/* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // // Read-only access to Zip archives, with minimal heap allocation. // #define LOG_TAG "zipro" //#define LOG_NDEBUG 0 #include <utils/ZipFileRO.h> #include <utils/Log.h> #include <utils/misc.h> #include <zlib.h> #include <string.h> #include <fcntl.h> #include <errno.h> #include <assert.h> using namespace android; /* * Zip file constants. */ #define kEOCDSignature 0x06054b50 #define kEOCDLen 22 #define kEOCDNumEntries 8 // offset to #of entries in file #define kEOCDFileOffset 16 // offset to central directory #define kMaxCommentLen 65535 // longest possible in ushort #define kMaxEOCDSearch (kMaxCommentLen + kEOCDLen) #define kLFHSignature 0x04034b50 #define kLFHLen 30 // excluding variable-len fields #define kLFHNameLen 26 // offset to filename length #define kLFHExtraLen 28 // offset to extra length #define kCDESignature 0x02014b50 #define kCDELen 46 // excluding variable-len fields #define kCDEMethod 10 // offset to compression method #define kCDEModWhen 12 // offset to modification timestamp #define kCDECRC 16 // offset to entry CRC #define kCDECompLen 20 // offset to compressed length #define kCDEUncompLen 24 // offset to uncompressed length #define kCDENameLen 28 // offset to filename length #define kCDEExtraLen 30 // offset to extra length #define kCDECommentLen 32 // offset to comment length #define kCDELocalOffset 42 // offset to local hdr /* * The values we return for ZipEntryRO use 0 as an invalid value, so we * want to adjust the hash table index by a fixed amount. Using a large * value helps insure that people don't mix & match arguments, e.g. to * findEntryByIndex(). */ #define kZipEntryAdj 10000 /* * Convert a ZipEntryRO to a hash table index, verifying that it's in a * valid range. */ int ZipFileRO::entryToIndex(const ZipEntryRO entry) const { long ent = ((long) entry) - kZipEntryAdj; if (ent < 0 || ent >= mHashTableSize || mHashTable[ent].name == NULL) { LOGW("Invalid ZipEntryRO %p (%ld)\n", entry, ent); return -1; } return ent; } /* * Open the specified file read-only. We memory-map the entire thing and * close the file before returning. */ status_t ZipFileRO::open(const char* zipFileName) { int fd = -1; off_t length; assert(mFileMap == NULL); /* * Open and map the specified file. */ fd = ::open(zipFileName, O_RDONLY); if (fd < 0) { LOGW("Unable to open zip '%s': %s\n", zipFileName, strerror(errno)); return NAME_NOT_FOUND; } length = lseek(fd, 0, SEEK_END); if (length < 0) { close(fd); return UNKNOWN_ERROR; } mFileMap = new FileMap(); if (mFileMap == NULL) { close(fd); return NO_MEMORY; } if (!mFileMap->create(zipFileName, fd, 0, length, true)) { LOGW("Unable to map '%s': %s\n", zipFileName, strerror(errno)); close(fd); return UNKNOWN_ERROR; } mFd = fd; /* * Got it mapped, verify it and create data structures for fast access. */ if (!parseZipArchive()) { mFileMap->release(); mFileMap = NULL; return UNKNOWN_ERROR; } return OK; } /* * Parse the Zip archive, verifying its contents and initializing internal * data structures. */ bool ZipFileRO::parseZipArchive(void) { #define CHECK_OFFSET(_off) { \ if ((unsigned int) (_off) >= maxOffset) { \ LOGE("ERROR: bad offset %u (max %d): %s\n", \ (unsigned int) (_off), maxOffset, #_off); \ goto bail; \ } \ } const unsigned char* basePtr = (const unsigned char*)mFileMap->getDataPtr(); const unsigned char* ptr; size_t length = mFileMap->getDataLength(); bool result = false; unsigned int