/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WIN32
# include <unistd.h>
#endif
#ifdef __APPLE__
#include <mach/mach_init.h>
#endif
#include "onyxd_int.h"
#include "vpx_mem/vpx_mem.h"
#include "threading.h"
#include "loopfilter.h"
#include "extend.h"
#include "vpx_ports/vpx_timer.h"
#define MAX_ROWS 256
extern void vp8_decode_mb_row(VP8D_COMP *pbi,
VP8_COMMON *pc,
int mb_row,
MACROBLOCKD *xd);
extern void vp8_build_uvmvs(MACROBLOCKD *x, int fullpixel);
extern void vp8_decode_macroblock(VP8D_COMP *pbi, MACROBLOCKD *xd);
void vp8_thread_loop_filter(VP8D_COMP *pbi, MB_ROW_DEC *mbrd, int ithread);
void vp8_setup_decoding_thread_data(VP8D_COMP *pbi, MACROBLOCKD *xd, MB_ROW_DEC *mbrd, int count)
{
#if CONFIG_MULTITHREAD
VP8_COMMON *const pc = & pbi->common;
int i, j;
for (i = 0; i < count; i++)
{
MACROBLOCKD *mbd = &mbrd[i].mbd;
#if CONFIG_RUNTIME_CPU_DETECT
mbd->rtcd = xd->rtcd;
#endif
mbd->subpixel_predict = xd->subpixel_predict;
mbd->subpixel_predict8x4 = xd->subpixel_predict8x4;
mbd->subpixel_predict8x8 = xd->subpixel_predict8x8;
mbd->subpixel_predict16x16 = xd->subpixel_predict16x16;
mbd->mode_info_context = pc->mi + pc->mode_info_stride * (i + 1);
mbd->mode_info_stride = pc->mode_info_stride;
mbd->frame_type = pc->frame_type;
mbd->frames_since_golden = pc->frames_since_golden;
mbd->frames_till_alt_ref_frame = pc->frames_till_alt_ref_frame;
mbd->pre = pc->yv12_fb[pc->lst_fb_idx];
mbd->dst = pc->yv12_fb[pc->new_fb_idx];
vp8_setup_block_dptrs(mbd);
vp8_build_block_doffsets(mbd);
mbd->segmentation_enabled = xd->segmentation_enabled;
mbd->mb_segement_abs_delta = xd->mb_segement_abs_delta;
vpx_memcpy(mbd->segment_feature_data, xd->segment_feature_data, sizeof(xd->segment_feature_data));
mbd->current_bc = &pbi->bc2;
for (j = 0; j < 25; j++)
{
mbd->block[j].dequant = xd->block[j].dequant;
}
}
for (i=0; i< pc->mb_rows; i++)
pbi->current_mb_col[i]=-1;
#else
(void) pbi;
(void) xd;
(void) mbrd;
(void) count;
#endif
}
void vp8_setup_loop_filter_thread_data(VP8D_COMP *pbi, MACROBLOCKD *xd, MB_ROW_DEC *mbrd, int count)
{
#if CONFIG_MULTITHREAD
VP8_COMMON *const pc = & pbi->common;
int i, j;
for (i = 0; i < count; i++)
{
MACROBLOCKD *mbd = &mbrd[i].mbd;
//#if CONFIG_RUNTIME_CPU_DETECT
// mbd->rtcd = xd->rtcd;
//#endif
//mbd->subpixel_predict = xd->subpixel_predict;
//mbd->subpixel_predict8x4 = xd->subpixel_predict8x4;
//mbd->subpixel_predict8x8 = xd->subpixel_predict8x8;
//mbd->subpixel_predict16x16 = xd->subpixel_predict16x16;
mbd->mode_info_context = pc->mi + pc->mode_info_stride * (i + 1);
mbd->mode_info_stride = pc->mode_info_stride;
//mbd->frame_type = pc->frame_type;
//mbd->frames_since_golden = pc->frames_since_golden;
//mbd->frames_till_alt_ref_frame = pc->frames_till_alt_ref_frame;
//mbd->pre = pc->yv12_fb[pc->lst_fb_idx];
//mbd->dst = pc->yv12_fb[pc->new_fb_idx];
//vp8_setup_block_dptrs(mbd);
//vp8_build_block_doffsets(mbd);
mbd->segmentation_enabled = xd->segmentation_enabled; //
mbd->mb_segement_abs_delta = xd->mb_segement_abs_delta; //
