// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Multi-threaded tests of ConditionVariable class. #include <time.h> #include <algorithm> #include <vector> #include "base/condition_variable.h" #include "base/lock.h" #include "base/logging.h" #include "base/platform_thread.h" #include "base/scoped_ptr.h" #include "base/spin_wait.h" #include "base/thread_collision_warner.h" #include "base/time.h" #include "testing/gtest/include/gtest/gtest.h" #include "testing/platform_test.h" using base::TimeDelta; using base::TimeTicks; namespace { //------------------------------------------------------------------------------ // Define our test class, with several common variables. //------------------------------------------------------------------------------ class ConditionVariableTest : public PlatformTest { public: const TimeDelta kZeroMs; const TimeDelta kTenMs; const TimeDelta kThirtyMs; const TimeDelta kFortyFiveMs; const TimeDelta kSixtyMs; const TimeDelta kOneHundredMs; explicit ConditionVariableTest() : kZeroMs(TimeDelta::FromMilliseconds(0)), kTenMs(TimeDelta::FromMilliseconds(10)), kThirtyMs(TimeDelta::FromMilliseconds(30)), kFortyFiveMs(TimeDelta::FromMilliseconds(45)), kSixtyMs(TimeDelta::FromMilliseconds(60)), kOneHundredMs(TimeDelta::FromMilliseconds(100)) { } }; //------------------------------------------------------------------------------ // Define a class that will control activities an several multi-threaded tests. // The general structure of multi-threaded tests is that a test case will // construct an instance of a WorkQueue. The WorkQueue will spin up some // threads and control them throughout their lifetime, as well as maintaining // a central repository of the work thread's activity. Finally, the WorkQueue // will command the the worker threads to terminate. At that point, the test // cases will validate that the WorkQueue has records showing that the desired // activities were performed. //------------------------------------------------------------------------------ // Callers are responsible for synchronizing access to the following class. // The WorkQueue::lock_, as accessed via WorkQueue::lock(), should be used for // all synchronized access. class WorkQueue : public PlatformThread::Delegate { public: explicit WorkQueue(int thread_count); ~WorkQueue(); // PlatformThread::Delegate interface. void ThreadMain(); //---------------------------------------------------------------------------- // Worker threads only call the following methods. // They should use the lock to get exclusive access. int GetThreadId(); // Get an ID assigned to a thread.. bool EveryIdWasAllocated() const; // Indicates that all IDs were handed out. TimeDelta GetAnAssignment(int thread_id); // Get a work task duration. void WorkIsCompleted(int thread_id); int task_count() const; bool allow_help_requests() const; // Workers can signal more workers. bool shutdown() const; // Check if shutdown has been requested. void thread_shutting_down(); //---------------------------------------------------------------------------- // Worker threads can call them but not needed to acquire a lock. Lock* lock(); ConditionVariable* work_is_available(); ConditionVariable* all_threads_have_ids(); ConditionVariable* no_more_tasks(); //---------------------------------------------------------------------------- // The rest of the methods are for use by the controlling master thread (the // test case code). void ResetHistory(); int GetMinCompletionsByWorkerThread() const; int GetMaxCompletionsByWorkerThread() const; int GetNumThreadsTakingAssignments() const; int GetNumThreadsCompletingTasks() const; int GetNumberOfCompletedTasks() const; TimeDelta GetWorkTime() const; void SetWorkTime(TimeDelta delay); void SetTaskCount(int count); void SetAllowHelp(bool allow); // Caller must acquire lock before calling. void SetShutdown(); // Compares