i, numEntries, cdOffset; unsigned int val; /* * The first 4 bytes of the file will either be the local header * signature for the first file (kLFHSignature) or, if the archive doesn't * have any files in it, the end-of-central-directory signature * (kEOCDSignature). */ val = get4LE(basePtr); if (val == kEOCDSignature) { LOGI("Found Zip archive, but it looks empty\n"); goto bail; } else if (val != kLFHSignature) { LOGV("Not a Zip archive (found 0x%08x)\n", val); goto bail; } /* * Find the EOCD. We'll find it immediately unless they have a file * comment. */ ptr = basePtr + length - kEOCDLen; while (ptr >= basePtr) { if (*ptr == (kEOCDSignature & 0xff) && get4LE(ptr) == kEOCDSignature) break; ptr--; } if (ptr < basePtr) { LOGI("Could not find end-of-central-directory in Zip\n"); goto bail; } /* * There are two interesting items in the EOCD block: the number of * entries in the file, and the file offset of the start of the * central directory. * * (There's actually a count of the #of entries in this file, and for * all files which comprise a spanned archive, but for our purposes * we're only interested in the current file. Besides, we expect the * two to be equivalent for our stuff.) */ numEntries = get2LE(ptr + kEOCDNumEntries); cdOffset = get4LE(ptr + kEOCDFileOffset); /* valid offsets are [0,EOCD] */ unsigned int maxOffset; maxOffset = (ptr - basePtr) +1; LOGV("+++ numEntries=%d cdOffset=%d\n", numEntries, cdOffset); if (numEntries == 0 || cdOffset >= length) { LOGW("Invalid entries=%d offset=%d (len=%zd)\n", numEntries, cdOffset, length); goto bail; } /* * Create hash table. We have a minimum 75% load factor, possibly as * low as 50% after we round off to a power of 2. */ mNumEntries = numEntries; mHashTableSize = roundUpPower2(1 + ((numEntries * 4) / 3)); mHashTable = (HashEntry*) calloc(1, sizeof(HashEntry) * mHashTableSize); /* * Walk through the central directory, adding entries to the hash * table. */ ptr = basePtr + cdOffset; for (i = 0; i < numEntries; i++) { unsigned int fileNameLen, extraLen, commentLen, localHdrOffset; const unsigned char* localHdr; unsigned int hash; if (get4LE(ptr) != kCDESignature) { LOGW("Missed a central dir sig (at %d)\n", i); goto bail; } if (ptr + kCDELen > basePtr + length) { LOGW("Ran off the end (at %d)\n", i); goto bail; } localHdrOffset = get4LE(ptr + kCDELocalOffset); CHECK_OFFSET(localHdrOffset); fileNameLen = get2LE(ptr + kCDENameLen); extraLen = get2LE(ptr + kCDEExtraLen); commentLen = get2LE(ptr + kCDECommentLen); //LOGV("+++ %d: localHdr=%d fnl=%d el=%d cl=%d\n", // i, localHdrOffset, fileNameLen, extraLen, commentLen); //LOGV(" '%.*s'\n", fileNameLen, ptr + kCDELen); /* add the CDE filename to the hash table */ hash = computeHash((const char*)ptr + kCDELen, fileNameLen); addToHash((const char*)ptr + kCDELen, fileNameLen, hash); localHdr = basePtr + localHdrOffset; if (get4LE(localHdr) != kLFHSignature) { LOGW("Bad offset to local header: %d (at %d)\n", localHdrOffset, i); goto bail; } ptr += kCDELen + fileNameLen + extraLen + commentLen; CHECK_OFFSET(ptr - basePtr); } result = true; bail: return result; #undef CHECK_OFFSET } /* * Simple string hash function for non-null-terminated strings. */ /*static*/ unsigned int ZipFileRO::computeHash(const char* str, int len) { unsigned int hash = 0; while (len--) hash = hash * 31 + *str++; return hash; } /* * Add a new entry to the hash table. */ void ZipFileRO::addToHash(const char* str, int strLen, unsigned int hash) { int