/* libs/opengles/matrix.cpp
**
** Copyright 2006, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#include <stdlib.h>
#include <stdio.h>
#include "context.h"
#include "fp.h"
#include "state.h"
#include "matrix.h"
#include "vertex.h"
#include "light.h"
#if defined(__arm__) && defined(__thumb__)
#warning "matrix.cpp should not be compiled in thumb on ARM."
#endif
#define I(_i, _j) ((_j)+ 4*(_i))
namespace android {
// ----------------------------------------------------------------------------
static const GLfloat gIdentityf[16] = { 1,0,0,0,
0,1,0,0,
0,0,1,0,
0,0,0,1 };
static const matrixx_t gIdentityx = {
{ 0x10000,0,0,0,
0,0x10000,0,0,
0,0,0x10000,0,
0,0,0,0x10000
}
};
static void point2__nop(transform_t const*, vec4_t* c, vec4_t const* o);
static void point3__nop(transform_t const*, vec4_t* c, vec4_t const* o);
static void point4__nop(transform_t const*, vec4_t* c, vec4_t const* o);
static void normal__nop(transform_t const*, vec4_t* c, vec4_t const* o);
static void point2__generic(transform_t const*, vec4_t* c, vec4_t const* o);
static void point3__generic(transform_t const*, vec4_t* c, vec4_t const* o);
static void point4__generic(transform_t const*, vec4_t* c, vec4_t const* o);
static void point3__mvui(transform_t const*, vec4_t* c, vec4_t const* o);
static void point4__mvui(transform_t const*, vec4_t* c, vec4_t const* o);
// ----------------------------------------------------------------------------
#if 0
#pragma mark -
#endif
void ogles_init_matrix(ogles_context_t* c)
{
c->transforms.modelview.init(OGLES_MODELVIEW_STACK_DEPTH);
c->transforms.projection.init(OGLES_PROJECTION_STACK_DEPTH);
for (int i=0; i<GGL_TEXTURE_UNIT_COUNT ; i++)
c->transforms.texture[i].init(OGLES_TEXTURE_STACK_DEPTH);
c->transforms.current = &c->transforms.modelview;
c->transforms.matrixMode = GL_MODELVIEW;
c->transforms.dirty = transform_state_t::VIEWPORT |
transform_state_t::MVUI |
transform_state_t::MVIT |
transform_state_t::MVP;
c->transforms.mvp.loadIdentity();
c->transforms.mvp4.loadIdentity();
c->transforms.mvit4.loadIdentity();
c->transforms.mvui.loadIdentity();
c->transforms.vpt.loadIdentity();
c->transforms.vpt.zNear = 0.0f;
c->transforms.vpt.zFar = 1.0f;
}
void ogles_uninit_matrix(ogles_context_t* c)
{
c->transforms.modelview.uninit();
c->transforms.projection.uninit();
for (int i=0; i<GGL_TEXTURE_UNIT_COUNT ; i++)
c->transforms.texture[i].uninit();
}
static void validate_perspective(ogles_context_t* c, vertex_t* v)
{
const uint32_t enables = c->rasterizer.state.enables;
c->arrays.perspective = (c->clipPlanes.enable) ?
ogles_vertex_clipAllPerspective3D : ogles_vertex_perspective3D;
if (enables & (GGL_ENABLE_DEPTH_TEST|GGL_ENABLE_FOG)) {
c->arrays.perspective = ogles_vertex_perspective3DZ;
if (c->clipPlanes.enable || (enables&GGL_ENABLE_FOG))
c->arrays.perspective = ogles_vertex_clipAllPerspective3DZ;
}
if ((c->arrays.vertex.size != 4) &&
(c->transforms.mvp4.flags & transform_t::FLAGS_2D_PROJECTION)) {
c->arrays.perspective = ogles_vertex_perspective2D;
}
c->arrays.perspective(c, v);
}
void ogles_invalidate_perspective(ogles_context_t* c)
{
c->arrays.perspective = validate_perspective;
}
void ogles_validate_transform_impl(ogles_context_t* c, uint32_t want)
{
int dirty = c->transforms.dirty & want;
// Validate the modelview
if (dirty & transform_state_t::MODELVIEW) {
c->transforms.modelview.validate();
}
// Validate the projection stack (in fact, it's never needed)
if (dirty & transform_state_t::PROJECTION) {