the |shutdown_task_count_| to the |thread_count| and returns true // if they are equal. This check will acquire the |lock_| so the caller // should not hold the lock when calling this method. bool ThreadSafeCheckShutdown(int thread_count); private: // Both worker threads and controller use the following to synchronize. Lock lock_; ConditionVariable work_is_available_; // To tell threads there is work. // Conditions to notify the controlling process (if it is interested). ConditionVariable all_threads_have_ids_; // All threads are running. ConditionVariable no_more_tasks_; // Task count is zero. const int thread_count_; scoped_array<PlatformThreadHandle> thread_handles_; std::vector<int> assignment_history_; // Number of assignment per worker. std::vector<int> completion_history_; // Number of completions per worker. int thread_started_counter_; // Used to issue unique id to workers. int shutdown_task_count_; // Number of tasks told to shutdown int task_count_; // Number of assignment tasks waiting to be processed. TimeDelta worker_delay_; // Time each task takes to complete. bool allow_help_requests_; // Workers can signal more workers. bool shutdown_; // Set when threads need to terminate. DFAKE_MUTEX(locked_methods_); }; //------------------------------------------------------------------------------ // The next section contains the actual tests. //------------------------------------------------------------------------------ TEST_F(ConditionVariableTest, StartupShutdownTest) { Lock lock; // First try trivial startup/shutdown. { ConditionVariable cv1(&lock); } // Call for cv1 destruction. // Exercise with at least a few waits. ConditionVariable cv(&lock); lock.Acquire(); cv.TimedWait(kTenMs); // Wait for 10 ms. cv.TimedWait(kTenMs); // Wait for 10 ms. lock.Release(); lock.Acquire(); cv.TimedWait(kTenMs); // Wait for 10 ms. cv.TimedWait(kTenMs); // Wait for 10 ms. cv.TimedWait(kTenMs); // Wait for 10 ms. lock.Release(); } // Call for cv destruction. TEST_F(ConditionVariableTest, TimeoutTest) { Lock lock; ConditionVariable cv(&lock); lock.Acquire(); TimeTicks start = TimeTicks::Now(); const TimeDelta WAIT_TIME = TimeDelta::FromMilliseconds(300); // Allow for clocking rate granularity. const TimeDelta FUDGE_TIME = TimeDelta::FromMilliseconds(50); cv.TimedWait(WAIT_TIME + FUDGE_TIME); TimeDelta duration = TimeTicks::Now() - start; // We can't use EXPECT_GE here as the TimeDelta class does not support the // required stream conversion. EXPECT_TRUE(duration >= WAIT_TIME); lock.Release(); } // Test serial task servicing, as well as two parallel task servicing methods. // TODO(maruel): This test is flaky, see http://crbug.com/10607 TEST_F(ConditionVariableTest, FLAKY_MultiThreadConsumerTest) { const int kThreadCount = 10; WorkQueue queue(kThreadCount); // Start the threads. const int kTaskCount = 10; // Number of tasks in each mini-test here. base::Time start_time; // Used to time task processing. { AutoLock auto_lock(*queue.lock()); while (!queue.EveryIdWasAllocated()) queue.all_threads_have_ids()->Wait(); } // Wait a bit more to allow threads to reach their wait state. // If threads aren't in a wait state, they may start to gobble up tasks in // parallel, short-circuiting (breaking) this test. PlatformThread::Sleep(100); { // Since we have no tasks yet, all threads should be waiting by now. AutoLock auto_lock(*queue.lock()); EXPECT_EQ(0, queue.GetNumThreadsTakingAssignments()); EXPECT_EQ(0, queue.GetNumThreadsCompletingTasks()); EXPECT_EQ(0, queue.task_count()); EXPECT_EQ(0, queue.GetMaxCompletionsByWorkerThread()); EXPECT_EQ(0, queue.GetMinCompletionsByWorkerThread()); EXPECT_EQ(0, queue.GetNumberOfCompletedTasks()); // Set up to make one worker do 30ms tasks sequentially. queue.ResetHistory(); queue.SetTaskCount(kTaskCount); queue.SetWorkTime(kThirtyMs); queue.SetAllowHelp(false); start_time = base::Time::Now(); } queue.work_is_available()->Signal(); // Start up one thread. { // Wait until all 10 work tasks have at least been assigned. AutoLock auto_lock(*queue.lock()); while (queue.task_count()) queue.no_more_tasks()->Wait(); // The last of the tasks *might* still be running, but... all but one should // be done by now, since tasks are being done serially. EXPECT_LE(queue.GetWorkTime().InMilliseconds() * (kTaskCount - 1), (base::Time::Now() - start_time).InMilliseconds()); EXPECT_EQ(1, queue.GetNumThreadsTakingAssignments()); EXPECT_EQ(1, queue.GetNumThreadsCompletingTasks()); EXPECT_LE(kTaskCount - 1, queue.GetMaxCompletionsByWorkerThread()); EXPECT_EQ(0, queue.GetMinCompletionsByWorkerThread()); EXPECT_LE(kTaskCount - 1, queue.GetNumberOfCompletedTasks()); } // Wait to be sure all tasks are done. while (1) { { AutoLock auto_lock(*queue.lock()); if (kTaskCount == queue.GetNumberOfCompletedTasks()) break; } PlatformThread::Sleep(30); // Wait a little. } { // Check that all work was done by one thread id. AutoLock auto_lock(*queue.lock()); EXPECT_EQ(1, queue.GetNumThreadsTakingAssignments()); EXPECT_EQ(1, queue.GetNumThreadsCompletingTasks()); EXPECT_EQ(0, queue.task_count()); EXPECT_EQ(kTaskCount, queue.GetMaxCompletionsByWorkerThread()); EXPECT_EQ(0, queue.GetMinCompletionsByWorkerThread()); EXPECT_EQ(kTaskCount, queue.GetNumberOfCompletedTasks()); // Set up to make each task include getting help from another worker, so // so that the work gets done in paralell. queue.ResetHistory(); queue.SetTaskCount(kTaskCount); queue.SetWorkTime(kThirtyMs); queue.SetAllowHelp(true); start_time = base::Time::Now(); } queue.work_is_available()->Signal(); // But each worker can signal another. // Wait to allow the all workers to get done. while (1) { { AutoLock auto_lock(*queue.lock()); if (kTaskCount == queue.GetNumberOfCompletedTasks()) break; } PlatformThread::Sleep(30); // Wait a little. } { // Wait until all work tasks have at least been assigned. AutoLock auto_lock(*queue.lock()); while (queue.task_count()) queue.no_more_tasks()->Wait(); // Since they can all run almost in parallel, there is no guarantee that all // tasks are finished, but we should have gotten here faster than it would // take to run all tasks serially. EXPECT_GT(queue.GetWorkTime().InMilliseconds() * (kTaskCount - 1), (base::Time::Now() - start_time).InMilliseconds()); // To avoid racy assumptions, we'll just assert that at least 2 threads // did work. EXPECT_LE(2, queue.GetNumThreadsTakingAssignments()); EXPECT_EQ(kTaskCount, queue.GetNumberOfCompletedTasks()); // Try to ask all workers to help, and only a few will do the work. queue.ResetHistory(); queue.SetTaskCount(3); queue.SetWorkTime(kThirtyMs); queue.SetAllowHelp(false); } queue.work_is_available()->Broadcast(); // Make them all try. // Wait to allow the 3 workers to get done. PlatformThread::Sleep(45); { AutoLock auto_lock(*queue.lock()); EXPECT_EQ(3, queue.GetNumThreadsTakingAssignments()); EXPECT_EQ(3, queue.GetNumThreadsCompletingTasks()); EXPECT_EQ(0, queue.task_count()); EXPECT_EQ(1, queue.GetMaxCompletionsByWorkerThread()); EXPECT_EQ(0, queue.GetMinCompletionsByWorkerThread()); EXPECT_EQ(3, queue.GetNumberOfCompletedTasks()); // Set up to make each task get help from another worker. queue.ResetHistory(); queue.SetTaskCount(3); queue.SetWorkTime(kThirtyMs); queue.SetAllowHelp(true); // Allow (unnecessary) help requests. } queue.work_is_available()->Broadcast(); // We already signal all threads. // Wait to allow the 3 workers to get done. PlatformThread::Sleep(100); { AutoLock auto_lock(*queue.lock()); EXPECT_EQ(3, queue.GetNumThreadsTakingAssignments()); EXPECT_EQ(3, queue.GetNumThreadsCompletingTasks()); EXPECT_EQ(0, queue.task_count()); EXPECT_EQ(1, queue.GetMaxCompletionsByWorkerThread()); EXPECT_EQ(0, queue.GetMinCompletionsByWorkerThread()); EXPECT_EQ(3, queue.GetNumberOfCompletedTasks()); // Set