vpx_memcpy(mbd->segment_feature_data, xd->segment_feature_data, sizeof(xd->segment_feature_data)); //
//signed char ref_lf_deltas[MAX_REF_LF_DELTAS];
vpx_memcpy(mbd->ref_lf_deltas, xd->ref_lf_deltas, sizeof(xd->ref_lf_deltas));
//signed char mode_lf_deltas[MAX_MODE_LF_DELTAS];
vpx_memcpy(mbd->mode_lf_deltas, xd->mode_lf_deltas, sizeof(xd->mode_lf_deltas));
//unsigned char mode_ref_lf_delta_enabled;
//unsigned char mode_ref_lf_delta_update;
mbd->mode_ref_lf_delta_enabled = xd->mode_ref_lf_delta_enabled;
mbd->mode_ref_lf_delta_update = xd->mode_ref_lf_delta_update;
//mbd->mbmi.mode = DC_PRED;
//mbd->mbmi.uv_mode = DC_PRED;
//mbd->current_bc = &pbi->bc2;
//for (j = 0; j < 25; j++)
//{
// mbd->block[j].dequant = xd->block[j].dequant;
//}
}
for (i=0; i< pc->mb_rows; i++)
pbi->current_mb_col[i]=-1;
#else
(void) pbi;
(void) xd;
(void) mbrd;
(void) count;
#endif
}
THREAD_FUNCTION vp8_thread_decoding_proc(void *p_data)
{
#if CONFIG_MULTITHREAD
int ithread = ((DECODETHREAD_DATA *)p_data)->ithread;
VP8D_COMP *pbi = (VP8D_COMP *)(((DECODETHREAD_DATA *)p_data)->ptr1);
MB_ROW_DEC *mbrd = (MB_ROW_DEC *)(((DECODETHREAD_DATA *)p_data)->ptr2);
ENTROPY_CONTEXT_PLANES mb_row_left_context;
while (1)
{
int current_filter_level = 0;
if (pbi->b_multithreaded_rd == 0)
break;
//if(WaitForSingleObject(pbi->h_event_start_decoding[ithread], INFINITE) == WAIT_OBJECT_0)
if (sem_wait(&pbi->h_event_start_decoding[ithread]) == 0)
{
if (pbi->b_multithreaded_rd == 0)
break;
else
{
VP8_COMMON *pc = &pbi->common;
MACROBLOCKD *xd = &mbrd->mbd;
int mb_row;
int num_part = 1 << pbi->common.multi_token_partition;
volatile int *last_row_current_mb_col;
for (mb_row = ithread+1; mb_row < pc->mb_rows; mb_row += (pbi->decoding_thread_count + 1))
{
int i;
int recon_yoffset, recon_uvoffset;
int mb_col;
int ref_fb_idx = pc->lst_fb_idx;
int dst_fb_idx = pc->new_fb_idx;
int recon_y_stride = pc->yv12_fb[ref_fb_idx].y_stride;
int recon_uv_stride = pc->yv12_fb[ref_fb_idx].uv_stride;
pbi->mb_row_di[ithread].mb_row = mb_row;
pbi->mb_row_di[ithread].mbd.current_bc = &pbi->mbc[mb_row%num_part];
last_row_current_mb_col = &pbi->current_mb_col[mb_row -1];
recon_yoffset = mb_row * recon_y_stride * 16;
recon_uvoffset = mb_row * recon_uv_stride * 8;
// reset above block coeffs
xd->above_context = pc->above_context;
xd->left_context = &mb_row_left_context;
vpx_memset(&mb_row_left_context, 0, sizeof(mb_row_left_context));
xd->up_available = (mb_row != 0);
xd->mb_to_top_edge = -((mb_row * 16)) << 3;
xd->mb_to_bottom_edge = ((pc->mb_rows - 1 - mb_row) * 16) << 3;
for (mb_col = 0; mb_col < pc->mb_cols; mb_col++)
{
if ((mb_col & 7) == 0)
{
while (mb_col > (*last_row_current_mb_col - 8) && *last_row_current_mb_col != pc->mb_cols - 1)
{
x86_pause_hint();
thread_sleep(0);
}
}
if (xd->mode_info_context->mbmi.mode == SPLITMV || xd->mode_info_context->mbmi.mode == B_PRED)
{
for (i = 0; i < 16; i++)
{
BLOCKD *d = &xd->block[i];
vpx_memcpy(&d->bmi, &xd->mode_info_context->bmi[i], sizeof(B_MODE_INFO));
}
}
// Distance of Mb to the various image edges.