c->transforms.projection.validate();
}
// Validate the viewport transformation
if (dirty & transform_state_t::VIEWPORT) {
vp_transform_t& vpt = c->transforms.vpt;
vpt.transform.matrix.load(vpt.matrix);
vpt.transform.picker();
}
// We need to update the mvp (used to transform each vertex)
if (dirty & transform_state_t::MVP) {
c->transforms.update_mvp();
// invalidate perspective (divide by W) and view volume clipping
ogles_invalidate_perspective(c);
}
// Validate the mvui (for normal transformation)
if (dirty & transform_state_t::MVUI) {
c->transforms.update_mvui();
ogles_invalidate_lighting_mvui(c);
}
// Validate the texture stack
if (dirty & transform_state_t::TEXTURE) {
for (int i=0; i<GGL_TEXTURE_UNIT_COUNT ; i++)
c->transforms.texture[i].validate();
}
// Validate the mvit4 (user-clip planes)
if (dirty & transform_state_t::MVIT) {
c->transforms.update_mvit();
}
c->transforms.dirty &= ~want;
}
// ----------------------------------------------------------------------------
#if 0
#pragma mark -
#pragma mark transform_t
#endif
void transform_t::loadIdentity() {
matrix = gIdentityx;
flags = 0;
ops = OP_IDENTITY;
point2 = point2__nop;
point3 = point3__nop;
point4 = point4__nop;
}
static inline
int notZero(GLfixed v) {
return abs(v) & ~0x3;
}
static inline
int notOne(GLfixed v) {
return notZero(v - 0x10000);
}
void transform_t::picker()
{
const GLfixed* const m = matrix.m;
// XXX: picker needs to be smarter
flags = 0;
ops = OP_ALL;
point2 = point2__generic;
point3 = point3__generic;
point4 = point4__generic;
// find out if this is a 2D projection
if (!(notZero(m[3]) | notZero(m[7]) | notZero(m[11]) | notOne(m[15]))) {
flags |= FLAGS_2D_PROJECTION;
}
}
void mvui_transform_t::picker()
{
flags = 0;
ops = OP_ALL;
point3 = point3__mvui;
point4 = point4__mvui;
}
void transform_t::dump(const char* what)
{
GLfixed const * const m = matrix.m;
LOGD("%s:", what);
for (int i=0 ; i<4 ; i++)
LOGD("[%08x %08x %08x %08x] [%f %f %f %f]\n",
m[I(0,i)], m[I(1,i)], m[I(2,i)], m[I(3,i)],
fixedToFloat(m[I(0,i)]),
fixedToFloat(m[I(1,i)]),
fixedToFloat(m[I(2,i)]),
fixedToFloat(m[I(3,i)]));
}
// ----------------------------------------------------------------------------
#if 0
#pragma mark -
#pragma mark matrixx_t
#endif
void matrixx_t::load(const matrixf_t& rhs) {
GLfixed* xp = m;
GLfloat const* fp = rhs.elements();
unsigned int i = 16;
do {
const GLfloat f = *fp++;
*xp++ = isZerof(f) ? 0 : gglFloatToFixed(f);
} while (--i);
}
// ----------------------------------------------------------------------------
#if 0
#pragma mark -
#pragma mark matrixf_t
#endif
void matrixf_t::multiply(matrixf_t& r, const matrixf_t& lhs, const matrixf_t& rhs)
{
GLfloat const* const m = lhs.m;
for (int i=0 ; i<4 ; i++) {
register const float rhs_i0 = rhs.m[ I(i,0) ];
register float ri0 = m[ I(0,0) ] * rhs_i0;
register float ri1 = m[ I(0,1) ] * rhs_i0;
register float ri2 = m[ I(0,2) ] * rhs_i0;
register float ri3 = m[ I(0,3) ] * rhs_i0;
for (int j=1 ; j<4 ; j++) {
register const float rhs_ij = rhs.m[ I(i,j) ];
ri0 += m[ I(j,0) ] * rhs_ij;
ri1 += m[ I(j,1) ] * rhs_ij;
ri2 += m[ I(j,2) ] * rhs_ij;
ri3 += m[ I(j,3) ] * rhs_ij;
}
r.m[ I(i,0) ] = ri0;
r.m[ I(i,1) ] = ri1;
r.m[ I(i,2) ] = ri2;
r.m[ I(i,3) ] = ri3;
}
}
void matrixf_t::dump(const char* what) {
LOGD("%s", what);
LOGD("[ %9f %9f %9f %9f ]", m[I(0,0)], m[I(1,0)], m[I(2,0)], m[I(3,0)]);
LOGD("[ %9f %9f %9f %9f ]", m[I(0,1)], m[I(1,1)], m[I(2,1)], m[I(3,1)]);
