/* * WPA Supplicant - driver interaction with generic Linux Wireless Extensions * Copyright (c) 2003-2007, Jouni Malinen <j@w1.fi> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Alternatively, this software may be distributed under the terms of BSD * license. * * See README and COPYING for more details. * * This file implements a driver interface for the Linux Wireless Extensions. * When used with WE-18 or newer, this interface can be used as-is with number * of drivers. In addition to this, some of the common functions in this file * can be used by other driver interface implementations that use generic WE * ioctls, but require private ioctls for some of the functionality. */ #include "includes.h" #include <sys/ioctl.h> #include <net/if_arp.h> #include <net/if.h> #include "wireless_copy.h" #include "common.h" #include "driver.h" #include "l2_packet.h" #include "eloop.h" #include "wpa_supplicant.h" #include "priv_netlink.h" #include "driver_wext.h" #include "wpa.h" #include "wpa_ctrl.h" #include "wpa_supplicant_i.h" #include "config_ssid.h" #ifdef CONFIG_CLIENT_MLME #include <netpacket/packet.h> #include <hostapd_ioctl.h> #include <ieee80211_common.h> /* from net/mac80211.h */ enum { MODE_IEEE80211A = 0 /* IEEE 802.11a */, MODE_IEEE80211B = 1 /* IEEE 802.11b only */, MODE_ATHEROS_TURBO = 2 /* Atheros Turbo mode (2x.11a at 5 GHz) */, MODE_IEEE80211G = 3 /* IEEE 802.11g (and 802.11b compatibility) */, MODE_ATHEROS_TURBOG = 4 /* Atheros Turbo mode (2x.11g at 2.4 GHz) */, NUM_IEEE80211_MODES = 5 }; #include "mlme.h" #ifndef ETH_P_ALL #define ETH_P_ALL 0x0003 #endif #endif /* CONFIG_CLIENT_MLME */ struct wpa_driver_wext_data { void *ctx; int event_sock; int ioctl_sock; int mlme_sock; char ifname[IFNAMSIZ + 1]; int ifindex; int ifindex2; int if_removed; u8 *assoc_req_ies; size_t assoc_req_ies_len; u8 *assoc_resp_ies; size_t assoc_resp_ies_len; struct wpa_driver_capa capa; int has_capability; int we_version_compiled; /* for set_auth_alg fallback */ int use_crypt; int auth_alg_fallback; int operstate; char mlmedev[IFNAMSIZ + 1]; int scan_complete_events; int errors; }; static int wpa_driver_wext_flush_pmkid(void *priv); static int wpa_driver_wext_get_range(void *priv); static void wpa_driver_wext_finish_drv_init(struct wpa_driver_wext_data *drv); static int wpa_driver_wext_send_oper_ifla(struct wpa_driver_wext_data *drv, int linkmode, int operstate) { struct { struct nlmsghdr hdr; struct ifinfomsg ifinfo; char opts[16]; } req; struct rtattr *rta; static int nl_seq; ssize_t ret; req.hdr.nlmsg_len = NLMSG_LENGTH(sizeof(struct ifinfomsg)); req.hdr.nlmsg_type = RTM_SETLINK; req.hdr.nlmsg_flags = NLM_F_REQUEST; req.hdr.nlmsg_seq = ++nl_seq; req.hdr.nlmsg_pid = 0; req.ifinfo.ifi_family = AF_UNSPEC; req.ifinfo.ifi_type = 0; req.ifinfo.ifi_index = drv->ifindex; req.ifinfo.ifi_flags = 0; req.ifinfo.ifi_change = 0; if (linkmode != -1) { rta = (struct rtattr *) ((char *) &req + NLMSG_ALIGN(req.hdr.nlmsg_len)); rta->rta_type = IFLA_LINKMODE; rta->rta_len = RTA_LENGTH(sizeof(char)); *((char *) RTA_DATA(rta)) = linkmode; req.hdr.nlmsg_len = NLMSG_ALIGN(req.hdr.nlmsg_len) + RTA_LENGTH(sizeof(char)); } if (operstate != -1) { rta = (struct rtattr *) ((char *) &req + NLMSG_ALIGN(req.hdr.nlmsg_len)); rta->rta_type = IFLA_OPERSTATE; rta->rta_len = RTA_LENGTH(sizeof(char)); *((char *) RTA_DATA(rta)) = operstate; req.hdr.nlmsg_len = NLMSG_ALIGN(req.hdr.nlmsg_len) + RTA_LENGTH(sizeof(char)); } wpa_printf(MSG_DEBUG, "WEXT: Operstate: linkmode=%d, operstate=%d", linkmode, operstate); ret = send(drv->event_sock, &req, req.hdr.nlmsg_len, 0); if (ret < 0) { wpa_printf(MSG_DEBUG, "WEXT: Sending operstate IFLA failed: " "%s (assume operstate is not supported)", strerror(errno)); } return ret < 0 ? -1 : 0; } static int wpa_driver_wext_set_auth_param(struct wpa_driver_wext_data *drv, int idx, u32 value) { struct iwreq iwr; int ret = 0; os_memset(&iwr, 0, sizeof(iwr)); os_strncpy(iwr.ifr_name, drv->ifname, IFNAMSIZ); iwr.u.param.flags = idx & IW_AUTH_INDEX; iwr.u.param.value = value; if (ioctl(drv->ioctl_sock, SIOCSIWAUTH, &iwr) < 0) { if (errno != EOPNOTSUPP) { wpa_printf(MSG_DEBUG, "WEXT: SIOCSIWAUTH(param %d " "value 0x%x) failed: %s)", idx, value, strerror(errno)); } ret = errno == EOPNOTSUPP ? -2 : -1; } return ret; } /** * wpa_driver_wext_get_bssid - Get BSSID, SIOCGIWAP * @priv: Pointer to private wext data from wpa_driver_wext_init() * @bssid: Buffer for BSSID * Returns: 0 on success, -1 on failure */ int wpa_driver_wext_get_bssid(void *priv, u8 *bssid) { struct wpa_driver_wext_data *drv = priv; struct iwreq iwr; int ret = 0; os_memset(&iwr, 0, sizeof(iwr)); os_strncpy(iwr.ifr_name, drv->ifname, IFNAMSIZ); if (ioctl(drv->ioctl_sock, SIOCGIWAP, &iwr) < 0) { perror("ioctl[SIOCGIWAP]"); ret = -1; } os_memcpy(bssid, iwr.u.ap_addr.sa_data, ETH_ALEN); return ret; } /** * wpa_driver_wext_set_bssid - Set BSSID, SIOCSIWAP * @priv: Pointer to private wext data from wpa_driver_wext_init() * @bssid: BSSID * Returns: 0 on success, -1 on failure */ int wpa_driver_wext_set_bssid(void *priv, const u8 *bssid) { struct wpa_driver_wext_data *drv = priv; struct iwreq iwr; int ret = 0; os_memset(&iwr, 0, sizeof(iwr)); os_strncpy(iwr.ifr_name, drv->ifname, IFNAMSIZ); iwr.u.ap_addr.sa_family = ARPHRD_ETHER; if (bssid) os_memcpy(iwr.u.ap_addr.sa_data, bssid, ETH_ALEN); else os_memset(iwr.u.ap_addr.sa_data, 0, ETH_ALEN); if (ioctl(drv->ioctl_sock, SIOCSIWAP, &iwr) < 0) { perror("ioctl[SIOCSIWAP]"); ret = -1; } return ret; } /** * wpa_driver_wext_get_ssid - Get SSID, SIOCGIWESSID * @priv: Pointer to private wext data from wpa_driver_wext_init() * @ssid: Buffer for the SSID; must be at least 32 bytes long * Returns: SSID length on success, -1 on failure */ int wpa_driver_wext_get_ssid(void *priv, u8 *ssid) { struct wpa_driver_wext_data *drv = priv; struct iwreq iwr; int ret = 0; os_memset(&iwr, 0, sizeof(iwr)); os_strncpy(iwr.ifr_name, drv->ifname, IFNAMSIZ); iwr.u.essid.pointer = (caddr_t) ssid; iwr.u.essid.length = 32; if (ioctl(drv->ioctl_sock, SIOCGIWESSID, &iwr) < 0) { perror("ioctl[SIOCGIWESSID]"); ret = -1; } else { ret = iwr.u.essid.length; if (ret > 32) ret = 32; /* Some drivers include nul termination in the SSID, so let's * remove it here before further processing. WE-21 changes this * to explicitly require the length _not_ to include nul * termination. */ if (ret > 0 && ssid[ret - 1] == '\0' && drv->we_version_compiled < 21) ret--; } return ret; } /** * wpa_driver_wext_set_ssid - Set SSID, SIOCSIWESSID * @priv: Pointer to private wext data from wpa_driver_wext_init() * @ssid: SSID * @ssid_len: Length of SSID (0..32) * Returns: 0 on success, -1 on failure */ int wpa_driver_wext_set_ssid(void *priv, const u8 *ssid, size_t ssid_len) { struct wpa_driver_wext_data *drv = priv; struct iwreq iwr; int ret = 0; char buf[33]; if (ssid_len > 32) return -1; os_memset(&iwr, 0, sizeof(iwr)); os_strncpy(iwr.ifr_name, drv->ifname, IFNAMSIZ); /* flags: 1 = ESSID is active, 0 = not (promiscuous) */ iwr.u.essid.flags = (ssid_len != 0); os_memset(buf, 0, sizeof(buf)); os_memcpy(buf, ssid, ssid_len); iwr.u.essid.pointer = (caddr_t) buf; if (drv->we_version_compiled < 21) { /* For historic reasons, set SSID length to include one extra * character, C string nul termination, even though SSID is * really an octet string that should not be presented as a C * string. Some Linux drivers decrement the length by one and * can thus end up missing the last octet of the SSID if the * length is not incremented here. WE-21 changes this to * explicitly require the length _not_ to include nul * termination. */ if (ssid_len) ssid_len++; } iwr.u.essid.length = ssid_len; if (ioctl(drv->ioctl_sock, SIOCSIWESSID, &iwr) < 0) { perror("ioctl[SIOCSIWESSID]"); ret = -1; } return ret; } /** * wpa_driver_wext_set_freq - Set frequency/channel, SIOCSIWFREQ * @priv: Pointer to private wext data from wpa_driver_wext_init() * @freq: Frequency in MHz * Returns: 0 on success, -1 on failure */ int wpa_driver_wext_set_freq(void *priv, int freq) { struct wpa_driver_wext_data *drv = priv; struct iwreq iwr; int ret = 0; os_memset(&iwr, 0, sizeof(iwr)); os_strncpy(iwr.ifr_name, drv->ifname, IFNAMSIZ); iwr.u.freq.m = freq * 100000; iwr.u.freq.e = 1; if (ioctl(drv->ioctl_sock, SIOCSIWFREQ, &iwr) < 0) { perror("ioctl[SIOCSIWFREQ]"); ret = -1; } return ret; } static void