// Simple OpenGL ES 1.x application showing how to initialize and draw something. #include <EGL/egl.h> #include <GLES/gl.h> #include <GLES/glext.h> #include <ui/FramebufferNativeWindow.h> #include <ui/EGLUtils.h> #include <stdio.h> #include <stdlib.h> #include <math.h> using namespace android; EGLDisplay eglDisplay; EGLSurface eglSurface; EGLContext eglContext; GLuint texture; #define FIXED_ONE 0x10000 #define ITERATIONS 50 int init_gl_surface(void); void free_gl_surface(void); void init_scene(void); void render(); void create_texture(void); int readTimer(void); static void printGLString(const char *name, GLenum s) { const char *v = (const char *) glGetString(s); fprintf(stderr, "GL %s = %s\n", name, v); } static void gluLookAt(float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ) { // See the OpenGL GLUT documentation for gluLookAt for a description // of the algorithm. We implement it in a straightforward way: float fx = centerX - eyeX; float fy = centerY - eyeY; float fz = centerZ - eyeZ; // Normalize f float rlf = 1.0f / sqrtf(fx*fx + fy*fy + fz*fz); fx *= rlf; fy *= rlf; fz *= rlf; // Normalize up float rlup = 1.0f / sqrtf(upX*upX + upY*upY + upZ*upZ); upX *= rlup; upY *= rlup; upZ *= rlup; // compute s = f x up (x means "cross product") float sx = fy * upZ - fz * upY; float sy = fz * upX - fx * upZ; float sz = fx * upY - fy * upX; // compute u = s x f float ux = sy * fz - sz * fy; float uy = sz * fx - sx * fz; float uz = sx * fy - sy * fx; float m[16] ; m[0] = sx; m[1] = ux; m[2] = -fx; m[3] = 0.0f; m[4] = sy; m[5] = uy; m[6] = -fy; m[7] = 0.0f; m[8] = sz; m[9] = uz; m[10] = -fz; m[11] = 0.0f; m[12] = 0.0f; m[13] = 0.0f; m[14] = 0.0f; m[15] = 1.0f; glMultMatrixf(m); glTranslatef(-eyeX, -eyeY, -eyeZ); } void printEGLConfiguration(EGLDisplay dpy, EGLConfig config) { #define X(VAL) {VAL, #VAL} struct {EGLint attribute; const char* name;} names[] = { X(EGL_BUFFER_SIZE), X(EGL_ALPHA_SIZE), X(EGL_BLUE_SIZE), X(EGL_GREEN_SIZE), X(EGL_RED_SIZE), X(EGL_DEPTH_SIZE), X(EGL_STENCIL_SIZE), X(EGL_CONFIG_CAVEAT), X(EGL_CONFIG_ID), X(EGL_LEVEL), X(EGL_MAX_PBUFFER_HEIGHT), X(EGL_MAX_PBUFFER_PIXELS), X(EGL_MAX_PBUFFER_WIDTH), X(EGL_NATIVE_RENDERABLE), X(EGL_NATIVE_VISUAL_ID), X(EGL_NATIVE_VISUAL_TYPE), X(EGL_PRESERVED_RESOURCES), X(EGL_SAMPLES), X(EGL_SAMPLE_BUFFERS), X(EGL_SURFACE_TYPE), X(EGL_TRANSPARENT_TYPE), X(EGL_TRANSPARENT_RED_VALUE), X(EGL_TRANSPARENT_GREEN_VALUE), X(EGL_TRANSPARENT_BLUE_VALUE), X(EGL_BIND_TO_TEXTURE_RGB), X(EGL_BIND_TO_TEXTURE_RGBA), X(EGL_MIN_SWAP_INTERVAL), X(EGL_MAX_SWAP_INTERVAL), X(EGL_LUMINANCE_SIZE), X(EGL_ALPHA_MASK_SIZE), X(EGL_COLOR_BUFFER_TYPE), X(EGL_RENDERABLE_TYPE), X(EGL_CONFORMANT), }; #undef X for (size_t j = 0; j < sizeof(names) / sizeof(names[0]); j++) { EGLint value = -1; EGLint returnVal = eglGetConfigAttrib(dpy, config, names[j].attribute, &value); EGLint error = eglGetError(); if (returnVal && error == EGL_SUCCESS) { printf(" %s: ", names[j].name); printf("%d (0x%x)", value, value); } } printf("\n"); } static void checkEglError(const char* op, EGLBoolean returnVal = EGL_TRUE) { if (returnVal != EGL_TRUE) { fprintf(stderr, "%s() returned %d\n", op, returnVal); } for (EGLint error = eglGetError(); error != EGL_SUCCESS; error = eglGetError()) { fprintf(stderr, "after %s() eglError %s (0x%x)\n", op, EGLUtils::strerror(error), error); } } int printEGLConfigurations(EGLDisplay dpy) { EGLint numConfig = 0; EGLint returnVal = eglGetConfigs(dpy, NULL, 0, &numConfig); checkEglError("eglGetConfigs", returnVal); if (!returnVal) { return false; } printf("Number of EGL configurations: %d\n", numConfig); EGLConfig* configs = (EGLConfig*) malloc(sizeof(EGLConfig) * numConfig); if (! configs) { printf("Could not allocate configs.