/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <fcntl.h> #include <errno.h> #include <math.h> #include <poll.h> #include <unistd.h> #include <dirent.h> #include <sys/select.h> #include <dlfcn.h> #include "ak8973b.h" #include <cutils/log.h> #include "AkmSensor.h" /*****************************************************************************/ int (*akm_is_sensor_enabled)(uint32_t sensor_type); int (*akm_enable_sensor)(uint32_t sensor_type); int (*akm_disable_sensor)(uint32_t sensor_type); int (*akm_set_delay)(uint32_t sensor_type, uint64_t delay); int stub_is_sensor_enabled(uint32_t sensor_type) { return 0; } int stub_enable_disable_sensor(uint32_t sensor_type) { return -ENODEV; } int stub_set_delay(uint32_t sensor_type, uint64_t delay) { return -ENODEV; } AkmSensor::AkmSensor() : SensorBase(NULL, NULL), mEnabled(0), mPendingMask(0), mInputReader(32) { /* Open the library before opening the input device. The library * creates a uinput device. */ if (loadAKMLibrary() == 0) { data_name = "compass"; data_fd = openInput("compass"); } memset(mPendingEvents, 0, sizeof(mPendingEvents)); mPendingEvents[Accelerometer].version = sizeof(sensors_event_t); mPendingEvents[Accelerometer].sensor = ID_A; mPendingEvents[Accelerometer].type = SENSOR_TYPE_ACCELEROMETER; mPendingEvents[Accelerometer].acceleration.status = SENSOR_STATUS_ACCURACY_HIGH; mPendingEvents[MagneticField].version = sizeof(sensors_event_t); mPendingEvents[MagneticField].sensor = ID_M; mPendingEvents[MagneticField].type = SENSOR_TYPE_MAGNETIC_FIELD; mPendingEvents[MagneticField].magnetic.status = SENSOR_STATUS_ACCURACY_HIGH; mPendingEvents[Orientation ].version = sizeof(sensors_event_t); mPendingEvents[Orientation ].sensor = ID_O; mPendingEvents[Orientation ].type = SENSOR_TYPE_ORIENTATION; mPendingEvents[Orientation ].orientation.status = SENSOR_STATUS_ACCURACY_HIGH; // read the actual value of all sensors if they're enabled already struct input_absinfo absinfo; short flags = 0; if (akm_is_sensor_enabled(SENSOR_TYPE_ACCELEROMETER)) { mEnabled |= 1<<Accelerometer; if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_ACCEL_X), &absinfo)) { mPendingEvents[Accelerometer].acceleration.x = absinfo.value * CONVERT_A_X; } if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_ACCEL_Y), &absinfo)) { mPendingEvents[Accelerometer].acceleration.y = absinfo.value * CONVERT_A_Y; } if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_ACCEL_Z), &absinfo)) { mPendingEvents[Accelerometer].acceleration.z = absinfo.value * CONVERT_A_Z; } } if (akm_is_sensor_enabled(SENSOR_TYPE_MAGNETIC_FIELD)) { mEnabled |= 1<<MagneticField; if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_MAGV_X), &absinfo)) { mPendingEvents[MagneticField].magnetic.x = absinfo.value * CONVERT_M_X; } if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_MAGV_Y), &absinfo)) { mPendingEvents[MagneticField].magnetic.y = absinfo.value * CONVERT_M_Y; } if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_MAGV_Z), &absinfo)) { mPendingEvents[MagneticField].magnetic.z = absinfo.value * CONVERT_M_Z; } } if (akm_is_sensor_enabled(SENSOR_TYPE_ORIENTATION)) { mEnabled |= 1<<Orientation; if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_YAW), &absinfo)) { mPendingEvents[Orientation].orientation.azimuth = absinfo.value; } if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_PITCH), &absinfo)) { mPendingEvents[Orientation].orientation.pitch = absinfo.value; } if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_ROLL), &absinfo)) { mPendingEvents[Orientation].orientation.roll = -absinfo.value; } if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_ORIENT_STATUS), &absinfo)) { mPendingEvents[Orientation].orientation.status = uint8_t(absinfo.value & SENSOR_STATE_MASK); } } // disable temperature sensor, since it is not supported akm_disable_sensor(SENSOR_TYPE_TEMPERATURE); } AkmSensor::~AkmSensor() { if (mLibAKM) { unsigned ref = ::dlclose(mLibAKM); } } int AkmSensor::enable(int32_t handle, int en) { int what = -1; switch (handle) { case ID_A: what = Accelerometer; break; case ID_M: what = MagneticField; break; case ID_O: what = Orientation; break; } if (uint32_t(what) >= numSensors) return -EINVAL; int newState = en ? 