ent = hash & (mHashTableSize-1); /* * We over-allocate the table, so we're guaranteed to find an empty slot. */ while (mHashTable[ent].name != NULL) ent = (ent + 1) & (mHashTableSize-1); mHashTable[ent].name = str; mHashTable[ent].nameLen = strLen; } /* * Find a matching entry. * * Returns 0 if not found. */ ZipEntryRO ZipFileRO::findEntryByName(const char* fileName) const { int nameLen = strlen(fileName); unsigned int hash = computeHash(fileName, nameLen); int ent = hash & (mHashTableSize-1); while (mHashTable[ent].name != NULL) { if (mHashTable[ent].nameLen == nameLen && memcmp(mHashTable[ent].name, fileName, nameLen) == 0) { /* match */ return (ZipEntryRO) (ent + kZipEntryAdj); } ent = (ent + 1) & (mHashTableSize-1); } return NULL; } /* * Find the Nth entry. * * This currently involves walking through the sparse hash table, counting * non-empty entries. If we need to speed this up we can either allocate * a parallel lookup table or (perhaps better) provide an iterator interface. */ ZipEntryRO ZipFileRO::findEntryByIndex(int idx) const { if (idx < 0 || idx >= mNumEntries) { LOGW("Invalid index %d\n", idx); return NULL; } for (int ent = 0; ent < mHashTableSize; ent++) { if (mHashTable[ent].name != NULL) { if (idx-- == 0) return (ZipEntryRO) (ent + kZipEntryAdj); } } return NULL; } /* * Get the useful fields from the zip entry. * * Returns "false" if the offsets to the fields or the contents of the fields * appear to be bogus. */ bool ZipFileRO::getEntryInfo(ZipEntryRO entry, int* pMethod, long* pUncompLen, long* pCompLen, off_t* pOffset, long* pModWhen, long* pCrc32) const { int ent = entryToIndex(entry); if (ent < 0) return false; /* * Recover the start of the central directory entry from the filename * pointer. */ const unsigned char* basePtr = (const unsigned char*)mFileMap->getDataPtr(); const unsigned char* ptr = (const unsigned char*) mHashTable[ent].name; size_t zipLength = mFileMap->getDataLength(); ptr -= kCDELen; int method = get2LE(ptr + kCDEMethod); if (pMethod != NULL) *pMethod = method; if (pModWhen != NULL) *pModWhen = get4LE(ptr + kCDEModWhen); if (pCrc32 != NULL) *pCrc32 = get4LE(ptr + kCDECRC); /* * We need to make sure that the lengths are not so large that somebody * trying to map the compressed or uncompressed data runs off the end * of the mapped region. */ unsigned long localHdrOffset = get4LE(ptr + kCDELocalOffset); if (localHdrOffset + kLFHLen >= zipLength) { LOGE("ERROR: bad local hdr offset in zip\n"); return false; } const unsigned char* localHdr = basePtr + localHdrOffset; off_t dataOffset = localHdrOffset + kLFHLen + get2LE(localHdr + kLFHNameLen) + get2LE(localHdr + kLFHExtraLen); if ((unsigned long) dataOffset >= zipLength) { LOGE("ERROR: bad data offset in zip\n"); return false; } if (pCompLen != NULL) { *pCompLen = get4LE(ptr + kCDECompLen); if (*pCompLen < 0 || (size_t)(dataOffset + *pCompLen) >= zipLength) { LOGE("ERROR: bad compressed length in zip\n"); return false; } } if (pUncompLen != NULL) { *pUncompLen = get4LE(ptr + kCDEUncompLen); if (*pUncompLen < 0) { LOGE("ERROR: negative uncompressed length in zip\n"); return false; } if (method == kCompressStored && (size_t)(dataOffset + *pUncompLen) >= zipLength) { LOGE("ERROR: bad uncompressed length in zip\n"); return false; } } if (pOffset != NULL) { *pOffset = dataOffset; } return true; } /* * Copy the entry's filename to the buffer. */ int ZipFileRO::getEntryFileName(ZipEntryRO entry, char* buffer, int