/*
* Copyright (C) 2005 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_VECTOR_H
#define ANDROID_VECTOR_H
#include <new>
#include <stdint.h>
#include <sys/types.h>
#include <utils/Log.h>
#include <utils/VectorImpl.h>
#include <utils/TypeHelpers.h>
// ---------------------------------------------------------------------------
namespace android {
/*!
* The main templated vector class ensuring type safety
* while making use of VectorImpl.
* This is the class users want to use.
*/
template <class TYPE>
class Vector : private VectorImpl
{
public:
typedef TYPE value_type;
/*!
* Constructors and destructors
*/
Vector();
Vector(const Vector<TYPE>& rhs);
virtual ~Vector();
/*! copy operator */
const Vector<TYPE>& operator = (const Vector<TYPE>& rhs) const;
Vector<TYPE>& operator = (const Vector<TYPE>& rhs);
/*
* empty the vector
*/
inline void clear() { VectorImpl::clear(); }
/*!
* vector stats
*/
//! returns number of items in the vector
inline size_t size() const { return VectorImpl::size(); }
//! returns wether or not the vector is empty
inline bool isEmpty() const { return VectorImpl::isEmpty(); }
//! returns how many items can be stored without reallocating the backing store
inline size_t capacity() const { return VectorImpl::capacity(); }
//! setst the capacity. capacity can never be reduced less than size()
inline ssize_t setCapacity(size_t size) { return VectorImpl::setCapacity(size); }
/*!
* C-style array access
*/
//! read-only C-style access
inline const TYPE* array() const;
//! read-write C-style access
TYPE* editArray();
/*!
* accessors
*/
//! read-only access to an item at a given index
inline const TYPE& operator [] (size_t index) const;
//! alternate name for operator []
inline const TYPE& itemAt(size_t index) const;
//! stack-usage of the vector. returns the top of the stack (last element)
const TYPE& top() const;
//! same as operator [], but allows to access the vector backward (from the end) with a negative index
const TYPE& mirrorItemAt(ssize_t index) const;
/*!
* modifing the array
*/
//! copy-on write support, grants write access to an item
TYPE& editItemAt(size_t index);
//! grants right acces to the top of the stack (last element)
TYPE& editTop();
/*!
* append/insert another vector
*/
//! insert another vector at a given index
ssize_t insertVectorAt(const Vector<TYPE>& vector, size_t index);
//! append another vector at the end of this one
ssize_t appendVector(const Vector<TYPE>& vector);
//! insert an array at a given index
ssize_t insertArrayAt(const TYPE* array, size_t index, size_t length);
//! append an array at the end of this vector
ssize_t appendArray(const TYPE* array, size_t length);
/*!
* add/insert/replace items
*/
//! insert one or several items initialized with their default constructor
inline ssize_t insertAt(size_t index, size_t numItems = 1);
//! insert one or several items initialized from a prototype item
ssize_t insertAt(const TYPE& prototype_item, size_t index, size_t numItems = 1);
//! pop the top of the stack (removes the last element). No-op if the stack's empty
inline void pop();
//! pushes an item initialized with its default constructor
inline void push();
//! pushes an item on the top of the stack
void push(const TYPE& item);
//! same as push() but returns the index the item was added at (or an error)
inline ssize_t add();
//! same as push() but returns the index the item was added at (or an error)
ssize_t add(const TYPE& item);
//! replace an item with a new one initialized with its default constructor
inline ssize_t replaceAt(size_t index);
//! replace an item with a new one
ssize_t replaceAt(const TYPE& item, size_t index);
/*!
* remove items
*/
//! remove several items
inline ssize_t removeItemsAt(size_t index, size_t count = 1);
//! remove one item
inline ssize_t removeAt(size_t index) { return removeItemsAt(index); }
/*!
* sort (stable) the array
*/
typedef int (*compar_t)(const TYPE* lhs, const TYPE* rhs);
typedef int (*compar_r_t)(const TYPE* lhs, const TYPE* rhs, void* state);
inline status_t sort(compar_t cmp);
inline status_t sort(compar_r_t cmp, void* state);
protected:
virtual void do_construct(void* storage, size_t num) const;
virtual void do_destroy(void* storage, size_t num) const;
virtual void do_copy(void* dest, const void* from, size_t num) const;
virtual void do_splat(void* dest, const void* item, size_t num) const;
virtual void do_move_forward(void* dest, const void* from, size_t num) const;
virtual void do_move_backward(void* dest, const void* from, size_t num) const;
};
// ---------------------------------------------------------------------------
// No user serviceable parts from here...