1 : 0; int err = 0; if ((uint32_t(newState)<<what) != (mEnabled & (1<<what))) { uint32_t sensor_type; switch (what) { case Accelerometer: sensor_type = SENSOR_TYPE_ACCELEROMETER; break; case MagneticField: sensor_type = SENSOR_TYPE_MAGNETIC_FIELD; break; case Orientation: sensor_type = SENSOR_TYPE_ORIENTATION; break; } short flags = newState; if (en) err = akm_enable_sensor(sensor_type); else err = akm_disable_sensor(sensor_type); LOGE_IF(err, "Could not change sensor state (%s)", strerror(-err)); if (!err) { mEnabled &= ~(1<<what); mEnabled |= (uint32_t(flags)<<what); } } return err; } int AkmSensor::setDelay(int32_t handle, int64_t ns) { uint32_t sensor_type = 0; if (ns < 0) return -EINVAL; switch (handle) { case ID_A: sensor_type = SENSOR_TYPE_ACCELEROMETER; break; case ID_M: sensor_type = SENSOR_TYPE_MAGNETIC_FIELD; break; case ID_O: sensor_type = SENSOR_TYPE_ORIENTATION; break; } if (sensor_type == 0) return -EINVAL; return akm_set_delay(sensor_type, ns); } int AkmSensor::loadAKMLibrary() { mLibAKM = dlopen("libakm.so", RTLD_NOW); if (!mLibAKM) { akm_is_sensor_enabled = stub_is_sensor_enabled; akm_enable_sensor = stub_enable_disable_sensor; akm_disable_sensor = stub_enable_disable_sensor; akm_set_delay = stub_set_delay; LOGE("AkmSensor: unable to load AKM Library, %s", dlerror()); return -ENOENT; } *(void **)&akm_is_sensor_enabled = dlsym(mLibAKM, "akm_is_sensor_enabled"); *(void **)&akm_enable_sensor = dlsym(mLibAKM, "akm_enable_sensor"); *(void **)&akm_disable_sensor = dlsym(mLibAKM, "akm_disable_sensor"); *(void **)&akm_set_delay = dlsym(mLibAKM, "akm_set_delay"); return 0; } int AkmSensor::readEvents(sensors_event_t* data, int count) { if (count < 1) return -EINVAL; ssize_t n = mInputReader.fill(data_fd); if (n < 0) return n; int numEventReceived = 0; input_event const* event; while (count && mInputReader.readEvent(&event)) { int type = event->type; if (type == EV_REL) { processEvent(event->code, event->value); mInputReader.next(); } else if (type == EV_SYN) { int64_t time = timevalToNano(event->time); for (int j=0 ; count && mPendingMask && j<numSensors ; j++) { if (mPendingMask & (1<<j)) { mPendingMask &= ~(1<<j); mPendingEvents[j].timestamp = time; if (mEnabled & (1<<j)) { *data++ = mPendingEvents[j]; count--; numEventReceived++; } } } if (!mPendingMask) { mInputReader.next(); } } else { LOGE("AkmSensor: unknown event (type=%d, code=%d)", type, event->code); mInputReader.next(); } } return numEventReceived; } void AkmSensor::processEvent(int code, int value) { switch (code) { case EVENT_TYPE_ACCEL_X: mPendingMask |= 1<<Accelerometer; mPendingEvents[Accelerometer].acceleration.x = value * CONVERT_A_X; break; case EVENT_TYPE_ACCEL_Y: mPendingMask |= 1<<Accelerometer; mPendingEvents[Accelerometer].acceleration.y = value * CONVERT_A_Y; break; case EVENT_TYPE_ACCEL_Z: mPendingMask |= 1<<Accelerometer; mPendingEvents[Accelerometer].acceleration.z = value * CONVERT_A_Z; break; case EVENT_TYPE_MAGV_X: mPendingMask |= 1<<MagneticField; mPendingEvents[MagneticField].magnetic.x = value * CONVERT_M_X; break; case EVENT_TYPE_MAGV_Y: mPendingMask |= 1<<MagneticField; mPendingEvents[MagneticField].magnetic.y = value * CONVERT_M_Y; break; case EVENT_TYPE_MAGV_Z: mPendingMask |= 1<<MagneticField; mPendingEvents[MagneticField].magnetic.z = value * CONVERT_M_Z; break; case EVENT_TYPE_YAW: mPendingMask |= 1<<Orientation; mPendingEvents[Orientation].orientation.azimuth = value * CONVERT_O_A; break; case EVENT_TYPE_PITCH: mPendingMask |= 1<<Orientation; mPendingEvents[Orientation].orientation.pitch = value * CONVERT_O_P; break; case EVENT_TYPE_ROLL: mPendingMask |= 1<<Orientation; mPendingEvents[Orientation].orientation.roll = value * CONVERT_O_R; break; case EVENT_TYPE_ORIENT_STATUS: uint8_t status = uint8_t(value & SENSOR_STATE_MASK); if (status == 4) status = 0; mPendingMask |= 1<<Orientation; mPendingEvents[Orientation].orientation.status = status; break; } }