// These specified to 8th pel as they are always compared to values that are in 1/8th pel units
xd->mb_to_left_edge = -((mb_col * 16) << 3);
xd->mb_to_right_edge = ((pc->mb_cols - 1 - mb_col) * 16) << 3;
xd->dst.y_buffer = pc->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset;
xd->dst.u_buffer = pc->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset;
xd->dst.v_buffer = pc->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset;
xd->left_available = (mb_col != 0);
// Select the appropriate reference frame for this MB
if (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME)
ref_fb_idx = pc->lst_fb_idx;
else if (xd->mode_info_context->mbmi.ref_frame == GOLDEN_FRAME)
ref_fb_idx = pc->gld_fb_idx;
else
ref_fb_idx = pc->alt_fb_idx;
xd->pre.y_buffer = pc->yv12_fb[ref_fb_idx].y_buffer + recon_yoffset;
xd->pre.u_buffer = pc->yv12_fb[ref_fb_idx].u_buffer + recon_uvoffset;
xd->pre.v_buffer = pc->yv12_fb[ref_fb_idx].v_buffer + recon_uvoffset;
vp8_build_uvmvs(xd, pc->full_pixel);
vp8_decode_macroblock(pbi, xd);
recon_yoffset += 16;
recon_uvoffset += 8;
++xd->mode_info_context; /* next mb */
xd->above_context++;
//pbi->mb_row_di[ithread].current_mb_col = mb_col;
pbi->current_mb_col[mb_row] = mb_col;
}
// adjust to the next row of mbs
vp8_extend_mb_row(
&pc->yv12_fb[dst_fb_idx],
xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, xd->dst.v_buffer + 8
);
++xd->mode_info_context; /* skip prediction column */
// since we have multithread
xd->mode_info_context += xd->mode_info_stride * pbi->decoding_thread_count;
pbi->last_mb_row_decoded = mb_row;
}
}
}
// If |pbi->common.filter_level| is 0 the value can change in-between
// the sem_post and the check to call vp8_thread_loop_filter.
current_filter_level = pbi->common.filter_level;
// add this to each frame
if ((mbrd->mb_row == pbi->common.mb_rows-1) || ((mbrd->mb_row == pbi->common.mb_rows-2) && (pbi->common.mb_rows % (pbi->decoding_thread_count+1))==1))
{
//SetEvent(pbi->h_event_end_decoding);
sem_post(&pbi->h_event_end_decoding);
}
if ((pbi->b_multithreaded_lf) && (current_filter_level))
vp8_thread_loop_filter(pbi, mbrd, ithread);
}
#else
(void) p_data;
#endif
return 0 ;
}
void vp8_thread_loop_filter(VP8D_COMP *pbi, MB_ROW_DEC *mbrd, int ithread)
{
#if CONFIG_MULTITHREAD
if (sem_wait(&pbi->h_event_start_lpf[ithread]) == 0)
{
// if (pbi->b_multithreaded_lf == 0) // we're shutting down ????