LOGD("[ %9f %9f %9f %9f ]", m[I(0,2)], m[I(1,2)], m[I(2,2)], m[I(3,2)]);
LOGD("[ %9f %9f %9f %9f ]", m[I(0,3)], m[I(1,3)], m[I(2,3)], m[I(3,3)]);
}
void matrixf_t::loadIdentity() {
memcpy(m, gIdentityf, sizeof(m));
}
void matrixf_t::set(const GLfixed* rhs) {
load(rhs);
}
void matrixf_t::set(const GLfloat* rhs) {
load(rhs);
}
void matrixf_t::load(const GLfixed* rhs) {
GLfloat* fp = m;
unsigned int i = 16;
do {
*fp++ = fixedToFloat(*rhs++);
} while (--i);
}
void matrixf_t::load(const GLfloat* rhs) {
memcpy(m, rhs, sizeof(m));
}
void matrixf_t::load(const matrixf_t& rhs) {
operator = (rhs);
}
void matrixf_t::multiply(const matrixf_t& rhs) {
matrixf_t r;
multiply(r, *this, rhs);
operator = (r);
}
void matrixf_t::translate(GLfloat x, GLfloat y, GLfloat z) {
for (int i=0 ; i<4 ; i++) {
m[12+i] += m[i]*x + m[4+i]*y + m[8+i]*z;
}
}
void matrixf_t::scale(GLfloat x, GLfloat y, GLfloat z) {
for (int i=0 ; i<4 ; i++) {
m[ i] *= x;
m[4+i] *= y;
m[8+i] *= z;
}
}
void matrixf_t::rotate(GLfloat a, GLfloat x, GLfloat y, GLfloat z)
{
matrixf_t rotation;
GLfloat* r = rotation.m;
GLfloat c, s;
r[3] = 0; r[7] = 0; r[11]= 0;
r[12]= 0; r[13]= 0; r[14]= 0; r[15]= 1;
a *= GLfloat(M_PI / 180.0f);
sincosf(a, &s, &c);
if (isOnef(x) && isZerof(y) && isZerof(z)) {
r[5] = c; r[10]= c;
r[6] = s; r[9] = -s;
r[1] = 0; r[2] = 0;
r[4] = 0; r[8] = 0;
r[0] = 1;
} else if (isZerof(x) && isOnef(y) && isZerof(z)) {
r[0] = c; r[10]= c;
r[8] = s; r[2] = -s;
r[1] = 0; r[4] = 0;
r[6] = 0; r[9] = 0;
r[5] = 1;
} else if (isZerof(x) && isZerof(y) && isOnef(z)) {
r[0] = c; r[5] = c;
r[1] = s; r[4] = -s;
r[2] = 0; r[6] = 0;
r[8] = 0; r[9] = 0;
r[10]= 1;
} else {
const GLfloat len = sqrtf(x*x + y*y + z*z);
if (!isOnef(len)) {
const GLfloat recipLen = reciprocalf(len);
x *= recipLen;
y *= recipLen;
z *= recipLen;
}
const GLfloat nc = 1.0f - c;
const GLfloat xy = x * y;
const GLfloat yz = y * z;
const GLfloat zx = z * x;
const GLfloat xs = x * s;
const GLfloat ys = y * s;
const GLfloat zs = z * s;
r[ 0] = x*x*nc + c; r[ 4] = xy*nc - zs; r[ 8] = zx*nc + ys;
r[ 1] = xy*nc + zs; r[ 5] = y*y*nc + c; r[ 9] = yz*nc - xs;
r[ 2] = zx*nc - ys; r[ 6] = yz*nc + xs; r[10] = z*z*nc + c;
}
multiply(rotation);
}
// ----------------------------------------------------------------------------
#if 0
#pragma mark -
#pragma mark matrix_stack_t
#endif
void matrix_stack_t::init(int depth) {
stack = new matrixf_t[depth];
ops = new uint8_t[depth];
maxDepth = depth;
depth = 0;
dirty = 0;
loadIdentity();
}
void matrix_stack_t::uninit() {
delete [] stack;
delete [] ops;
}
void matrix_stack_t::loadIdentity() {
transform.loadIdentity();
stack[depth].loadIdentity();
ops[depth] = OP_IDENTITY;
}
void matrix_stack_t::load(const GLfixed* rhs)
{
memcpy(transform.matrix.m, rhs, sizeof(transform.matrix.m));
stack[depth].load(rhs);
ops[depth] = OP_ALL; // TODO: we should look at the matrix
}
void matrix_stack_t::load(const GLfloat* rhs)
{
stack[depth].load(rhs);
ops[depth] = OP_ALL; // TODO: we should look at the matrix
}
void matrix_stack_t::multiply(const matrixf_t& rhs)
{
stack[depth].multiply(rhs);
ops[depth] = OP_ALL; // TODO: we should look at the matrix
}
void matrix_stack_t::translate(GLfloat x, GLfloat y, GLfloat z)
{
stack[depth].translate(x,y,z);
ops[depth] |= OP_TRANSLATE;
}
void matrix_stack_t::scale(GLfloat x, GLfloat y, GLfloat z)
{
stack[depth].scale(x,y,z);
if (x==y && y==z) {
ops[depth] |= OP_UNIFORM_SCALE;
} else {
ops[depth] |= OP_SCALE;
}
}
void matrix_stack_t::rotate(GLfloat a, GLfloat x, GLfloat y, GLfloat z)