bufLen) const { int ent = entryToIndex(entry); if (ent < 0) return -1; int nameLen = mHashTable[ent].nameLen; if (bufLen < nameLen+1) return nameLen+1; memcpy(buffer, mHashTable[ent].name, nameLen); buffer[nameLen] = '\0'; return 0; } /* * Create a new FileMap object that spans the data in "entry". */ FileMap* ZipFileRO::createEntryFileMap(ZipEntryRO entry) const { /* * TODO: the efficient way to do this is to modify FileMap to allow * sub-regions of a file to be mapped. A reference-counting scheme * can manage the base memory mapping. For now, we just create a brand * new mapping off of the Zip archive file descriptor. */ FileMap* newMap; long compLen; off_t offset; if (!getEntryInfo(entry, NULL, NULL, &compLen, &offset, NULL, NULL)) return NULL; newMap = new FileMap(); if (!newMap->create(mFileMap->getFileName(), mFd, offset, compLen, true)) { newMap->release(); return NULL; } return newMap; } /* * Uncompress an entry, in its entirety, into the provided output buffer. * * This doesn't verify the data's CRC, which might be useful for * uncompressed data. The caller should be able to manage it. */ bool ZipFileRO::uncompressEntry(ZipEntryRO entry, void* buffer) const { const int kSequentialMin = 32768; bool result = false; int ent = entryToIndex(entry); if (ent < 0) return -1; const unsigned char* basePtr = (const unsigned char*)mFileMap->getDataPtr(); int method; long uncompLen, compLen; off_t offset; getEntryInfo(entry, &method, &uncompLen, &compLen, &offset, NULL, NULL); /* * Experiment with madvise hint. When we want to uncompress a file, * we pull some stuff out of the central dir entry and then hit a * bunch of compressed or uncompressed data sequentially. The CDE * visit will cause a limited amount of read-ahead because it's at * the end of the file. We could end up doing lots of extra disk * access if the file we're prying open is small. Bottom line is we * probably don't want to turn MADV_SEQUENTIAL on and leave it on. * * So, if the compressed size of the file is above a certain minimum * size, temporarily boost the read-ahead in the hope that the extra * pair of system calls are negated by a reduction in page faults. */ if (compLen > kSequentialMin) mFileMap->advise(FileMap::SEQUENTIAL); if (method == kCompressStored) { memcpy(buffer, basePtr + offset, uncompLen); } else { if (!inflateBuffer(buffer, basePtr + offset, uncompLen, compLen)) goto bail; } if (compLen > kSequentialMin) mFileMap->advise(FileMap::NORMAL); result = true; bail: return result; } /* * Uncompress an entry, in its entirety, to an open file descriptor. * * This doesn't verify the data's CRC, but probably should. */ bool ZipFileRO::uncompressEntry(ZipEntryRO entry, int fd) const { bool result = false; int ent = entryToIndex(entry); if (ent < 0) return -1; const unsigned char* basePtr = (const unsigned char*)mFileMap->getDataPtr(); int method; long uncompLen, compLen; off_t offset; getEntryInfo(entry, &method, &uncompLen, &compLen, &offset, NULL, NULL); if (method == kCompressStored) { ssize_t actual; actual = write(fd, basePtr + offset, uncompLen); if (actual < 0) { LOGE("Write failed: %s\n", strerror(errno)); goto bail; } else if (actual != uncompLen) { LOGE("Partial write during uncompress (%d of %ld)\n", (int)actual, uncompLen); goto bail; } else { LOGI("+++ successful write\n"); } } else { if (!inflateBuffer(fd, basePtr+offset, uncompLen, compLen)) goto bail; } result = true; bail: return result; } /* * Uncompress "deflate" data