\n"); return false; } returnVal = eglGetConfigs(dpy, configs, numConfig, &numConfig); checkEglError("eglGetConfigs", returnVal); if (!returnVal) { free(configs); return false; } for(int i = 0; i < numConfig; i++) { printf("Configuration %d\n", i); printEGLConfiguration(dpy, configs[i]); } free(configs); return true; } int main(int argc, char **argv) { int q; int start, end; printf("Initializing EGL...\n"); if(!init_gl_surface()) { printf("GL initialisation failed - exiting\n"); return 0; } init_scene(); create_texture(); printf("Running...\n"); while(true) { render(); } free_gl_surface(); return 0; } int init_gl_surface(void) { EGLint numConfigs = 1; EGLConfig myConfig = {0}; EGLint attrib[] = { EGL_SURFACE_TYPE, EGL_WINDOW_BIT, EGL_NONE }; if ( (eglDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY)) == EGL_NO_DISPLAY ) { printf("eglGetDisplay failed\n"); return 0; } if ( eglInitialize(eglDisplay, NULL, NULL) != EGL_TRUE ) { printf("eglInitialize failed\n"); return 0; } if (! printEGLConfigurations(eglDisplay)) { printf("printEGLConfigurations failed.\n"); return 0; } EGLNativeWindowType window = android_createDisplaySurface(); EGLUtils::selectConfigForNativeWindow(eglDisplay, attrib, window, &myConfig); if ( (eglSurface = eglCreateWindowSurface(eglDisplay, myConfig, window, 0)) == EGL_NO_SURFACE ) { printf("eglCreateWindowSurface failed\n"); return 0; } if ( (eglContext = eglCreateContext(eglDisplay, myConfig, 0, 0)) == EGL_NO_CONTEXT ) { printf("eglCreateContext failed\n"); return 0; } if ( eglMakeCurrent(eglDisplay, eglSurface, eglSurface, eglContext) != EGL_TRUE ) { printf("eglMakeCurrent failed\n"); return 0; } int w, h; eglQuerySurface(eglDisplay, eglSurface, EGL_WIDTH, &w); checkEglError("eglQuerySurface"); eglQuerySurface(eglDisplay, eglSurface, EGL_HEIGHT, &h); checkEglError("eglQuerySurface"); GLint dim = w < h ? w : h; fprintf(stderr, "Window dimensions: %d x %d\n", w, h); printGLString("Version", GL_VERSION); printGLString("Vendor", GL_VENDOR); printGLString("Renderer", GL_RENDERER); printGLString("Extensions", GL_EXTENSIONS); return 1; } void free_gl_surface(void) { if (eglDisplay != EGL_NO_DISPLAY) { eglMakeCurrent( EGL_NO_DISPLAY, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT ); eglDestroyContext( eglDisplay, eglContext ); eglDestroySurface( eglDisplay, eglSurface ); eglTerminate( eglDisplay ); eglDisplay = EGL_NO_DISPLAY; } } void init_scene(void) { glDisable(GL_DITHER); glEnable(GL_CULL_FACE); float ratio = 320.0f / 480.0f; glViewport(0, 0, 320, 480); glMatrixMode(GL_PROJECTION); glLoadIdentity(); glFrustumf(-ratio, ratio, -1, 1, 1, 10); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); gluLookAt( 0, 0, 3, // eye 0, 0, 0, // center 0, 1, 0); // up glEnable(GL_TEXTURE_2D); glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_TEXTURE_COORD_ARRAY); } void create_texture(void) { const unsigned int on = 0xff0000ff; const unsigned int off = 0xffffffff; const unsigned int pixels[] = { on, off, on, off, on, off, on, off, off, on, off, on, off, on, off, on, on, off, on, off, on, off, on, off, off, on, off, on, off, on, off, on, on, off, on, off, on, off, on, off, off, on, off, on, off, on, off, on, on, off, on, off, on, off, on, off, off, on, off, on, off, on, off, on, }; glGenTextures(1, &texture); glBindTexture(GL_TEXTURE_2D, texture); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 8, 8, 0, GL_RGBA, GL_UNSIGNED_BYTE, pixels); glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE); } void render() { int i, j; int quads = 1; const GLfloat vertices[] = { -1, -1, 0, 1, -1, 0, 1, 1, 0, -1, 1, 0 }; const GLfixed texCoords[] = { 0, 0, FIXED_ONE, 0, FIXED_ONE, FIXED_ONE, 0, FIXED_ONE }; const GLushort indices[] = { 0, 1, 2, 0, 2, 3 }; glVertexPointer(3, GL_FLOAT, 0, vertices); glTexCoordPointer(2, GL_FIXED, 0, texCoords); glClearColor(1.0, 1.0, 1.0, 1.0); int nelem = sizeof(indices)/sizeof(indices[0]); glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT); glDrawElements(GL_TRIANGLES, nelem, GL_UNSIGNED_SHORT, indices); eglSwapBuffers(eglDisplay, eglSurface); }