{
stack[depth].rotate(a,x,y,z);
ops[depth] |= OP_ROTATE;
}
void matrix_stack_t::validate()
{
if (dirty & DO_FLOAT_TO_FIXED) {
transform.matrix.load(top());
}
if (dirty & DO_PICKER) {
transform.picker();
}
dirty = 0;
}
GLint matrix_stack_t::push()
{
if (depth >= (maxDepth-1)) {
return GL_STACK_OVERFLOW;
}
stack[depth+1] = stack[depth];
ops[depth+1] = ops[depth];
depth++;
return 0;
}
GLint matrix_stack_t::pop()
{
if (depth == 0) {
return GL_STACK_UNDERFLOW;
}
depth--;
return 0;
}
// ----------------------------------------------------------------------------
#if 0
#pragma mark -
#pragma mark vp_transform_t
#endif
void vp_transform_t::loadIdentity() {
transform.loadIdentity();
matrix.loadIdentity();
}
// ----------------------------------------------------------------------------
#if 0
#pragma mark -
#pragma mark transform_state_t
#endif
void transform_state_t::invalidate()
{
switch (matrixMode) {
case GL_MODELVIEW: dirty |= MODELVIEW | MVP | MVUI | MVIT; break;
case GL_PROJECTION: dirty |= PROJECTION | MVP; break;
case GL_TEXTURE: dirty |= TEXTURE | MVP; break;
}
current->dirty = matrix_stack_t::DO_PICKER |
matrix_stack_t::DO_FLOAT_TO_FIXED;
}
void transform_state_t::update_mvp()
{
matrixf_t temp_mvp;
matrixf_t::multiply(temp_mvp, projection.top(), modelview.top());
mvp4.matrix.load(temp_mvp);
mvp4.picker();
if (mvp4.flags & transform_t::FLAGS_2D_PROJECTION) {
// the mvp matrix doesn't transform W, in this case we can
// premultiply it with the viewport transformation. In addition to
// being more efficient, this is also much more accurate and in fact
// is needed for 2D drawing with a resulting 1:1 mapping.
matrixf_t mvpv;
matrixf_t::multiply(mvpv, vpt.matrix, temp_mvp);
mvp.matrix.load(mvpv);
mvp.picker();
} else {
mvp = mvp4;
}
}
static inline
GLfloat det22(GLfloat a, GLfloat b, GLfloat c, GLfloat d) {
return a*d - b*c;
}
static inline
GLfloat ndet22(GLfloat a, GLfloat b, GLfloat c, GLfloat d) {
return b*c - a*d;
}
static __attribute__((noinline))
void invert(GLfloat* inverse, const GLfloat* src)
{
double t;
int i, j, k, swap;
GLfloat tmp[4][4];
memcpy(inverse, gIdentityf, sizeof(gIdentityf));
memcpy(tmp, src, sizeof(GLfloat)*16);
for (i = 0; i < 4; i++) {
// look for largest element in column
swap = i;
for (j = i + 1; j < 4; j++) {
if (fabs(tmp[j][i]) > fabs(tmp[i][i])) {
swap = j;
}
}
if (swap != i) {
/* swap rows. */
for (k = 0; k < 4; k++) {
t = tmp[i][k];
tmp[i][k] = tmp[swap][k];
tmp[swap][k] = t;
t = inverse[i*4+k];
inverse[i*4+k] = inverse[swap*4+k];
inverse[swap*4+k] = t;
}
}
t = 1.0f / tmp[i][i];
for (k = 0; k < 4; k++) {
tmp[i][k] *= t;
inverse[i*4+k] *= t;
}
for (j = 0; j < 4; j++) {
if (j != i) {
t = tmp[j][i];
for (k = 0; k < 4; k++) {
tmp[j][k] -= tmp[i][k]*t;
inverse[j*4+k] -= inverse[i*4+k]*t;
}
}
}
}
}
void transform_state_t::update_mvit()
{
GLfloat r[16];
const GLfloat* const mv = modelview.top().elements();
invert(r, mv);
// convert to fixed-point and transpose
GLfixed* const x = mvit4.matrix.m;
for (int i=0 ; i<4 ; i++)
for (int j=0 ; j<4 ; j++)
x[I(i,j)] = gglFloatToFixed(r[I(j,i)]);
mvit4.picker();
}
void transform_state_t::update_mvui()
{
GLfloat r[16];
const GLfloat* const mv = modelview.top().elements();
/*
When evaluating the lighting equation in eye-space, normals
are transformed by the upper 3x3 modelview inverse-transpose.
http://www.opengl.org/documentation/specs/version1.1/glspec1.1/node26.html
(note that inverse-transpose is distributive).