from one buffer to another. */ /*static*/ bool ZipFileRO::inflateBuffer(void* outBuf, const void* inBuf, long uncompLen, long compLen) { bool result = false; z_stream zstream; int zerr; /* * Initialize the zlib stream struct. */ memset(&zstream, 0, sizeof(zstream)); zstream.zalloc = Z_NULL; zstream.zfree = Z_NULL; zstream.opaque = Z_NULL; zstream.next_in = (Bytef*)inBuf; zstream.avail_in = compLen; zstream.next_out = (Bytef*) outBuf; zstream.avail_out = uncompLen; zstream.data_type = Z_UNKNOWN; /* * Use the undocumented "negative window bits" feature to tell zlib * that there's no zlib header waiting for it. */ zerr = inflateInit2(&zstream, -MAX_WBITS); if (zerr != Z_OK) { if (zerr == Z_VERSION_ERROR) { LOGE("Installed zlib is not compatible with linked version (%s)\n", ZLIB_VERSION); } else { LOGE("Call to inflateInit2 failed (zerr=%d)\n", zerr); } goto bail; } /* * Expand data. */ zerr = inflate(&zstream, Z_FINISH); if (zerr != Z_STREAM_END) { LOGW("Zip inflate failed, zerr=%d (nIn=%p aIn=%u nOut=%p aOut=%u)\n", zerr, zstream.next_in, zstream.avail_in, zstream.next_out, zstream.avail_out); goto z_bail; } /* paranoia */ if ((long) zstream.total_out != uncompLen) { LOGW("Size mismatch on inflated file (%ld vs %ld)\n", zstream.total_out, uncompLen); goto z_bail; } result = true; z_bail: inflateEnd(&zstream); /* free up any allocated structures */ bail: return result; } /* * Uncompress "deflate" data from one buffer to an open file descriptor. */ /*static*/ bool ZipFileRO::inflateBuffer(int fd, const void* inBuf, long uncompLen, long compLen) { bool result = false; const int kWriteBufSize = 32768; unsigned char writeBuf[kWriteBufSize]; z_stream zstream; int zerr; /* * Initialize the zlib stream struct. */ memset(&zstream, 0, sizeof(zstream)); zstream.zalloc = Z_NULL; zstream.zfree = Z_NULL; zstream.opaque = Z_NULL; zstream.next_in = (Bytef*)inBuf; zstream.avail_in = compLen; zstream.next_out = (Bytef*) writeBuf; zstream.avail_out = sizeof(writeBuf); zstream.data_type = Z_UNKNOWN; /* * Use the undocumented "negative window bits" feature to tell zlib * that there's no zlib header waiting for it. */ zerr = inflateInit2(&zstream, -MAX_WBITS); if (zerr != Z_OK) { if (zerr == Z_VERSION_ERROR) { LOGE("Installed zlib is not compatible with linked version (%s)\n", ZLIB_VERSION); } else { LOGE("Call to inflateInit2 failed (zerr=%d)\n", zerr); } goto bail; } /* * Loop while we have more to do. */ do { /* * Expand data. */ zerr = inflate(&zstream, Z_NO_FLUSH); if (zerr != Z_OK && zerr != Z_STREAM_END) { LOGW("zlib inflate: zerr=%d (nIn=%p aIn=%u nOut=%p aOut=%u)\n", zerr, zstream.next_in, zstream.avail_in, zstream.next_out, zstream.avail_out); goto z_bail; } /* write when we're full or when we're done */ if (zstream.avail_out == 0 || (zerr == Z_STREAM_END && zstream.avail_out != sizeof(writeBuf))) { long writeSize = zstream.next_out - writeBuf; int cc = write(fd, writeBuf, writeSize); if (cc != (int) writeSize) { LOGW("write failed in inflate (%d vs %ld)\n", cc, writeSize); goto z_bail; } zstream.next_out = writeBuf; zstream.avail_out = sizeof(writeBuf); } } while (zerr == Z_OK); assert(zerr == Z_STREAM_END); /* other errors should've been caught */ /* paranoia */ if ((long) zstream.total_out != uncompLen) { LOGW("Size mismatch on inflated file (%ld vs %ld)\n", zstream.total_out, uncompLen); goto z_bail; } result = true; z_bail: inflateEnd(&zstream); /* free up any allocated structures */ bail: return result; }