// break;
// else
{
VP8_COMMON *cm = &pbi->common;
MACROBLOCKD *mbd = &mbrd->mbd;
int default_filt_lvl = pbi->common.filter_level;
YV12_BUFFER_CONFIG *post = cm->frame_to_show;
loop_filter_info *lfi = cm->lf_info;
//int frame_type = cm->frame_type;
int mb_row;
int mb_col;
int filter_level;
int alt_flt_enabled = mbd->segmentation_enabled;
int i;
unsigned char *y_ptr, *u_ptr, *v_ptr;
volatile int *last_row_current_mb_col;
// Set up the buffer pointers
y_ptr = post->y_buffer + post->y_stride * 16 * (ithread +1);
u_ptr = post->u_buffer + post->uv_stride * 8 * (ithread +1);
v_ptr = post->v_buffer + post->uv_stride * 8 * (ithread +1);
// vp8_filter each macro block
for (mb_row = ithread+1; mb_row < cm->mb_rows; mb_row+= (pbi->decoding_thread_count + 1))
{
last_row_current_mb_col = &pbi->current_mb_col[mb_row -1];
for (mb_col = 0; mb_col < cm->mb_cols; mb_col++)
{
int Segment = (alt_flt_enabled) ? mbd->mode_info_context->mbmi.segment_id : 0;
if ((mb_col & 7) == 0)
{
while (mb_col > (*last_row_current_mb_col-8) && *last_row_current_mb_col != cm->mb_cols - 1)
{
x86_pause_hint();
thread_sleep(0);
}
}
filter_level = pbi->mt_baseline_filter_level[Segment];
// Apply any context driven MB level adjustment
vp8_adjust_mb_lf_value(mbd, &filter_level);
if (filter_level)
{
if (mb_col > 0)
cm->lf_mbv(y_ptr, u_ptr, v_ptr, post->y_stride, post->uv_stride, &lfi[filter_level], cm->simpler_lpf);
if (mbd->mode_info_context->mbmi.dc_diff > 0)
cm->lf_bv(y_ptr, u_ptr, v_ptr, post->y_stride, post->uv_stride, &lfi[filter_level], cm->simpler_lpf);
// don't apply across umv border
if (mb_row > 0)
cm->lf_mbh(y_ptr, u_ptr, v_ptr, post->y_stride, post->uv_stride, &lfi[filter_level], cm->simpler_lpf);
if (mbd->mode_info_context->mbmi.dc_diff > 0)
cm->lf_bh(y_ptr, u_ptr, v_ptr, post->y_stride, post->uv_stride, &lfi[filter_level], cm->simpler_lpf);
}
y_ptr += 16;
u_ptr += 8;
v_ptr += 8;
mbd->mode_info_context++; // step to next MB
pbi->current_mb_col[mb_row] = mb_col;
}
mbd->mode_info_context++; // Skip border mb
y_ptr += post->y_stride * 16 * (pbi->decoding_thread_count + 1) - post->y_width;
u_ptr += post->uv_stride * 8 * (pbi->decoding_thread_count + 1) - post->uv_width;
v_ptr += post->uv_stride * 8 * (pbi->decoding_thread_count + 1) - post->uv_width;
mbd->mode_info_context += pbi->decoding_thread_count * mbd->mode_info_stride; // Skip border mb
}
}
}
// add this to each frame
if ((mbrd->mb_row == pbi->common.mb_rows-1) || ((mbrd->mb_row == pbi->common.mb_rows-2) && (pbi->common.mb_rows % (pbi->decoding_thread_count+1))==1))
{
sem_post(&pbi->h_event_end_lpf);
}
#else
(void) pbi;
#endif
}
void vp8_decoder_create_threads(VP8D_COMP *pbi)
{
#if CONFIG_MULTITHREAD
int core_count = 0;
int ithread;
pbi->b_multithreaded_rd = 0;
pbi->b_multithreaded_lf = 0;
pbi->allocated_decoding_thread_count = 0;
core_count = (pbi->max_threads > 16) ? 16 : pbi->max_threads;
if (core_count > 1)
{
pbi->b_multithreaded_rd = 1;
pbi->b_multithreaded_lf = 1; // this can be merged with pbi->b_multithreaded_rd ?
pbi->decoding_thread_count = core_count -1;
CHECK_MEM_ERROR(pbi->h_decoding_thread, vpx_malloc(sizeof(pthread_t) * pbi->decoding_thread_count));
CHECK_MEM_ERROR(pbi->h_event_start_decoding, vpx_malloc(sizeof(sem_t) * pbi->decoding_thread_count));
CHECK_MEM_ERROR(pbi->mb_row_di, vpx_memalign(32, sizeof(MB_ROW_DEC) * pbi->decoding_thread_count));
vpx_memset(pbi->mb_row_di, 0, sizeof(MB_ROW_DEC) * pbi->decoding_thread_count);
CHECK_MEM_ERROR(pbi->de_thread_data, vpx_malloc(sizeof(DECODETHREAD_DATA) * pbi->decoding_thread_count));
CHECK_MEM_ERROR(pbi->current_mb_col, vpx_malloc(sizeof(int) * MAX_ROWS)); // pc->mb_rows));