Also note that:
l(obj) = inv(modelview).l(eye) for local light
l(obj) = tr(modelview).l(eye) for infinite light
*/
invert(r, mv);
GLfixed* const x = mvui.matrix.m;
#if OBJECT_SPACE_LIGHTING
for (int i=0 ; i<4 ; i++)
for (int j=0 ; j<4 ; j++)
x[I(i,j)] = gglFloatToFixed(r[I(i,j)]);
#else
for (int i=0 ; i<4 ; i++)
for (int j=0 ; j<4 ; j++)
x[I(i,j)] = gglFloatToFixed(r[I(j,i)]);
#endif
mvui.picker();
}
// ----------------------------------------------------------------------------
// transformation and matrices API
// ----------------------------------------------------------------------------
#if 0
#pragma mark -
#pragma mark transformation and matrices API
#endif
int ogles_surfaceport(ogles_context_t* c, GLint x, GLint y)
{
c->viewport.surfaceport.x = x;
c->viewport.surfaceport.y = y;
ogles_viewport(c,
c->viewport.x,
c->viewport.y,
c->viewport.w,
c->viewport.h);
ogles_scissor(c,
c->viewport.scissor.x,
c->viewport.scissor.y,
c->viewport.scissor.w,
c->viewport.scissor.h);
return 0;
}
void ogles_scissor(ogles_context_t* c,
GLint x, GLint y, GLsizei w, GLsizei h)
{
if ((w|h) < 0) {
ogles_error(c, GL_INVALID_VALUE);
return;
}
c->viewport.scissor.x = x;
c->viewport.scissor.y = y;
c->viewport.scissor.w = w;
c->viewport.scissor.h = h;
x += c->viewport.surfaceport.x;
y += c->viewport.surfaceport.y;
y = c->rasterizer.state.buffers.color.height - (y + h);
c->rasterizer.procs.scissor(c, x, y, w, h);
}
void ogles_viewport(ogles_context_t* c,
GLint x, GLint y, GLsizei w, GLsizei h)
{
if ((w|h)<0) {
ogles_error(c, GL_INVALID_VALUE);
return;
}
c->viewport.x = x;
c->viewport.y = y;
c->viewport.w = w;
c->viewport.h = h;
x += c->viewport.surfaceport.x;
y += c->viewport.surfaceport.y;
GLint H = c->rasterizer.state.buffers.color.height;
GLfloat sx = div2f(w);
GLfloat ox = sx + x;
GLfloat sy = div2f(h);
GLfloat oy = sy - y + (H - h);
GLfloat near = c->transforms.vpt.zNear;
GLfloat far = c->transforms.vpt.zFar;
GLfloat A = div2f(far - near);
GLfloat B = div2f(far + near);
// compute viewport matrix
GLfloat* const f = c->transforms.vpt.matrix.editElements();
f[0] = sx; f[4] = 0; f[ 8] = 0; f[12] = ox;
f[1] = 0; f[5] =-sy; f[ 9] = 0; f[13] = oy;
f[2] = 0; f[6] = 0; f[10] = A; f[14] = B;
f[3] = 0; f[7] = 0; f[11] = 0; f[15] = 1;
c->transforms.dirty |= transform_state_t::VIEWPORT;
if (c->transforms.mvp4.flags & transform_t::FLAGS_2D_PROJECTION)
c->transforms.dirty |= transform_state_t::MVP;
}
// ----------------------------------------------------------------------------
#if 0
#pragma mark -
#pragma mark matrix * vertex
#endif
void point2__generic(transform_t const* mx, vec4_t* lhs, vec4_t const* rhs) {
const GLfixed* const m = mx->matrix.m;
const GLfixed rx = rhs->x;
const GLfixed ry = rhs->y;
lhs->x = mla2a(rx, m[ 0], ry, m[ 4], m[12]);
lhs->y = mla2a(rx, m[ 1], ry, m[ 5], m[13]);
lhs->z = mla2a(rx, m[ 2], ry, m[ 6], m[14]);
lhs->w = mla2a(rx, m[ 3], ry, m[ 7], m[15]);
}
void point3__generic(transform_t const* mx, vec4_t* lhs, vec4_t const* rhs) {
const GLfixed* const m = mx->matrix.m;
const GLfixed rx = rhs->x;
const GLfixed ry = rhs->y;
const GLfixed rz = rhs->z;
lhs->x = mla3a(rx, m[ 0], ry, m[ 4], rz, m[ 8], m[12]);
lhs->y = mla3a(rx, m[ 1], ry, m[ 5], rz, m[ 9], m[13]);
