// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef BASE_STACK_CONTAINER_H_ #define BASE_STACK_CONTAINER_H_ #include <string> #include <vector> #include "base/basictypes.h" // This allocator can be used with STL containers to provide a stack buffer // from which to allocate memory and overflows onto the heap. This stack buffer // would be allocated on the stack and allows us to avoid heap operations in // some situations. // // STL likes to make copies of allocators, so the allocator itself can't hold // the data. Instead, we make the creator responsible for creating a // StackAllocator::Source which contains the data. Copying the allocator // merely copies the pointer to this shared source, so all allocators created // based on our allocator will share the same stack buffer. // // This stack buffer implementation is very simple. The first allocation that // fits in the stack buffer will use the stack buffer. Any subsequent // allocations will not use the stack buffer, even if there is unused room. // This makes it appropriate for array-like containers, but the caller should // be sure to reserve() in the container up to the stack buffer size. Otherwise // the container will allocate a small array which will "use up" the stack // buffer. template<typename T, size_t stack_capacity> class StackAllocator : public std::allocator<T> { public: typedef typename std::allocator<T>::pointer pointer; typedef typename std::allocator<T>::size_type size_type; // Backing store for the allocator. The container owner is responsible for // maintaining this for as long as any containers using this allocator are // live. struct Source { Source() : used_stack_buffer_(false) { } // Casts the buffer in its right type. T* stack_buffer() { return reinterpret_cast<T*>(stack_buffer_); } const T* stack_buffer() const { return reinterpret_cast<const T*>(stack_buffer_); } // // IMPORTANT: Take care to ensure that stack_buffer_ is aligned // since it is used to mimic an array of T. // Be careful while declaring any unaligned types (like bool) // before stack_buffer_. // // The buffer itself. It is not of type T because we don't want the // constructors and destructors to be automatically called. Define a POD // buffer of the right size instead. char stack_buffer_[sizeof(T[stack_capacity])]; // Set when the stack buffer is used for an allocation. We do not track // how much of the buffer is used, only that somebody is using it. bool used_stack_buffer_; }; // Used by containers when they want to refer to an allocator of type U. template<typename U> struct rebind { typedef StackAllocator<U, stack_capacity> other; }; // For the straight up copy c-tor, we can share storage. StackAllocator(const StackAllocator<T, stack_capacity>& rhs) : source_(rhs.source_) { } // ISO C++ requires the following constructor to be defined, // and std::vector in VC++2008SP1 Release fails with an error // in the class _Container_base_aux_alloc_real (from <xutility>) // if the constructor does not exist. // For this constructor, we cannot share storage; there's // no guarantee that the Source buffer of Ts is large enough // for Us. // TODO: If we were fancy pants, perhaps we could share storage // iff sizeof(T) == sizeof(U). template<typename U, size_t other_capacity> StackAllocator(const StackAllocator<U, other_capacity>& other) : source_(NULL) { } explicit StackAllocator(Source* source) : source_(source) { } // Actually do the allocation. Use the stack buffer if nobody has used it yet // and the size requested fits. Otherwise, fall through to the standard // allocator. pointer allocate(size_type n, void* hint = 0) { if (source_ != NULL && !source_->used_stack_buffer_ && n <= stack_capacity) { source_->used_stack_buffer_ = true; return source_->stack_buffer(); } else { return std::allocator<T>::allocate(n, hint); } } // Free: when trying to free the stack buffer, just mark it as free. For // non-stack-buffer pointers, just fall though to the standard allocator. void deallocate(pointer p, size_type n) { if (source_ != NULL && p == source_->stack_buffer()) source_->used_stack_buffer_ = false; else std::allocator<T>::deallocate(p, n); } private: Source* source_; }; // A wrapper around STL containers that maintains a stack-sized buffer that the // initial capacity of the vector is based on. Growing the container beyond the // stack capacity will transparently overflow onto the heap. The container must // support reserve(). // // WATCH OUT: the ContainerType MUST use the proper StackAllocator for this // type. This object is really intended to be used only internally. You'll want // to use the wrappers below for different types. template<typename TContainerType, int stack_capacity> class StackContainer { public: typedef TContainerType ContainerType; typedef typename ContainerType::value_type ContainedType; typedef StackAllocator<ContainedType, stack_capacity> Allocator; // Allocator must be constructed before the container! StackContainer() : allocator_(&stack_data_), container_(allocator_) { // Make the container use the stack allocation by reserving our buffer size // before doing anything else. container_.reserve(stack_capacity); } // Getters for the actual container. // // Danger: any copies of this made using the copy constructor must have // shorter lifetimes than the source. The copy will share the same allocator // and therefore the same stack buffer as the original. Use std::copy to // copy into a "real" container for longer-lived objects. ContainerType& container() { return container_; } const ContainerType& container() const { return container_; } // Support operator-> to get to the container. This allows nicer syntax like: // StackContainer<...> foo; // std::sort(foo->begin(), foo->end()); ContainerType* operator->() { return &container_; } const ContainerType* operator->() const { return &container_; } #ifdef UNIT_TEST // Retrieves the stack source so that that unit tests can verify that the // buffer is being used properly. const typename Allocator::Source& stack_data() const { return stack_data_; } #endif protected: typename Allocator::Source stack_data_; Allocator allocator_; ContainerType container_; DISALLOW_EVIL_CONSTRUCTORS(StackContainer); }; // StackString template<size_t stack_capacity> class StackString : public StackContainer< std::basic_string<char, std::char_traits<char>, StackAllocator<char, stack_capacity> >, stack_capacity> { public: StackString() : StackContainer< std::basic_string<char, std::char_traits<char>, StackAllocator<char, stack_capacity> >, stack_capacity>() { } private: DISALLOW_EVIL_CONSTRUCTORS(StackString); }; // StackWString template<size_t stack_capacity> class StackWString : public StackContainer< std::basic_string<wchar_t, std::char_traits<wchar_t>, StackAllocator<wchar_t, stack_capacity> >, stack_capacity> { public: StackWString() : StackContainer< std::basic_string<wchar_t, std::char_traits<wchar_t>, StackAllocator<wchar_t, stack_capacity> >, stack_capacity>() { } private: DISALLOW_EVIL_CONSTRUCTORS(StackWString); }; // StackVector // // Example: // StackVector<int, 16> foo; // foo->push_back(22); // we have overloaded operator-> // foo[0] = 10; // as well as operator[] template<typename T, size_t stack_capacity> class StackVector : public StackContainer< std::vector<T, StackAllocator<T, stack_capacity> >, stack_capacity> { public: StackVector() : StackContainer< std::vector<T, StackAllocator<T, stack_capacity> >, stack_capacity>() { } // We need to put this in STL containers sometimes, which requires a copy // constructor. We can't call the regular copy constructor because that will // take the stack buffer from the original. Here, we create an empty object // and make a stack buffer of its own. StackVector(const StackVector<T, stack_capacity>& other) : StackContainer< std::vector<T, StackAllocator<T, stack_capacity> >, stack_capacity>() { this->container().assign(other->begin(), other->end()); } StackVector<T, stack_capacity>& operator=( const StackVector<T, stack_capacity>& other) { this->container().assign(other->begin(), other->end()); return *this; } // Vectors are commonly indexed, which isn't very convenient even with // operator-> (using "->at()" does exception stuff we don't want). T& operator[](size_t i) { return this->container().operator[](i); } const T& operator[](size_t i) const { return this->container().operator[](i); } }; #endif // BASE_STACK_CONTAINER_H_