up to make each task get help from another worker. queue.ResetHistory(); queue.SetTaskCount(20); queue.SetWorkTime(kThirtyMs); queue.SetAllowHelp(true); } queue.work_is_available()->Signal(); // But each worker can signal another. // Wait to allow the 10 workers to get done. PlatformThread::Sleep(100); // Should take about 60 ms. { AutoLock auto_lock(*queue.lock()); EXPECT_EQ(10, queue.GetNumThreadsTakingAssignments()); EXPECT_EQ(10, queue.GetNumThreadsCompletingTasks()); EXPECT_EQ(0, queue.task_count()); EXPECT_EQ(2, queue.GetMaxCompletionsByWorkerThread()); EXPECT_EQ(2, queue.GetMinCompletionsByWorkerThread()); EXPECT_EQ(20, queue.GetNumberOfCompletedTasks()); // Same as last test, but with Broadcast(). queue.ResetHistory(); queue.SetTaskCount(20); // 2 tasks per process. queue.SetWorkTime(kThirtyMs); queue.SetAllowHelp(true); } queue.work_is_available()->Broadcast(); // Wait to allow the 10 workers to get done. PlatformThread::Sleep(100); // Should take about 60 ms. { AutoLock auto_lock(*queue.lock()); EXPECT_EQ(10, queue.GetNumThreadsTakingAssignments()); EXPECT_EQ(10, queue.GetNumThreadsCompletingTasks()); EXPECT_EQ(0, queue.task_count()); EXPECT_EQ(2, queue.GetMaxCompletionsByWorkerThread()); EXPECT_EQ(2, queue.GetMinCompletionsByWorkerThread()); EXPECT_EQ(20, queue.GetNumberOfCompletedTasks()); queue.SetShutdown(); } queue.work_is_available()->Broadcast(); // Force check for shutdown. SPIN_FOR_TIMEDELTA_OR_UNTIL_TRUE(TimeDelta::FromMinutes(1), queue.ThreadSafeCheckShutdown(kThreadCount)); PlatformThread::Sleep(10); // Be sure they're all shutdown. } TEST_F(ConditionVariableTest, LargeFastTaskTest) { const int kThreadCount = 200; WorkQueue queue(kThreadCount); // Start the threads. Lock private_lock; // Used locally for master to wait. AutoLock private_held_lock(private_lock); ConditionVariable private_cv(&private_lock); { AutoLock auto_lock(*queue.lock()); while (!queue.EveryIdWasAllocated()) queue.all_threads_have_ids()->Wait(); } // Wait a bit more to allow threads to reach their wait state. private_cv.TimedWait(kThirtyMs); { // Since we have no tasks, all threads should be waiting by now. AutoLock auto_lock(*queue.lock()); EXPECT_EQ(0, queue.GetNumThreadsTakingAssignments()); EXPECT_EQ(0, queue.GetNumThreadsCompletingTasks()); EXPECT_EQ(0, queue.task_count()); EXPECT_EQ(0, queue.GetMaxCompletionsByWorkerThread()); EXPECT_EQ(0, queue.GetMinCompletionsByWorkerThread()); EXPECT_EQ(0, queue.GetNumberOfCompletedTasks()); // Set up to make all workers do (an average of) 20 tasks. queue.ResetHistory(); queue.SetTaskCount(20 * kThreadCount); queue.SetWorkTime(kFortyFiveMs); queue.SetAllowHelp(false); } queue.work_is_available()->Broadcast(); // Start up all threads. // Wait until we've handed out all tasks. { AutoLock auto_lock(*queue.lock()); while (queue.task_count() != 0) queue.no_more_tasks()->Wait(); } // Wait till the last of the tasks complete. // Don't bother to use locks: We may not get info in time... but we'll see it // eventually. SPIN_FOR_TIMEDELTA_OR_UNTIL_TRUE(TimeDelta::FromMinutes(1), 20 * kThreadCount == queue.GetNumberOfCompletedTasks()); { // With Broadcast(), every thread should have participated. // but with racing.. they may not all have done equal numbers of tasks. AutoLock auto_lock(*queue.lock()); EXPECT_EQ(kThreadCount, queue.GetNumThreadsTakingAssignments()); EXPECT_EQ(kThreadCount, queue.GetNumThreadsCompletingTasks()); EXPECT_EQ(0, queue.task_count()); EXPECT_LE(20, queue.GetMaxCompletionsByWorkerThread()); EXPECT_EQ(20 * kThreadCount, queue.GetNumberOfCompletedTasks()); // Set up to make all workers do (an average of) 4 tasks. queue.ResetHistory(); queue.SetTaskCount(kThreadCount * 4); queue.SetWorkTime(kFortyFiveMs); queue.SetAllowHelp(true); // Might outperform Broadcast(). } queue.work_is_available()->Signal(); // Start up one