CHECK_MEM_ERROR(pbi->h_event_start_lpf, vpx_malloc(sizeof(sem_t) * pbi->decoding_thread_count));
for (ithread = 0; ithread < pbi->decoding_thread_count; ithread++)
{
sem_init(&pbi->h_event_start_decoding[ithread], 0, 0);
sem_init(&pbi->h_event_start_lpf[ithread], 0, 0);
pbi->de_thread_data[ithread].ithread = ithread;
pbi->de_thread_data[ithread].ptr1 = (void *)pbi;
pbi->de_thread_data[ithread].ptr2 = (void *) &pbi->mb_row_di[ithread];
pthread_create(&pbi->h_decoding_thread[ithread], 0, vp8_thread_decoding_proc, (&pbi->de_thread_data[ithread]));
}
sem_init(&pbi->h_event_end_decoding, 0, 0);
sem_init(&pbi->h_event_end_lpf, 0, 0);
pbi->allocated_decoding_thread_count = pbi->decoding_thread_count;
}
#else
(void) pbi;
#endif
}
void vp8_decoder_remove_threads(VP8D_COMP *pbi)
{
#if CONFIG_MULTITHREAD
if (pbi->b_multithreaded_lf)
{
int i;
pbi->b_multithreaded_lf = 0;
for (i = 0; i < pbi->allocated_decoding_thread_count; i++)
sem_destroy(&pbi->h_event_start_lpf[i]);
sem_destroy(&pbi->h_event_end_lpf);
}
//shutdown MB Decoding thread;
if (pbi->b_multithreaded_rd)
{
int i;
pbi->b_multithreaded_rd = 0;
// allow all threads to exit
for (i = 0; i < pbi->allocated_decoding_thread_count; i++)
{
sem_post(&pbi->h_event_start_decoding[i]);
pthread_join(pbi->h_decoding_thread[i], NULL);
}
for (i = 0; i < pbi->allocated_decoding_thread_count; i++)
{
sem_destroy(&pbi->h_event_start_decoding[i]);
}
sem_destroy(&pbi->h_event_end_decoding);
if (pbi->h_decoding_thread)
{
vpx_free(pbi->h_decoding_thread);
pbi->h_decoding_thread = NULL;
}
if (pbi->h_event_start_decoding)
{
vpx_free(pbi->h_event_start_decoding);
pbi->h_event_start_decoding = NULL;
}
if (pbi->h_event_start_lpf)
{
vpx_free(pbi->h_event_start_lpf);
pbi->h_event_start_lpf = NULL;
}
if (pbi->mb_row_di)
{
vpx_free(pbi->mb_row_di);
pbi->mb_row_di = NULL ;
}
if (pbi->de_thread_data)
{
vpx_free(pbi->de_thread_data);
pbi->de_thread_data = NULL;
}
if (pbi->current_mb_col)
{
vpx_free(pbi->current_mb_col);
pbi->current_mb_col = NULL ;
}
}
#else
(void) pbi;
#endif
}
void vp8_start_lfthread(VP8D_COMP *pbi)
{
#if CONFIG_MULTITHREAD
/*
memcpy(&pbi->lpfmb, &pbi->mb, sizeof(pbi->mb));
pbi->last_mb_row_decoded = 0;
sem_post(&pbi->h_event_start_lpf);
*/
(void) pbi;
#else
(void) pbi;
#endif
}
void vp8_stop_lfthread(VP8D_COMP *pbi)
{
#if CONFIG_MULTITHREAD
/*
struct vpx_usec_timer timer;
vpx_usec_timer_start(&timer);
sem_wait(&pbi->h_event_end_lpf);
vpx_usec_timer_mark(&timer);
pbi->time_loop_filtering += vpx_usec_timer_elapsed(&timer);
*/
(void) pbi;
#else
(void) pbi;
#endif
}
void vp8_mtdecode_mb_rows(VP8D_COMP *pbi,
MACROBLOCKD *xd)
{
#if CONFIG_MULTITHREAD
int mb_row;
VP8_COMMON *pc = &pbi->common;
int ibc = 0;
int num_part = 1 << pbi->common.multi_token_partition;
int i;
volatile int *last_row_current_mb_col = NULL;
vp8_setup_decoding_thread_data(pbi, xd, pbi->mb_row_di, pbi->decoding_thread_count);
for (i = 0; i < pbi->decoding_thread_count; i++)
sem_post(&pbi->h_event_start_decoding[i]);
for (mb_row = 0; mb_row < pc->mb_rows; mb_row += (pbi->decoding_thread_count + 1))
{
int i;
xd->current_bc = &pbi->mbc[mb_row%num_part];
//vp8_decode_mb_row(pbi, pc, mb_row, xd);
{
int i;
int recon_yoffset, recon_uvoffset;
int mb_col;
int ref_fb_idx = pc->lst_fb_idx;
int dst_fb_idx = pc->new_fb_idx;
int recon_y_stride = pc->yv12_fb[ref_fb_idx].y_stride;
int recon_uv_stride = pc->yv12_fb[ref_fb_idx].uv_stride;
// volatile int *last_row_current_mb_col = NULL;
if (mb_row > 0)
last_row_current_mb_col = &pbi->current_mb_col[mb_row -1];
vpx_memset(&pc->left_context, 0, sizeof(pc->left_context));
recon_yoffset = mb_row * recon_y_stride * 16;
recon_uvoffset = mb_row * recon_uv_stride * 8;
// reset above block coeffs
xd->above_context = pc->above_context;
