the index table // (because we cannot jus call MatchEntry()), and also attempt to delete it from // the table through the key: this may find a new entry (too bad), or an entry // that was just deleted and consider it a very corrupt entry. void BackendImpl::DestroyInvalidEntryFromEnumeration(EntryImpl* entry) { std::string key = entry->GetKey(); entry->SetPointerForInvalidEntry(GetCurrentEntryId()); CacheAddr next_entry = entry->entry()->Data()->next; if (!next_entry) { DestroyInvalidEntry(entry); entry->Release(); } DoomEntry(key); if (!next_entry) return; // We have a chained entry so instead of destroying first this entry and then // anything with this key, we just called DoomEntry() first. If that call // deleted everything, |entry| has invalid data. Let's see if there is // something else to do. We started with just a rankings node (we come from // an enumeration), so that one may still be there. CacheRankingsBlock* rankings = entry->rankings(); rankings->Load(); if (rankings->Data()->contents) { // We still have something. Clean this up. DestroyInvalidEntry(entry); } entry->Release(); } void BackendImpl::AddStorageSize(int32 bytes) { data_->header.num_bytes += bytes; DCHECK(data_->header.num_bytes >= 0); if (data_->header.num_bytes > max_size_) eviction_.TrimCache(false); } void BackendImpl::SubstractStorageSize(int32 bytes) { data_->header.num_bytes -= bytes; DCHECK(data_->header.num_bytes >= 0); } void BackendImpl::IncreaseNumRefs() { num_refs_++; if (max_refs_ < num_refs_) max_refs_ = num_refs_; } void BackendImpl::DecreaseNumRefs() { DCHECK(num_refs_); num_refs_--; if (!num_refs_ && disabled_) MessageLoop::current()->PostTask(FROM_HERE, factory_.NewRunnableMethod(&BackendImpl::RestartCache)); } void BackendImpl::IncreaseNumEntries() { data_->header.num_entries++; DCHECK(data_->header.num_entries > 0); } void BackendImpl::DecreaseNumEntries() { data_->header.num_entries--; if (data_->header.num_entries < 0) { NOTREACHED(); data_->header.num_entries = 0; } } void BackendImpl::LogStats() { StatsItems stats; GetStats(&stats); for (size_t index = 0; index < stats.size(); index++) { LOG(INFO) << stats[index].first << ": " << stats[index].second; } } void BackendImpl::ReportStats() { CACHE_UMA(COUNTS, "Entries", 0, data_->header.num_entries); CACHE_UMA(COUNTS, "Size", 0, data_->header.num_bytes / (1024 * 1024)); CACHE_UMA(COUNTS, "MaxSize", 0, max_size_ / (1024 * 1024)); CACHE_UMA(COUNTS, "AverageOpenEntries", 0, static_cast<int>(stats_.GetCounter(Stats::OPEN_ENTRIES))); CACHE_UMA(COUNTS, "MaxOpenEntries", 0, static_cast<int>(stats_.GetCounter(Stats::MAX_ENTRIES))); stats_.SetCounter(Stats::MAX_ENTRIES, 0); if (!data_->header.create_time || !data_->header.lru.filled) return; // This is an up to date client that will report FirstEviction() data. After // that event, start reporting this: int64 total_hours = stats_.GetCounter(Stats::TIMER) / 120; CACHE_UMA(HOURS, "TotalTime", 0, static_cast<int>(total_hours)); int64 use_hours = stats_.GetCounter(Stats::LAST_REPORT_TIMER) / 120; stats_.SetCounter(Stats::LAST_REPORT_TIMER, stats_.GetCounter(Stats::TIMER)); // We may see users with no use_hours at this point if this is the first time // we are running this code. if (use_hours) use_hours = total_hours - use_hours; if (!use_hours || !GetEntryCount() || !data_->header.num_bytes) return; CACHE_UMA(HOURS, "UseTime", 0, static_cast<int>(use_hours)); CACHE_UMA(PERCENTAGE, "HitRatio", 0, stats_.GetHitRatio()); int64 