wpa_driver_wext_event_wireless_custom(void *ctx, char *custom) { union wpa_event_data data; wpa_printf(MSG_MSGDUMP, "WEXT: Custom wireless event: '%s'", custom); os_memset(&data, 0, sizeof(data)); /* Host AP driver */ if (os_strncmp(custom, "MLME-MICHAELMICFAILURE.indication", 33) == 0) { data.michael_mic_failure.unicast = os_strstr(custom, " unicast ") != NULL; /* TODO: parse parameters(?) */ wpa_supplicant_event(ctx, EVENT_MICHAEL_MIC_FAILURE, &data); } else if (os_strncmp(custom, "ASSOCINFO(ReqIEs=", 17) == 0) { char *spos; int bytes; spos = custom + 17; bytes = strspn(spos, "0123456789abcdefABCDEF"); if (!bytes || (bytes & 1)) return; bytes /= 2; data.assoc_info.req_ies = os_malloc(bytes); if (data.assoc_info.req_ies == NULL) return; data.assoc_info.req_ies_len = bytes; hexstr2bin(spos, data.assoc_info.req_ies, bytes); spos += bytes * 2; data.assoc_info.resp_ies = NULL; data.assoc_info.resp_ies_len = 0; if (os_strncmp(spos, " RespIEs=", 9) == 0) { spos += 9; bytes = strspn(spos, "0123456789abcdefABCDEF"); if (!bytes || (bytes & 1)) goto done; bytes /= 2; data.assoc_info.resp_ies = os_malloc(bytes); if (data.assoc_info.resp_ies == NULL) goto done; data.assoc_info.resp_ies_len = bytes; hexstr2bin(spos, data.assoc_info.resp_ies, bytes); } wpa_supplicant_event(ctx, EVENT_ASSOCINFO, &data); done: os_free(data.assoc_info.resp_ies); os_free(data.assoc_info.req_ies); #ifdef CONFIG_PEERKEY } else if (os_strncmp(custom, "STKSTART.request=", 17) == 0) { if (hwaddr_aton(custom + 17, data.stkstart.peer)) { wpa_printf(MSG_DEBUG, "WEXT: unrecognized " "STKSTART.request '%s'", custom + 17); return; } wpa_supplicant_event(ctx, EVENT_STKSTART, &data); #endif /* CONFIG_PEERKEY */ #ifdef ANDROID } else if (os_strncmp(custom, "STOP", 4) == 0) { wpa_msg(ctx, MSG_INFO, WPA_EVENT_DRIVER_STATE "STOPPED"); } else if (os_strncmp(custom, "START", 5) == 0) { wpa_msg(ctx, MSG_INFO, WPA_EVENT_DRIVER_STATE "STARTED"); #endif /* ANDROID */ } } static int wpa_driver_wext_event_wireless_michaelmicfailure( void *ctx, const char *ev, size_t len) { const struct iw_michaelmicfailure *mic; union wpa_event_data data; if (len < sizeof(*mic)) return -1; mic = (const struct iw_michaelmicfailure *) ev; wpa_printf(MSG_DEBUG, "Michael MIC failure wireless event: " "flags=0x%x src_addr=" MACSTR, mic->flags, MAC2STR(mic->src_addr.sa_data)); os_memset(&data, 0, sizeof(data)); data.michael_mic_failure.unicast = !(mic->flags & IW_MICFAILURE_GROUP); wpa_supplicant_event(ctx, EVENT_MICHAEL_MIC_FAILURE, &data); return 0; } static int wpa_driver_wext_event_wireless_pmkidcand( struct wpa_driver_wext_data *drv, const char *ev, size_t len) { const struct iw_pmkid_cand *cand; union wpa_event_data data; const u8 *addr; if (len < sizeof(*cand)) return -1; cand = (const struct iw_pmkid_cand *) ev; addr = (const u8 *) cand->bssid.sa_data; wpa_printf(MSG_DEBUG, "PMKID candidate wireless event: " "flags=0x%x index=%d bssid=" MACSTR, cand->flags, cand->index, MAC2STR(addr)); os_memset(&data, 0, sizeof(data)); os_memcpy(data.pmkid_candidate.bssid, addr, ETH_ALEN); data.pmkid_candidate.index = cand->index; data.pmkid_candidate.preauth = cand->flags & IW_PMKID_CAND_PREAUTH; wpa_supplicant_event(drv->ctx, EVENT_PMKID_CANDIDATE, &data); return 0; } static int wpa_driver_wext_event_wireless_assocreqie( struct wpa_driver_wext_data *drv, const char *ev, int len) { if (len < 0) return -1; wpa_hexdump(MSG_DEBUG, "AssocReq IE wireless event", (const u8 *) ev, len); os_free(drv->assoc_req_ies); drv->assoc_req_ies = os_malloc(len); if (drv->assoc_req_ies == NULL) { drv->assoc_req_ies_len = 0; return -1; } os_memcpy(drv->assoc_req_ies, ev, len); drv->assoc_req_ies_len = len; return 0; } static int wpa_driver_wext_event_wireless_assocrespie( struct wpa_driver_wext_data *drv, const char *ev, int len) { if (len < 0) return -1; wpa_hexdump(MSG_DEBUG, "AssocResp IE wireless event", (const u8 *) ev, len); os_free(drv->assoc_resp_ies); drv->assoc_resp_ies = os_malloc(len); if (drv->assoc_resp_ies == NULL) { drv->assoc_resp_ies_len = 0; return -1; } os_memcpy(drv->assoc_resp_ies, ev, len); drv->assoc_resp_ies_len = len; return 0; } static void wpa_driver_wext_event_assoc_ies(struct