xd->up_available = (mb_row != 0);
xd->mb_to_top_edge = -((mb_row * 16)) << 3;
xd->mb_to_bottom_edge = ((pc->mb_rows - 1 - mb_row) * 16) << 3;
for (mb_col = 0; mb_col < pc->mb_cols; mb_col++)
{
if ( mb_row > 0 && (mb_col & 7) == 0){
while (mb_col > (*last_row_current_mb_col - 8) && *last_row_current_mb_col != pc->mb_cols - 1)
{
x86_pause_hint();
thread_sleep(0);
}
}
if (xd->mode_info_context->mbmi.mode == SPLITMV || xd->mode_info_context->mbmi.mode == B_PRED)
{
for (i = 0; i < 16; i++)
{
BLOCKD *d = &xd->block[i];
vpx_memcpy(&d->bmi, &xd->mode_info_context->bmi[i], sizeof(B_MODE_INFO));
}
}
// Distance of Mb to the various image edges.
// These specified to 8th pel as they are always compared to values that are in 1/8th pel units
xd->mb_to_left_edge = -((mb_col * 16) << 3);
xd->mb_to_right_edge = ((pc->mb_cols - 1 - mb_col) * 16) << 3;
xd->dst.y_buffer = pc->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset;
xd->dst.u_buffer = pc->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset;
xd->dst.v_buffer = pc->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset;
xd->left_available = (mb_col != 0);
// Select the appropriate reference frame for this MB
if (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME)
ref_fb_idx = pc->lst_fb_idx;
else if (xd->mode_info_context->mbmi.ref_frame == GOLDEN_FRAME)
ref_fb_idx = pc->gld_fb_idx;
else
ref_fb_idx = pc->alt_fb_idx;
xd->pre.y_buffer = pc->yv12_fb[ref_fb_idx].y_buffer + recon_yoffset;
xd->pre.u_buffer = pc->yv12_fb[ref_fb_idx].u_buffer + recon_uvoffset;
xd->pre.v_buffer = pc->yv12_fb[ref_fb_idx].v_buffer + recon_uvoffset;
vp8_build_uvmvs(xd, pc->full_pixel);
vp8_decode_macroblock(pbi, xd);
recon_yoffset += 16;
recon_uvoffset += 8;
++xd->mode_info_context; /* next mb */
xd->above_context++;
//pbi->current_mb_col_main = mb_col;
pbi->current_mb_col[mb_row] = mb_col;
}
// adjust to the next row of mbs
vp8_extend_mb_row(
&pc->yv12_fb[dst_fb_idx],
xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, xd->dst.v_buffer + 8
);
++xd->mode_info_context; /* skip prediction column */
pbi->last_mb_row_decoded = mb_row;
}
xd->mode_info_context += xd->mode_info_stride * pbi->decoding_thread_count;
}
sem_wait(&pbi->h_event_end_decoding); // add back for each frame
#else
(void) pbi;
(void) xd;
#endif
}
void vp8_mt_loop_filter_frame( VP8D_COMP *pbi)
{
#if CONFIG_MULTITHREAD
VP8_COMMON *cm = &pbi->common;
MACROBLOCKD *mbd = &pbi->mb;
int default_filt_lvl = pbi->common.filter_level;
YV12_BUFFER_CONFIG *post = cm->frame_to_show;
loop_filter_info *lfi = cm->lf_info;
int frame_type = cm->frame_type;
int mb_row;
int mb_col;
int filter_level;
int alt_flt_enabled = mbd->segmentation_enabled;
int i;
unsigned char *y_ptr, *u_ptr, *v_ptr;
volatile int *last_row_current_mb_col=NULL;
vp8_setup_loop_filter_thread_data(pbi, mbd, pbi->mb_row_di, pbi->decoding_thread_count);
mbd->mode_info_context = cm->mi; // Point at base of Mb MODE_INFO list
// Note the baseline filter values for each segment
if (alt_flt_enabled)
{
for (i = 0; i < MAX_MB_SEGMENTS; i++)
{
// Abs value
if (mbd->mb_segement_abs_delta == SEGMENT_ABSDATA)
pbi->mt_baseline_filter_level[i] = mbd->segment_feature_data[MB_LVL_ALT_LF][i];
// Delta Value
else
{
pbi->mt_baseline_filter_level[i] = default_filt_lvl + mbd->segment_feature_data[MB_LVL_ALT_LF][i];
pbi->mt_baseline_filter_level[i] = (pbi->mt_baseline_filter_level[i] >= 0) ? ((pbi->mt_baseline_filter_level[i] <= MAX_LOOP_FILTER) ? pbi->mt_baseline_filter_level[i] : MAX_LOOP_FILTER) : 0; // Clamp to valid range
}
}
}
else
{
for (i = 0; i < MAX_MB_SEGMENTS; i++)
pbi->mt_baseline_filter_level[i] = default_filt_lvl;
}
// Initialize the loop filter for this frame.