lhs->z = mla3a(rx, m[ 2], ry, m[ 6], rz, m[10], m[14]);
lhs->w = mla3a(rx, m[ 3], ry, m[ 7], rz, m[11], m[15]);
}
void point4__generic(transform_t const* mx, vec4_t* lhs, vec4_t const* rhs) {
const GLfixed* const m = mx->matrix.m;
const GLfixed rx = rhs->x;
const GLfixed ry = rhs->y;
const GLfixed rz = rhs->z;
const GLfixed rw = rhs->w;
lhs->x = mla4(rx, m[ 0], ry, m[ 4], rz, m[ 8], rw, m[12]);
lhs->y = mla4(rx, m[ 1], ry, m[ 5], rz, m[ 9], rw, m[13]);
lhs->z = mla4(rx, m[ 2], ry, m[ 6], rz, m[10], rw, m[14]);
lhs->w = mla4(rx, m[ 3], ry, m[ 7], rz, m[11], rw, m[15]);
}
void point3__mvui(transform_t const* mx, vec4_t* lhs, vec4_t const* rhs) {
// this is used for transforming light positions back to object space.
// w is used as a switch for directional lights, so we need
// to preserve it.
const GLfixed* const m = mx->matrix.m;
const GLfixed rx = rhs->x;
const GLfixed ry = rhs->y;
const GLfixed rz = rhs->z;
lhs->x = mla3(rx, m[ 0], ry, m[ 4], rz, m[ 8]);
lhs->y = mla3(rx, m[ 1], ry, m[ 5], rz, m[ 9]);
lhs->z = mla3(rx, m[ 2], ry, m[ 6], rz, m[10]);
lhs->w = 0;
}
void point4__mvui(transform_t const* mx, vec4_t* lhs, vec4_t const* rhs) {
// this is used for transforming light positions back to object space.
// w is used as a switch for directional lights, so we need
// to preserve it.
const GLfixed* const m = mx->matrix.m;
const GLfixed rx = rhs->x;
const GLfixed ry = rhs->y;
const GLfixed rz = rhs->z;
const GLfixed rw = rhs->w;
lhs->x = mla4(rx, m[ 0], ry, m[ 4], rz, m[ 8], rw, m[12]);
lhs->y = mla4(rx, m[ 1], ry, m[ 5], rz, m[ 9], rw, m[13]);
lhs->z = mla4(rx, m[ 2], ry, m[ 6], rz, m[10], rw, m[14]);
lhs->w = rw;
}
void point2__nop(transform_t const*, vec4_t* lhs, vec4_t const* rhs) {
lhs->z = 0;
lhs->w = 0x10000;
if (lhs != rhs) {
lhs->x = rhs->x;
lhs->y = rhs->y;
}
}
void point3__nop(transform_t const*, vec4_t* lhs, vec4_t const* rhs) {
lhs->w = 0x10000;
if (lhs != rhs) {
lhs->x = rhs->x;
lhs->y = rhs->y;
lhs->z = rhs->z;
}
}
void point4__nop(transform_t const*, vec4_t* lhs, vec4_t const* rhs) {
if (lhs != rhs)
*lhs = *rhs;
}
static void frustumf(
GLfloat left, GLfloat right,
GLfloat bottom, GLfloat top,
GLfloat zNear, GLfloat zFar,
ogles_context_t* c)
{
if (cmpf(left,right) ||
cmpf(top, bottom) ||
cmpf(zNear, zFar) ||
isZeroOrNegativef(zNear) ||
isZeroOrNegativef(zFar))
{
ogles_error(c, GL_INVALID_VALUE);
return;
}
const GLfloat r_width = reciprocalf(right - left);
const GLfloat r_height = reciprocalf(top - bottom);
const GLfloat r_depth = reciprocalf(zNear - zFar);
const GLfloat x = mul2f(zNear * r_width);
const GLfloat y = mul2f(zNear * r_height);
const GLfloat A = mul2f((right + left) * r_width);
const GLfloat B = (top + bottom) * r_height;
const GLfloat C = (zFar + zNear) * r_depth;
const GLfloat D = mul2f(zFar * zNear * r_depth);
GLfloat f[16];
f[ 0] = x;
f[ 5] = y;
f[ 8] = A;
f[ 9] = B;
f[10] = C;
f[14] = D;
f[11] = -1.0f;
f[ 1] = f[ 2] = f[ 3] =
f[ 4] = f[ 6] = f[ 7] =
f[12] = f[13] = f[15] = 0.0f;
matrixf_t rhs;
rhs.set(f);
c->transforms.current->multiply(rhs);
c->transforms.invalidate();
}
static void orthof(
GLfloat left, GLfloat right,
GLfloat bottom, GLfloat top,
GLfloat zNear, GLfloat zFar,
ogles_context_t* c)
{
if (cmpf(left,right) ||
cmpf(top, bottom) ||
cmpf(zNear, zFar))