wpa_driver_wext_data *drv) { union wpa_event_data data; if (drv->assoc_req_ies == NULL && drv->assoc_resp_ies == NULL) return; os_memset(&data, 0, sizeof(data)); if (drv->assoc_req_ies) { data.assoc_info.req_ies = drv->assoc_req_ies; drv->assoc_req_ies = NULL; data.assoc_info.req_ies_len = drv->assoc_req_ies_len; } if (drv->assoc_resp_ies) { data.assoc_info.resp_ies = drv->assoc_resp_ies; drv->assoc_resp_ies = NULL; data.assoc_info.resp_ies_len = drv->assoc_resp_ies_len; } wpa_supplicant_event(drv->ctx, EVENT_ASSOCINFO, &data); os_free(data.assoc_info.req_ies); os_free(data.assoc_info.resp_ies); } static void wpa_driver_wext_event_wireless(struct wpa_driver_wext_data *drv, void *ctx, char *data, int len) { struct iw_event iwe_buf, *iwe = &iwe_buf; char *pos, *end, *custom, *buf; pos = data; end = data + len; while (pos + IW_EV_LCP_LEN <= end) { /* Event data may be unaligned, so make a local, aligned copy * before processing. */ os_memcpy(&iwe_buf, pos, IW_EV_LCP_LEN); wpa_printf(MSG_DEBUG, "Wireless event: cmd=0x%x len=%d", iwe->cmd, iwe->len); if (iwe->len <= IW_EV_LCP_LEN) return; custom = pos + IW_EV_POINT_LEN; if (drv->we_version_compiled > 18 && (iwe->cmd == IWEVMICHAELMICFAILURE || iwe->cmd == IWEVCUSTOM || iwe->cmd == IWEVASSOCREQIE || iwe->cmd == IWEVASSOCRESPIE || iwe->cmd == IWEVPMKIDCAND)) { /* WE-19 removed the pointer from struct iw_point */ char *dpos = (char *) &iwe_buf.u.data.length; int dlen = dpos - (char *) &iwe_buf; os_memcpy(dpos, pos + IW_EV_LCP_LEN, sizeof(struct iw_event) - dlen); } else { os_memcpy(&iwe_buf, pos, sizeof(struct iw_event)); custom += IW_EV_POINT_OFF; } switch (iwe->cmd) { case SIOCGIWAP: wpa_printf(MSG_DEBUG, "Wireless event: new AP: " MACSTR, MAC2STR((u8 *) iwe->u.ap_addr.sa_data)); if (os_memcmp(iwe->u.ap_addr.sa_data, "\x00\x00\x00\x00\x00\x00", ETH_ALEN) == 0 || os_memcmp(iwe->u.ap_addr.sa_data, "\x44\x44\x44\x44\x44\x44", ETH_ALEN) == 0) { os_free(drv->assoc_req_ies); drv->assoc_req_ies = NULL; os_free(drv->assoc_resp_ies); drv->assoc_resp_ies = NULL; wpa_supplicant_event(ctx, EVENT_DISASSOC, NULL); } else { wpa_driver_wext_event_assoc_ies(drv); wpa_supplicant_event(ctx, EVENT_ASSOC, NULL); } break; case IWEVMICHAELMICFAILURE: if (custom + iwe->u.data.length > end) { wpa_printf(MSG_DEBUG, "WEXT: Invalid " "IWEVMICHAELMICFAILURE length"); return; } wpa_driver_wext_event_wireless_michaelmicfailure( ctx, custom, iwe->u.data.length); break; case IWEVCUSTOM: if (custom + iwe->u.data.length > end) { wpa_printf(MSG_DEBUG, "WEXT: Invalid " "IWEVCUSTOM length"); return; } buf = os_malloc(iwe->u.data.length + 1); if (buf == NULL) return; os_memcpy(buf, custom, iwe->u.data.length); buf[iwe->u.data.length] = '\0'; wpa_driver_wext_event_wireless_custom(ctx, buf); os_free(buf); break; case SIOCGIWSCAN: drv->scan_complete_events = 1; eloop_cancel_timeout(wpa_driver_wext_scan_timeout, drv, ctx); wpa_supplicant_event(ctx, EVENT_SCAN_RESULTS, NULL); break; case IWEVASSOCREQIE: if (custom + iwe->u.data.length > end) { wpa_printf(MSG_DEBUG, "WEXT: Invalid " "IWEVASSOCREQIE length"); return; } wpa_driver_wext_event_wireless_assocreqie( drv, custom, iwe->u.data.length); break; case IWEVASSOCRESPIE: if (custom + iwe->u.data.length > end) { wpa_printf(MSG_DEBUG, "WEXT: Invalid " "IWEVASSOCRESPIE length"); return; } wpa_driver_wext_event_wireless_assocrespie( drv, custom, iwe->u.data.length); break; case IWEVPMKIDCAND: if (custom + iwe->u.data.length > end) { wpa_printf(MSG_DEBUG, "WEXT: Invalid " "IWEVPMKIDCAND length"); return; } wpa_driver_wext_event_wireless_pmkidcand( drv, custom, iwe->u.data.length); break; } pos += iwe->len; } } static void wpa_driver_wext_event_link(struct wpa_driver_wext_data *drv, void *ctx, char *buf, size_t len, int del) { union wpa_event_data event; os_memset(&event, 0, sizeof(event)); if (len > sizeof(event.interface_status.ifname)) len = sizeof(event.interface_status.ifname) - 1; os_memcpy(event.interface_status.ifname, buf, len); event.interface_status.ievent = del ? EVENT_INTERFACE_REMOVED : EVENT_INTERFACE_ADDED; wpa_printf(MSG_DEBUG, "RTM_%sLINK, IFLA_IFNAME: Interface '%s' %s", del ? "DEL" : "NEW", event.interface_status.ifname, del ? "removed" : "added"); if (os_strcmp(drv->ifname, event.interface_status.ifname) == 0) { if (del) drv->if_removed = 1; else drv->if_removed = 0; } wpa_supplicant_event(ctx, EVENT_INTERFACE_STATUS, &event); } static int wpa_driver_wext_own_ifname(struct wpa_driver_wext_data *drv, struct nlmsghdr *h) { struct ifinfomsg *ifi; int attrlen, nlmsg_len, rta_len; struct rtattr *attr; ifi = NLMSG_DATA(h); nlmsg_len = NLMSG_ALIGN(sizeof(struct ifinfomsg)); attrlen = h->nlmsg_len - nlmsg_len; if (attrlen < 0) return 0; attr = (struct rtattr *) (((char *) ifi) + nlmsg_len); rta_len = RTA_ALIGN(sizeof(struct rtattr)); while (RTA_OK(attr, attrlen)) { if (attr->rta_type == IFLA_IFNAME) { if (os_strcmp(((char *) attr) + rta_len, drv->ifname) == 0) return 1; else break; } attr = RTA_NEXT(attr, attrlen); } return 0; } static int wpa_driver_wext_own_ifindex(struct wpa_driver_wext_data *drv, int ifindex, struct nlmsghdr *h) { if (drv->ifindex == ifindex || drv->ifindex2 == ifindex) return 1; if (drv->if_removed && wpa_driver_wext_own_ifname(drv, h)) { drv->ifindex = if_nametoindex(drv->ifname); wpa_printf(MSG_DEBUG, "WEXT: Update ifindex for a removed " "interface"); wpa_driver_wext_finish_drv_init(drv); return 1; } return 0; } static void wpa_driver_wext_event_rtm_newlink(struct wpa_driver_wext_data *drv, void *ctx, struct nlmsghdr *h, size_t len) { struct ifinfomsg *ifi; int attrlen, nlmsg_len, rta_len; struct rtattr * attr; if (len < sizeof(*ifi)) return; ifi = NLMSG_DATA(h); if (!wpa_driver_wext_own_ifindex(drv, ifi->ifi_index, h)) { wpa_printf(MSG_DEBUG, "Ignore event for foreign ifindex %d", ifi->ifi_index); return; } wpa_printf(MSG_DEBUG, "RTM_NEWLINK: operstate=%d ifi_flags=0x%x " "(%s%s%s%s)", drv->operstate, ifi->ifi_flags, (ifi->ifi_flags & IFF_UP) ? "[UP]" : "", (ifi->ifi_flags & IFF_RUNNING) ? "[RUNNING]" : "", (ifi->ifi_flags & IFF_LOWER_UP) ? "[LOWER_UP]" : "", (ifi->ifi_flags & IFF_DORMANT) ? "[DORMANT]" : ""); /* * Some drivers send the association event before the operup event--in * this case, lifting operstate in wpa_driver_wext_set_operstate() * fails. This will hit us when wpa_supplicant does not need to do * IEEE 802.1X authentication */ if (drv->operstate == 1 && (ifi->ifi_flags & (IFF_LOWER_UP | IFF_DORMANT)) == IFF_LOWER_UP && !(ifi->ifi_flags & IFF_RUNNING)) wpa_driver_wext_send_oper_ifla(drv, -1, IF_OPER_UP); nlmsg_len = NLMSG_ALIGN(sizeof(struct ifinfomsg)); attrlen = h->nlmsg_len - nlmsg_len; if (attrlen < 0) return; attr = (struct rtattr *) (((char *) ifi) + nlmsg_len); rta_len = RTA_ALIGN(sizeof(struct rtattr)); while (RTA_OK(attr, attrlen)) { if (attr->rta_type == IFLA_WIRELESS) { wpa_driver_wext_event_wireless( drv, ctx, ((char *) attr) + rta_len, attr->rta_len - rta_len); } else if (attr->rta_type == IFLA_IFNAME) { wpa_driver_wext_event_link(drv, ctx, ((char *) attr) + rta_len, attr->rta_len - rta_len, 0); } attr = RTA_NEXT(attr, attrlen); } } static void wpa_driver_wext_event_rtm_dellink(struct wpa_driver_wext_data *drv, void *ctx, struct nlmsghdr *h, size_t len) { struct ifinfomsg *ifi; int attrlen, nlmsg_len, rta_len; struct rtattr * attr; if (len < sizeof(*ifi)) return; ifi = NLMSG_DATA(h); nlmsg_len = NLMSG_ALIGN(sizeof(struct ifinfomsg)); attrlen = h->nlmsg_len - nlmsg_len; if (attrlen < 0) return; attr = (struct rtattr *) (((char *) ifi) + nlmsg_len); rta_len = RTA_ALIGN(sizeof(struct rtattr)); while (RTA_OK(attr, attrlen)) { if (attr->rta_type == IFLA_IFNAME) { wpa_driver_wext_event_link(drv, ctx, ((char *) attr) + rta_len, attr->rta_len - rta_len, 1); } attr = RTA_NEXT(attr, attrlen); } } static void wpa_driver_wext_event_receive(int sock, void *eloop_ctx, void *sock_ctx) { char buf[8192]; int left; struct sockaddr_nl from; socklen_t fromlen; struct nlmsghdr *h; int max_events = 10; try_again: fromlen = sizeof(from); left = recvfrom(sock, buf, sizeof(buf), MSG_DONTWAIT, (struct sockaddr *) &from, &fromlen); if (left < 0) { if (errno != EINTR && errno != EAGAIN) perror("recvfrom(netlink)"); return; } h = (struct nlmsghdr *) buf; while (left >= (int) sizeof(*h)) { int len, plen; len = h->nlmsg_len; plen = len - sizeof(*h); if (len > left || plen < 0) { wpa_printf(MSG_DEBUG, "Malformed