trim_rate = stats_.GetCounter(Stats::TRIM_ENTRY) / use_hours; CACHE_UMA(COUNTS, "TrimRate", 0, static_cast<int>(trim_rate)); int avg_size = data_->header.num_bytes / GetEntryCount(); CACHE_UMA(COUNTS, "EntrySize", 0, avg_size); int large_entries_bytes = stats_.GetLargeEntriesSize(); int large_ratio = large_entries_bytes * 100 / data_->header.num_bytes; CACHE_UMA(PERCENTAGE, "LargeEntriesRatio", 0, large_ratio); if (new_eviction_) { CACHE_UMA(PERCENTAGE, "ResurrectRatio", 0, stats_.GetResurrectRatio()); CACHE_UMA(PERCENTAGE, "NoUseRatio", 0, data_->header.lru.sizes[0] * 100 / data_->header.num_entries); CACHE_UMA(PERCENTAGE, "LowUseRatio", 0, data_->header.lru.sizes[1] * 100 / data_->header.num_entries); CACHE_UMA(PERCENTAGE, "HighUseRatio", 0, data_->header.lru.sizes[2] * 100 / data_->header.num_entries); CACHE_UMA(PERCENTAGE, "DeletedRatio", 0, data_->header.lru.sizes[4] * 100 / data_->header.num_entries); } stats_.ResetRatios(); stats_.SetCounter(Stats::TRIM_ENTRY, 0); } void BackendImpl::UpgradeTo2_1() { // 2.1 is basically the same as 2.0, except that new fields are actually // updated by the new eviction algorithm. DCHECK(0x20000 == data_->header.version); data_->header.version = 0x20001; data_->header.lru.sizes[Rankings::NO_USE] = data_->header.num_entries; } bool BackendImpl::CheckIndex() { DCHECK(data_); size_t current_size = index_->GetLength(); if (current_size < sizeof(Index)) { LOG(ERROR) << "Corrupt Index file"; return false; } if (new_eviction_) { // We support versions 2.0 and 2.1, upgrading 2.0 to 2.1. if (kIndexMagic != data_->header.magic || kCurrentVersion >> 16 != data_->header.version >> 16) { LOG(ERROR) << "Invalid file version or magic"; return false; } if (kCurrentVersion == data_->header.version) { // We need file version 2.1 for the new eviction algorithm. UpgradeTo2_1(); } } else { if (kIndexMagic != data_->header.magic || kCurrentVersion != data_->header.version) { LOG(ERROR) << "Invalid file version or magic"; return false; } } if (!data_->header.table_len) { LOG(ERROR) << "Invalid table size"; return false; } if (current_size < GetIndexSize(data_->header.table_len) || data_->header.table_len & (kBaseTableLen - 1)) { LOG(ERROR) << "Corrupt Index file"; return false; } AdjustMaxCacheSize(data_->header.table_len); if (data_->header.num_bytes < 0) { LOG(ERROR) << "Invalid cache (current) size"; return false; } if (data_->header.num_entries < 0) { LOG(ERROR) << "Invalid number of entries"; return false; } if (!mask_) mask_ = data_->header.table_len - 1; return true; } int BackendImpl::CheckAllEntries() { int num_dirty = 0; int num_entries = 0; DCHECK(mask_ < kuint32max); for (int i = 0; i <= static_cast<int>(mask_); i++) { Addr address(data_->table[i]); if (!address.is_initialized()) continue; for (;;) { bool dirty; EntryImpl* tmp; int ret = NewEntry(address, &tmp, &dirty); if (ret) return ret; scoped_refptr<EntryImpl> cache_entry; cache_entry.swap(&tmp); if (dirty) num_dirty++; else if (CheckEntry(cache_entry.get())) num_entries++; else return ERR_INVALID_ENTRY; address.set_value(cache_entry->GetNextAddress()); if (!address.is_initialized()) break; } } if (num_entries + num_dirty != data_->header.num_entries) { LOG(ERROR) << "Number of entries mismatch"; return ERR_NUM_ENTRIES_MISMATCH; } return num_dirty; } bool BackendImpl::CheckEntry(EntryImpl* cache_entry) { RankingsNode* rankings = cache_entry->rankings()->Data(); return !rankings->dummy; } } // namespace disk_cache