{
ogles_error(c, GL_INVALID_VALUE);
return;
}
const GLfloat r_width = reciprocalf(right - left);
const GLfloat r_height = reciprocalf(top - bottom);
const GLfloat r_depth = reciprocalf(zFar - zNear);
const GLfloat x = mul2f(r_width);
const GLfloat y = mul2f(r_height);
const GLfloat z = -mul2f(r_depth);
const GLfloat tx = -(right + left) * r_width;
const GLfloat ty = -(top + bottom) * r_height;
const GLfloat tz = -(zFar + zNear) * r_depth;
GLfloat f[16];
f[ 0] = x;
f[ 5] = y;
f[10] = z;
f[12] = tx;
f[13] = ty;
f[14] = tz;
f[15] = 1.0f;
f[ 1] = f[ 2] = f[ 3] =
f[ 4] = f[ 6] = f[ 7] =
f[ 8] = f[ 9] = f[11] = 0.0f;
matrixf_t rhs;
rhs.set(f);
c->transforms.current->multiply(rhs);
c->transforms.invalidate();
}
static void depthRangef(GLclampf zNear, GLclampf zFar, ogles_context_t* c)
{
zNear = clampToZerof(zNear > 1 ? 1 : zNear);
zFar = clampToZerof(zFar > 1 ? 1 : zFar);
GLfloat* const f = c->transforms.vpt.matrix.editElements();
f[10] = div2f(zFar - zNear);
f[14] = div2f(zFar + zNear);
c->transforms.dirty |= transform_state_t::VIEWPORT;
c->transforms.vpt.zNear = zNear;
c->transforms.vpt.zFar = zFar;
}
// ----------------------------------------------------------------------------
}; // namespace android
using namespace android;
void glMatrixMode(GLenum mode)
{
ogles_context_t* c = ogles_context_t::get();
matrix_stack_t* stack = 0;
switch (mode) {
case GL_MODELVIEW:
stack = &c->transforms.modelview;
break;
case GL_PROJECTION:
stack = &c->transforms.projection;
break;
case GL_TEXTURE:
stack = &c->transforms.texture[c->textures.active];
break;
default:
ogles_error(c, GL_INVALID_ENUM);
return;
}
c->transforms.matrixMode = mode;
c->transforms.current = stack;
}
void glLoadIdentity()
{
ogles_context_t* c = ogles_context_t::get();
c->transforms.current->loadIdentity(); // also loads the GLfixed transform
c->transforms.invalidate();
c->transforms.current->dirty = 0;
}
void glLoadMatrixf(const GLfloat* m)
{
ogles_context_t* c = ogles_context_t::get();
c->transforms.current->load(m);
c->transforms.invalidate();
}
void glLoadMatrixx(const GLfixed* m)
{
ogles_context_t* c = ogles_context_t::get();
c->transforms.current->load(m); // also loads the GLfixed transform
c->transforms.invalidate();
c->transforms.current->dirty &= ~matrix_stack_t::DO_FLOAT_TO_FIXED;
}
void glMultMatrixf(const GLfloat* m)
{
ogles_context_t* c = ogles_context_t::get();
matrixf_t rhs;
rhs.set(m);
c->transforms.current->multiply(rhs);
c->transforms.invalidate();
}
void glMultMatrixx(const GLfixed* m)
{
ogles_context_t* c = ogles_context_t::get();
matrixf_t rhs;
rhs.set(m);
c->transforms.current->multiply(rhs);
c->transforms.invalidate();
}
void glPopMatrix()
{
ogles_context_t* c = ogles_context_t::get();
GLint err = c->transforms.current->pop();
if (ggl_unlikely(err)) {
ogles_error(c, err);
return;
}
c->transforms.invalidate();
}
void glPushMatrix()
{
ogles_context_t* c = ogles_context_t::get();
GLint err = c->transforms.current->push();
if (ggl_unlikely(err)) {
ogles_error(c, err);
return;
}
c->transforms.invalidate();
}
void glFrustumf(
GLfloat left, GLfloat right,
GLfloat bottom, GLfloat top,
GLfloat zNear, GLfloat zFar)
{
ogles_context_t* c = ogles_context_t::get();
frustumf(left, right, bottom, top, zNear, zFar, c);