netlink message: " "len=%d left=%d plen=%d", len, left, plen); break; } switch (h->nlmsg_type) { case RTM_NEWLINK: wpa_driver_wext_event_rtm_newlink(eloop_ctx, sock_ctx, h, plen); break; case RTM_DELLINK: wpa_driver_wext_event_rtm_dellink(eloop_ctx, sock_ctx, h, plen); break; } len = NLMSG_ALIGN(len); left -= len; h = (struct nlmsghdr *) ((char *) h + len); } if (left > 0) { wpa_printf(MSG_DEBUG, "%d extra bytes in the end of netlink " "message", left); } if (--max_events > 0) { /* * Try to receive all events in one eloop call in order to * limit race condition on cases where AssocInfo event, Assoc * event, and EAPOL frames are received more or less at the * same time. We want to process the event messages first * before starting EAPOL processing. */ goto try_again; } } static int wpa_driver_wext_get_ifflags_ifname(struct wpa_driver_wext_data *drv, const char *ifname, int *flags) { struct ifreq ifr; os_memset(&ifr, 0, sizeof(ifr)); os_strncpy(ifr.ifr_name, ifname, IFNAMSIZ); if (ioctl(drv->ioctl_sock, SIOCGIFFLAGS, (caddr_t) &ifr) < 0) { perror("ioctl[SIOCGIFFLAGS]"); return -1; } *flags = ifr.ifr_flags & 0xffff; return 0; } /** * wpa_driver_wext_get_ifflags - Get interface flags (SIOCGIFFLAGS) * @drv: driver_wext private data * @flags: Pointer to returned flags value * Returns: 0 on success, -1 on failure */ int wpa_driver_wext_get_ifflags(struct wpa_driver_wext_data *drv, int *flags) { return wpa_driver_wext_get_ifflags_ifname(drv, drv->ifname, flags); } static int wpa_driver_wext_set_ifflags_ifname(struct wpa_driver_wext_data *drv, const char *ifname, int flags) { struct ifreq ifr; os_memset(&ifr, 0, sizeof(ifr)); os_strncpy(ifr.ifr_name, ifname, IFNAMSIZ); ifr.ifr_flags = flags & 0xffff; if (ioctl(drv->ioctl_sock, SIOCSIFFLAGS, (caddr_t) &ifr) < 0) { perror("SIOCSIFFLAGS"); return -1; } return 0; } /** * wpa_driver_wext_set_ifflags - Set interface flags (SIOCSIFFLAGS) * @drv: driver_wext private data * @flags: New value for flags * Returns: 0 on success, -1 on failure */ int wpa_driver_wext_set_ifflags(struct wpa_driver_wext_data *drv, int flags) { return wpa_driver_wext_set_ifflags_ifname(drv, drv->ifname, flags); } /** * wpa_driver_wext_init - Initialize WE driver interface * @ctx: context to be used when calling wpa_supplicant functions, * e.g., wpa_supplicant_event() * @ifname: interface name, e.g., wlan0 * Returns: Pointer to private data, %NULL on failure */ void * wpa_driver_wext_init(void *ctx, const char *ifname) { int s; struct sockaddr_nl local; struct wpa_driver_wext_data *drv; drv = os_zalloc(sizeof(*drv)); if (drv == NULL) return NULL; drv->ctx = ctx; os_strncpy(drv->ifname, ifname, sizeof(drv->ifname)); drv->ioctl_sock = socket(PF_INET, SOCK_DGRAM, 0); if (drv->ioctl_sock < 0) { perror("socket(PF_INET,SOCK_DGRAM)"); os_free(drv); return NULL; } s = socket(PF_NETLINK, SOCK_RAW, NETLINK_ROUTE); if (s < 0) { perror("socket(PF_NETLINK,SOCK_RAW,NETLINK_ROUTE)"); close(drv->ioctl_sock); os_free(drv); return NULL; } os_memset(&local, 0, sizeof(local)); local.nl_family = AF_NETLINK; local.nl_groups = RTMGRP_LINK; if (bind(s, (struct sockaddr *) &local, sizeof(local)) < 0) { perror("bind(netlink)"); close(s); close(drv->ioctl_sock); os_free(drv); return NULL; } eloop_register_read_sock(s, wpa_driver_wext_event_receive, drv, ctx); drv->event_sock = s; drv->mlme_sock = -1; drv->errors = 0; wpa_driver_wext_finish_drv_init(drv); return drv; } static void wpa_driver_wext_finish_drv_init(struct wpa_driver_wext_data *drv) { int flags; if (wpa_driver_wext_get_ifflags(drv, &flags) != 0 || wpa_driver_wext_set_ifflags(drv, flags | IFF_UP) != 0) { printf("Could not set interface '%s' UP\n", drv->ifname); } #ifdef ANDROID os_sleep(0, WPA_DRIVER_WEXT_WAIT_US); #endif /* * Make sure that the driver does not have any obsolete PMKID entries. */ wpa_driver_wext_flush_pmkid(drv); if (wpa_driver_wext_set_mode(drv, 0) < 0) { printf("Could not configure driver to use managed mode\n"); } wpa_driver_wext_get_range(drv); drv->ifindex = if_nametoindex(drv->ifname); if (os_strncmp(drv->ifname, "wlan", 4) == 0) { /* * Host AP driver may use both wlan# and wifi# interface in * wireless events. Since some of the