if ((cm->last_filter_type != cm->filter_type) || (cm->last_sharpness_level != cm->sharpness_level))
vp8_init_loop_filter(cm);
else if (frame_type != cm->last_frame_type)
vp8_frame_init_loop_filter(lfi, frame_type);
for (i = 0; i < pbi->decoding_thread_count; i++)
sem_post(&pbi->h_event_start_lpf[i]);
// sem_post(&pbi->h_event_start_lpf);
// Set up the buffer pointers
y_ptr = post->y_buffer;
u_ptr = post->u_buffer;
v_ptr = post->v_buffer;
// vp8_filter each macro block
for (mb_row = 0; mb_row < cm->mb_rows; mb_row+= (pbi->decoding_thread_count + 1))
{
if (mb_row > 0)
last_row_current_mb_col = &pbi->current_mb_col[mb_row -1];
for (mb_col = 0; mb_col < cm->mb_cols; mb_col++)
{
int Segment = (alt_flt_enabled) ? mbd->mode_info_context->mbmi.segment_id : 0;
if ( mb_row > 0 && (mb_col & 7) == 0){
// if ( mb_row > 0 ){
while (mb_col > (*last_row_current_mb_col-8) && *last_row_current_mb_col != cm->mb_cols - 1)
{
x86_pause_hint();
thread_sleep(0);
}
}
filter_level = pbi->mt_baseline_filter_level[Segment];
// Distance of Mb to the various image edges.
// These specified to 8th pel as they are always compared to values that are in 1/8th pel units
// Apply any context driven MB level adjustment
vp8_adjust_mb_lf_value(mbd, &filter_level);
if (filter_level)
{
if (mb_col > 0)
cm->lf_mbv(y_ptr, u_ptr, v_ptr, post->y_stride, post->uv_stride, &lfi[filter_level], cm->simpler_lpf);
if (mbd->mode_info_context->mbmi.dc_diff > 0)
cm->lf_bv(y_ptr, u_ptr, v_ptr, post->y_stride, post->uv_stride, &lfi[filter_level], cm->simpler_lpf);
// don't apply across umv border
if (mb_row > 0)
cm->lf_mbh(y_ptr, u_ptr, v_ptr, post->y_stride, post->uv_stride, &lfi[filter_level], cm->simpler_lpf);
if (mbd->mode_info_context->mbmi.dc_diff > 0)
cm->lf_bh(y_ptr, u_ptr, v_ptr, post->y_stride, post->uv_stride, &lfi[filter_level], cm->simpler_lpf);
}
y_ptr += 16;
u_ptr += 8;
v_ptr += 8;
mbd->mode_info_context++; // step to next MB
pbi->current_mb_col[mb_row] = mb_col;
}
mbd->mode_info_context++; // Skip border mb
//update for multi-thread
y_ptr += post->y_stride * 16 * (pbi->decoding_thread_count + 1) - post->y_width;
u_ptr += post->uv_stride * 8 * (pbi->decoding_thread_count + 1) - post->uv_width;
v_ptr += post->uv_stride * 8 * (pbi->decoding_thread_count + 1) - post->uv_width;
mbd->mode_info_context += pbi->decoding_thread_count * mbd->mode_info_stride;
}
sem_wait(&pbi->h_event_end_lpf);
#else
(void) pbi;
#endif
}