thread. // Wait until we've handed out all tasks { AutoLock auto_lock(*queue.lock()); while (queue.task_count() != 0) queue.no_more_tasks()->Wait(); } // Wait till the last of the tasks complete. // Don't bother to use locks: We may not get info in time... but we'll see it // eventually. SPIN_FOR_TIMEDELTA_OR_UNTIL_TRUE(TimeDelta::FromMinutes(1), 4 * kThreadCount == queue.GetNumberOfCompletedTasks()); { // With Signal(), every thread should have participated. // but with racing.. they may not all have done four tasks. AutoLock auto_lock(*queue.lock()); EXPECT_EQ(kThreadCount, queue.GetNumThreadsTakingAssignments()); EXPECT_EQ(kThreadCount, queue.GetNumThreadsCompletingTasks()); EXPECT_EQ(0, queue.task_count()); EXPECT_LE(4, queue.GetMaxCompletionsByWorkerThread()); EXPECT_EQ(4 * kThreadCount, queue.GetNumberOfCompletedTasks()); queue.SetShutdown(); } queue.work_is_available()->Broadcast(); // Force check for shutdown. // Wait for shutdowns to complete. SPIN_FOR_TIMEDELTA_OR_UNTIL_TRUE(TimeDelta::FromMinutes(1), queue.ThreadSafeCheckShutdown(kThreadCount)); PlatformThread::Sleep(10); // Be sure they're all shutdown. } //------------------------------------------------------------------------------ // Finally we provide the implementation for the methods in the WorkQueue class. //------------------------------------------------------------------------------ WorkQueue::WorkQueue(int thread_count) : lock_(), work_is_available_(&lock_), all_threads_have_ids_(&lock_), no_more_tasks_(&lock_), thread_count_(thread_count), thread_handles_(new PlatformThreadHandle[thread_count]), assignment_history_(thread_count), completion_history_(thread_count), thread_started_counter_(0), shutdown_task_count_(0), task_count_(0), allow_help_requests_(false), shutdown_(false) { EXPECT_GE(thread_count_, 1); ResetHistory(); SetTaskCount(0); SetWorkTime(TimeDelta::FromMilliseconds(30)); for (int i = 0; i < thread_count_; ++i) { PlatformThreadHandle pth; EXPECT_TRUE(PlatformThread::Create(0, this, &pth)); thread_handles_[i] = pth; } } WorkQueue::~WorkQueue() { { AutoLock auto_lock(lock_); SetShutdown(); } work_is_available_.Broadcast(); // Tell them all to terminate. for (int i = 0; i < thread_count_; ++i) { PlatformThread::Join(thread_handles_[i]); } } int WorkQueue::GetThreadId() { DFAKE_SCOPED_RECURSIVE_LOCK(locked_methods_); DCHECK(!EveryIdWasAllocated()); return thread_started_counter_++; // Give out Unique IDs. } bool WorkQueue::EveryIdWasAllocated() const { DFAKE_SCOPED_RECURSIVE_LOCK(locked_methods_); return thread_count_ == thread_started_counter_; } TimeDelta WorkQueue::GetAnAssignment(int thread_id) { DFAKE_SCOPED_RECURSIVE_LOCK(locked_methods_); DCHECK_LT(0, task_count_); assignment_history_[thread_id]++; if (0 == --task_count_) { no_more_tasks_.Signal(); } return worker_delay_; } void WorkQueue::WorkIsCompleted(int thread_id) { DFAKE_SCOPED_RECURSIVE_LOCK(locked_methods_); completion_history_[thread_id]++; } int WorkQueue::task_count() const { DFAKE_SCOPED_RECURSIVE_LOCK(locked_methods_); return task_count_; } bool WorkQueue::allow_help_requests() const { DFAKE_SCOPED_RECURSIVE_LOCK(locked_methods_); return allow_help_requests_; } bool WorkQueue::shutdown() const { lock_.AssertAcquired(); DFAKE_SCOPED_RECURSIVE_LOCK(locked_methods_); return shutdown_; } // Because this method is called from the test's main thread we need to actually // take the lock. Threads will call the thread_shutting_down() method with the // lock already acquired. bool WorkQueue::ThreadSafeCheckShutdown(int thread_count) { bool all_shutdown; AutoLock auto_lock(lock_); { // Declare in scope so DFAKE is guranteed to be destroyed before AutoLock. DFAKE_SCOPED_RECURSIVE_LOCK(locked_methods_); all_shutdown = (shutdown_task_count_ == thread_count); } return all_shutdown; } void