versions included WE-18 * support, let's add the alternative ifindex also from * driver_wext.c for the time being. This may be removed at * some point once it is believed that old versions of the * driver are not in use anymore. */ char ifname2[IFNAMSIZ + 1]; os_strncpy(ifname2, drv->ifname, sizeof(ifname2)); os_memcpy(ifname2, "wifi", 4); wpa_driver_wext_alternative_ifindex(drv, ifname2); } wpa_driver_wext_send_oper_ifla(drv, 1, IF_OPER_DORMANT); } /** * wpa_driver_wext_deinit - Deinitialize WE driver interface * @priv: Pointer to private wext data from wpa_driver_wext_init() * * Shut down driver interface and processing of driver events. Free * private data buffer if one was allocated in wpa_driver_wext_init(). */ void wpa_driver_wext_deinit(void *priv) { struct wpa_driver_wext_data *drv = priv; int flags; eloop_cancel_timeout(wpa_driver_wext_scan_timeout, drv, drv->ctx); /* * Clear possibly configured driver parameters in order to make it * easier to use the driver after wpa_supplicant has been terminated. */ wpa_driver_wext_set_bssid(drv, (u8 *) "\x00\x00\x00\x00\x00\x00"); wpa_driver_wext_send_oper_ifla(priv, 0, IF_OPER_UP); eloop_unregister_read_sock(drv->event_sock); if (drv->mlme_sock >= 0) eloop_unregister_read_sock(drv->mlme_sock); if (wpa_driver_wext_get_ifflags(drv, &flags) == 0) (void) wpa_driver_wext_set_ifflags(drv, flags & ~IFF_UP); #ifdef CONFIG_CLIENT_MLME if (drv->mlmedev[0] && wpa_driver_wext_get_ifflags_ifname(drv, drv->mlmedev, &flags) == 0) (void) wpa_driver_wext_set_ifflags_ifname(drv, drv->mlmedev, flags & ~IFF_UP); #endif /* CONFIG_CLIENT_MLME */ close(drv->event_sock); close(drv->ioctl_sock); if (drv->mlme_sock >= 0) close(drv->mlme_sock); os_free(drv->assoc_req_ies); os_free(drv->assoc_resp_ies); os_free(drv); } /** * wpa_driver_wext_scan_timeout - Scan timeout to report scan completion * @eloop_ctx: Unused * @timeout_ctx: ctx argument given to wpa_driver_wext_init() * * This function can be used as registered timeout when starting a scan to * generate a scan completed event if the driver does not report this. */ void wpa_driver_wext_scan_timeout(void *eloop_ctx, void *timeout_ctx) { wpa_printf(MSG_DEBUG, "Scan timeout - try to get results"); wpa_supplicant_event(timeout_ctx, EVENT_SCAN_RESULTS, NULL); } /** * wpa_driver_wext_scan - Request the driver to initiate scan * @priv: Pointer to private wext data from wpa_driver_wext_init() * @ssid: Specific SSID to scan for (ProbeReq) or %NULL to scan for * all SSIDs (either active scan with broadcast SSID or passive * scan * @ssid_len: Length of the SSID * Returns: 0 on success, -1 on failure */ int wpa_driver_wext_scan(void *priv, const u8 *ssid, size_t ssid_len) { struct wpa_driver_wext_data *drv = priv; struct iwreq iwr; int ret = 0, timeout; struct iw_scan_req req; #ifdef ANDROID struct wpa_supplicant *wpa_s = (struct wpa_supplicant *)(drv->ctx); int scan_probe_flag = 0; #endif if (ssid_len > IW_ESSID_MAX_SIZE) { wpa_printf(MSG_DEBUG, "%s: too long SSID (%lu)", __FUNCTION__, (unsigned long) ssid_len); return -1; } os_memset(&iwr, 0, sizeof(iwr)); os_strncpy(iwr.ifr_name, drv->ifname, IFNAMSIZ); #ifdef ANDROID if (wpa_s->prev_scan_ssid != BROADCAST_SSID_SCAN) { scan_probe_flag = wpa_s->prev_scan_ssid->scan_ssid; } if (scan_probe_flag && (ssid && ssid_len)) { #else if (ssid && ssid_len) { #endif os_memset(&req, 0, sizeof(req)); req.essid_len = ssid_len; req.bssid.sa_family = ARPHRD_ETHER; os_memset(req.bssid.sa_data, 0xff, ETH_ALEN); os_memcpy(req.essid, ssid, ssid_len); iwr.u.data.pointer = (caddr_t) &req; iwr.u.data.length = sizeof(req); iwr.u.data.flags = IW_SCAN_THIS_ESSID; } if (ioctl(drv->ioctl_sock, SIOCSIWSCAN, &iwr) < 0) { perror("ioctl[SIOCSIWSCAN]"); ret = -1; } /* Not all drivers generate "scan completed" wireless event, so try to * read results after a timeout. */ timeout = 5; if (drv->scan_complete_events) { /* * The driver seems to deliver SIOCGIWSCAN events to notify * when scan is complete, so use longer timeout to avoid race * conditions with scanning and following association request. */ timeout = 30; } wpa_printf(MSG_DEBUG, "Scan requested (ret=%d) - scan timeout %d " "seconds", ret, timeout); eloop_cancel_timeout(wpa_driver_wext_scan_timeout, drv, drv->ctx); eloop_register_timeout(timeout, 0, wpa_driver_wext_scan_timeout, drv, drv->ctx); return ret; } /* Compare function for sorting scan results. Return >0 if @b is considered * better. */ static int wpa_scan_result_compar(const void *a, const void *b) { const struct wpa_scan_result *wa = a; const struct wpa_scan_result *wb = b; /* WPA/WPA2 support preferred */ if ((wb->wpa_ie_len || wb->rsn_ie_len) && !