// ---------------------------------------------------------------------------
template<class TYPE> inline
Vector<TYPE>::Vector()
: VectorImpl(sizeof(TYPE),
((traits<TYPE>::has_trivial_ctor ? HAS_TRIVIAL_CTOR : 0)
|(traits<TYPE>::has_trivial_dtor ? HAS_TRIVIAL_DTOR : 0)
|(traits<TYPE>::has_trivial_copy ? HAS_TRIVIAL_COPY : 0))
)
{
}
template<class TYPE> inline
Vector<TYPE>::Vector(const Vector<TYPE>& rhs)
: VectorImpl(rhs) {
}
template<class TYPE> inline
Vector<TYPE>::~Vector() {
finish_vector();
}
template<class TYPE> inline
Vector<TYPE>& Vector<TYPE>::operator = (const Vector<TYPE>& rhs) {
VectorImpl::operator = (rhs);
return *this;
}
template<class TYPE> inline
const Vector<TYPE>& Vector<TYPE>::operator = (const Vector<TYPE>& rhs) const {
VectorImpl::operator = (rhs);
return *this;
}
template<class TYPE> inline
const TYPE* Vector<TYPE>::array() const {
return static_cast<const TYPE *>(arrayImpl());
}
template<class TYPE> inline
TYPE* Vector<TYPE>::editArray() {
return static_cast<TYPE *>(editArrayImpl());
}
template<class TYPE> inline
const TYPE& Vector<TYPE>::operator[](size_t index) const {
LOG_FATAL_IF( index>=size(),
"itemAt: index %d is past size %d", (int)index, (int)size() );
return *(array() + index);
}
template<class TYPE> inline
const TYPE& Vector<TYPE>::itemAt(size_t index) const {
return operator[](index);
}
template<class TYPE> inline
const TYPE& Vector<TYPE>::mirrorItemAt(ssize_t index) const {
LOG_FATAL_IF( (index>0 ? index : -index)>=size(),
"mirrorItemAt: index %d is past size %d",
(int)index, (int)size() );
return *(array() + ((index<0) ? (size()-index) : index));
}
template<class TYPE> inline
const TYPE& Vector<TYPE>::top() const {
return *(array() + size() - 1);
}
template<class TYPE> inline
TYPE& Vector<TYPE>::editItemAt(size_t index) {
return *( static_cast<TYPE *>(editItemLocation(index)) );
}
template<class TYPE> inline
TYPE& Vector<TYPE>::editTop() {
return *( static_cast<TYPE *>(editItemLocation(size()-1)) );
}
template<class TYPE> inline
ssize_t Vector<TYPE>::insertVectorAt(const Vector<TYPE>& vector, size_t index) {
return VectorImpl::insertVectorAt(reinterpret_cast<const VectorImpl&>(vector), index);
}
template<class TYPE> inline
ssize_t Vector<TYPE>::appendVector(const Vector<TYPE>& vector) {
return VectorImpl::appendVector(reinterpret_cast<const VectorImpl&>(vector));
}
template<class TYPE> inline
ssize_t Vector<TYPE>::insertArrayAt(const TYPE* array, size_t index, size_t length) {
return VectorImpl::insertArrayAt(array, index, length);
}
template<class TYPE> inline
ssize_t Vector<TYPE>::appendArray(const TYPE* array, size_t length) {
return VectorImpl::appendArray(array, length);
}
template<class TYPE> inline
ssize_t Vector<TYPE>::insertAt(const TYPE& item, size_t index, size_t numItems) {
return VectorImpl::insertAt(&item, index, numItems);
}
template<class TYPE> inline
void Vector<TYPE>::push(const TYPE& item) {
return VectorImpl::push(&item);
}
template<class TYPE> inline
ssize_t Vector<TYPE>::add(const TYPE& item) {
return VectorImpl::add(&item);
}
template<class TYPE> inline
ssize_t Vector<TYPE>::replaceAt(const TYPE& item, size_t index) {
return VectorImpl::replaceAt(&item, index);
}
template<class TYPE> inline
ssize_t Vector<TYPE>::insertAt(size_t index, size_t numItems) {
return VectorImpl::insertAt(index, numItems);
}
template<class TYPE> inline
void Vector<TYPE>::pop() {
VectorImpl::pop();
}
template<class TYPE> inline
void Vector<TYPE>::push() {
VectorImpl::push();
}
template<class TYPE> inline
ssize_t Vector<TYPE>::add() {
return VectorImpl::add();
}
template<class TYPE> inline
ssize_t Vector<TYPE>::replaceAt(size_t index) {
return VectorImpl::replaceAt(index);
}
template<class TYPE> inline
ssize_t Vector<TYPE>::removeItemsAt(size_t index, size_t count) {
return VectorImpl::removeItemsAt(index, count);
}
template<class TYPE> inline
status_t Vector<TYPE>::sort(Vector<TYPE>::compar_t cmp) {
return VectorImpl::sort((VectorImpl::compar_t)cmp);
}
template<class TYPE> inline
status_t Vector<TYPE>::sort(Vector<TYPE>::compar_r_t cmp, void* state) {
return VectorImpl::sort((VectorImpl::compar_r_t)cmp, state);
}
// ---------------------------------------------------------------------------
template<class TYPE>
void Vector<TYPE>::do_construct(void* storage, size_t num) const {
construct_type( reinterpret_cast<TYPE*>(storage), num );
}
template<class TYPE>
void Vector<TYPE>::do_destroy(void* storage, size_t num) const {
destroy_type( reinterpret_cast<TYPE*>(storage), num );
}
template<class TYPE>
void Vector<TYPE>::do_copy(void* dest, const void* from, size_t num) const {
copy_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
}
template<class TYPE>
void Vector<TYPE>::do_splat(void* dest, const void* item, size_t num) const {
splat_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(item), num );
}
template<class TYPE>
void Vector<TYPE>::do_move_forward(void* dest, const void* from, size_t num) const {
move_forward_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
}
template<class TYPE>
void Vector<TYPE>::do_move_backward(void* dest, const void* from, size_t num) const {
move_backward_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
}
}; // namespace android
// ---------------------------------------------------------------------------
#endif // ANDROID_VECTOR_H