WorkQueue::thread_shutting_down() { lock_.AssertAcquired(); DFAKE_SCOPED_RECURSIVE_LOCK(locked_methods_); shutdown_task_count_++; } Lock* WorkQueue::lock() { return &lock_; } ConditionVariable* WorkQueue::work_is_available() { return &work_is_available_; } ConditionVariable* WorkQueue::all_threads_have_ids() { return &all_threads_have_ids_; } ConditionVariable* WorkQueue::no_more_tasks() { return &no_more_tasks_; } void WorkQueue::ResetHistory() { for (int i = 0; i < thread_count_; ++i) { assignment_history_[i] = 0; completion_history_[i] = 0; } } int WorkQueue::GetMinCompletionsByWorkerThread() const { int minumum = completion_history_[0]; for (int i = 0; i < thread_count_; ++i) minumum = std::min(minumum, completion_history_[i]); return minumum; } int WorkQueue::GetMaxCompletionsByWorkerThread() const { int maximum = completion_history_[0]; for (int i = 0; i < thread_count_; ++i) maximum = std::max(maximum, completion_history_[i]); return maximum; } int WorkQueue::GetNumThreadsTakingAssignments() const { int count = 0; for (int i = 0; i < thread_count_; ++i) if (assignment_history_[i]) count++; return count; } int WorkQueue::GetNumThreadsCompletingTasks() const { int count = 0; for (int i = 0; i < thread_count_; ++i) if (completion_history_[i]) count++; return count; } int WorkQueue::GetNumberOfCompletedTasks() const { int total = 0; for (int i = 0; i < thread_count_; ++i) total += completion_history_[i]; return total; } TimeDelta WorkQueue::GetWorkTime() const { return worker_delay_; } void WorkQueue::SetWorkTime(TimeDelta delay) { worker_delay_ = delay; } void WorkQueue::SetTaskCount(int count) { task_count_ = count; } void WorkQueue::SetAllowHelp(bool allow) { allow_help_requests_ = allow; } void WorkQueue::SetShutdown() { lock_.AssertAcquired(); shutdown_ = true; } //------------------------------------------------------------------------------ // Define the standard worker task. Several tests will spin out many of these // threads. //------------------------------------------------------------------------------ // The multithread tests involve several threads with a task to perform as // directed by an instance of the class WorkQueue. // The task is to: // a) Check to see if there are more tasks (there is a task counter). // a1) Wait on condition variable if there are no tasks currently. // b) Call a function to see what should be done. // c) Do some computation based on the number of milliseconds returned in (b). // d) go back to (a). // WorkQueue::ThreadMain() implements the above task for all threads. // It calls the controlling object to tell the creator about progress, and to // ask about tasks. void WorkQueue::ThreadMain() { int thread_id; { AutoLock auto_lock(lock_); thread_id = GetThreadId(); if (EveryIdWasAllocated()) all_threads_have_ids()->Signal(); // Tell creator we're ready. } Lock private_lock; // Used to waste time on "our work". while (1) { // This is the main consumer loop. TimeDelta work_time; bool could_use_help; { AutoLock auto_lock(lock_); while (0 == task_count() && !shutdown()) { work_is_available()->Wait(); } if (shutdown()) { // Ack the notification of a shutdown message back to the controller. thread_shutting_down(); return; // Terminate. } // Get our task duration from the queue. work_time = GetAnAssignment(thread_id); could_use_help = (task_count() > 0) && allow_help_requests(); } // Release lock // Do work (outside of locked region. if (could_use_help) work_is_available()->Signal(); // Get help from other threads. if (work_time > TimeDelta::FromMilliseconds(0)) { // We could just sleep(), but we'll instead further exercise the // condition variable class, and do a timed wait. AutoLock auto_lock(private_lock); ConditionVariable private_cv(&private_lock); private_cv.TimedWait(work_time); // Unsynchronized waiting. } { AutoLock auto_lock(lock_); // Send notification that we completed our "work." WorkIsCompleted(thread_id); } } } } // namespace