}
void glFrustumx(
GLfixed left, GLfixed right,
GLfixed bottom, GLfixed top,
GLfixed zNear, GLfixed zFar)
{
ogles_context_t* c = ogles_context_t::get();
frustumf( fixedToFloat(left), fixedToFloat(right),
fixedToFloat(bottom), fixedToFloat(top),
fixedToFloat(zNear), fixedToFloat(zFar),
c);
}
void glOrthof(
GLfloat left, GLfloat right,
GLfloat bottom, GLfloat top,
GLfloat zNear, GLfloat zFar)
{
ogles_context_t* c = ogles_context_t::get();
orthof(left, right, bottom, top, zNear, zFar, c);
}
void glOrthox(
GLfixed left, GLfixed right,
GLfixed bottom, GLfixed top,
GLfixed zNear, GLfixed zFar)
{
ogles_context_t* c = ogles_context_t::get();
orthof( fixedToFloat(left), fixedToFloat(right),
fixedToFloat(bottom), fixedToFloat(top),
fixedToFloat(zNear), fixedToFloat(zFar),
c);
}
void glRotatef(GLfloat a, GLfloat x, GLfloat y, GLfloat z)
{
ogles_context_t* c = ogles_context_t::get();
c->transforms.current->rotate(a, x, y, z);
c->transforms.invalidate();
}
void glRotatex(GLfixed a, GLfixed x, GLfixed y, GLfixed z)
{
ogles_context_t* c = ogles_context_t::get();
c->transforms.current->rotate(
fixedToFloat(a), fixedToFloat(x),
fixedToFloat(y), fixedToFloat(z));
c->transforms.invalidate();
}
void glScalef(GLfloat x, GLfloat y, GLfloat z)
{
ogles_context_t* c = ogles_context_t::get();
c->transforms.current->scale(x, y, z);
c->transforms.invalidate();
}
void glScalex(GLfixed x, GLfixed y, GLfixed z)
{
ogles_context_t* c = ogles_context_t::get();
c->transforms.current->scale(
fixedToFloat(x), fixedToFloat(y), fixedToFloat(z));
c->transforms.invalidate();
}
void glTranslatef(GLfloat x, GLfloat y, GLfloat z)
{
ogles_context_t* c = ogles_context_t::get();
c->transforms.current->translate(x, y, z);
c->transforms.invalidate();
}
void glTranslatex(GLfixed x, GLfixed y, GLfixed z)
{
ogles_context_t* c = ogles_context_t::get();
c->transforms.current->translate(
fixedToFloat(x), fixedToFloat(y), fixedToFloat(z));
c->transforms.invalidate();
}
void glScissor(GLint x, GLint y, GLsizei w, GLsizei h)
{
ogles_context_t* c = ogles_context_t::get();
ogles_scissor(c, x, y, w, h);
}
void glViewport(GLint x, GLint y, GLsizei w, GLsizei h)
{
ogles_context_t* c = ogles_context_t::get();
ogles_viewport(c, x, y, w, h);
}
void glDepthRangef(GLclampf zNear, GLclampf zFar)
{
ogles_context_t* c = ogles_context_t::get();
depthRangef(zNear, zFar, c);
}
void glDepthRangex(GLclampx zNear, GLclampx zFar)
{
ogles_context_t* c = ogles_context_t::get();
depthRangef(fixedToFloat(zNear), fixedToFloat(zFar), c);
}
void glPolygonOffsetx(GLfixed factor, GLfixed units)
{
ogles_context_t* c = ogles_context_t::get();
c->polygonOffset.factor = factor;
c->polygonOffset.units = units;
}
void glPolygonOffset(GLfloat factor, GLfloat units)
{
ogles_context_t* c = ogles_context_t::get();
c->polygonOffset.factor = gglFloatToFixed(factor);
c->polygonOffset.units = gglFloatToFixed(units);
}
GLbitfield glQueryMatrixxOES(GLfixed* m, GLint* e)
{
ogles_context_t* c = ogles_context_t::get();
GLbitfield status = 0;
GLfloat const* f = c->transforms.current->top().elements();
for (int i=0 ; i<16 ; i++) {
if (isnan(f[i]) || isinf(f[i])) {
status |= 1<<i;
continue;
}
e[i] = exponent(f[i]) - 7;
m[i] = mantissa(f[i]);
}
return status;
}