(wa->wpa_ie_len || wa->rsn_ie_len)) return 1; if (!(wb->wpa_ie_len || wb->rsn_ie_len) && (wa->wpa_ie_len || wa->rsn_ie_len)) return -1; /* privacy support preferred */ if ((wa->caps & IEEE80211_CAP_PRIVACY) == 0 && (wb->caps & IEEE80211_CAP_PRIVACY)) return 1; if ((wa->caps & IEEE80211_CAP_PRIVACY) && (wb->caps & IEEE80211_CAP_PRIVACY) == 0) return -1; /* best/max rate preferred if signal level close enough XXX */ if (wa->maxrate != wb->maxrate && abs(wb->level - wa->level) < 5) return wb->maxrate - wa->maxrate; /* use freq for channel preference */ /* all things being equal, use signal level; if signal levels are * identical, use quality values since some drivers may only report * that value and leave the signal level zero */ if (wb->level == wa->level) return wb->qual - wa->qual; return wb->level - wa->level; } /** * wpa_driver_wext_get_scan_results - Fetch the latest scan results * @priv: Pointer to private wext data from wpa_driver_wext_init() * @results: Pointer to buffer for scan results * @max_size: Maximum number of entries (buffer size) * Returns: Number of scan result entries used on success, -1 on * failure * * If scan results include more than max_size BSSes, max_size will be * returned and the remaining entries will not be included in the * buffer. */ int wpa_driver_wext_get_scan_results(void *priv, struct wpa_scan_result *results, size_t max_size) { struct wpa_driver_wext_data *drv = priv; struct iwreq iwr; size_t ap_num = 0; int first, maxrate; u8 *res_buf; struct iw_event iwe_buf, *iwe = &iwe_buf; char *pos, *end, *custom, *genie, *gpos, *gend; struct iw_param p; size_t len, clen, res_buf_len; os_memset(results, 0, max_size * sizeof(struct wpa_scan_result)); #ifdef ANDROID /* To make sure correctly parse scan results which is impacted by wext * version, first check range->we_version, if it is default value (0), * update again here */ if (drv->we_version_compiled == 0) wpa_driver_wext_get_range(drv); #endif res_buf_len = IW_SCAN_MAX_DATA; for (;;) { res_buf = os_malloc(res_buf_len); if (res_buf == NULL) return -1; os_memset(&iwr, 0, sizeof(iwr)); os_strncpy(iwr.ifr_name, drv->ifname, IFNAMSIZ); iwr.u.data.pointer = res_buf; iwr.u.data.length = res_buf_len; if (ioctl(drv->ioctl_sock, SIOCGIWSCAN, &iwr) == 0) break; if (errno == E2BIG && res_buf_len < 100000) { os_free(res_buf); res_buf = NULL; res_buf_len *= 2; wpa_printf(MSG_DEBUG, "Scan results did not fit - " "trying larger buffer (%lu bytes)", (unsigned long) res_buf_len); } else { perror("ioctl[SIOCGIWSCAN]"); os_free(res_buf); return -1; } } len = iwr.u.data.length; ap_num = 0; first = 1; pos = (char *) res_buf; end = (char *) res_buf + len; while (pos + IW_EV_LCP_LEN <= end) { int ssid_len; /* Event data may be unaligned, so make a local, aligned copy * before processing. */ os_memcpy(&iwe_buf, pos, IW_EV_LCP_LEN); if (iwe->len <= IW_EV_LCP_LEN) break; custom = pos + IW_EV_POINT_LEN; if (drv->we_version_compiled > 18 && (iwe->cmd == SIOCGIWESSID || iwe->cmd == SIOCGIWENCODE || iwe->cmd == IWEVGENIE || iwe->cmd == IWEVCUSTOM)) { /* WE-19 removed the pointer from struct iw_point */ char *dpos = (char *) &iwe_buf.u.data.length; int dlen = dpos - (char *) &iwe_buf; os_memcpy(dpos, pos + IW_EV_LCP_LEN, sizeof(struct iw_event) - dlen); } else { os_memcpy(&iwe_buf, pos, sizeof(struct iw_event)); custom += IW_EV_POINT_OFF; } switch (iwe->cmd) { case SIOCGIWAP: if (!first) ap_num++; first = 0; if (ap_num < max_size) { os_memcpy(results[ap_num].bssid, iwe->u.ap_addr.sa_data, ETH_ALEN); } break; case SIOCGIWMODE: if (ap_num >= max_size) break; if (iwe->u.mode == IW_MODE_ADHOC) results[ap_num].caps |= IEEE80211_CAP_IBSS; else if (iwe->u.mode == IW_MODE_MASTER || iwe->u.mode == IW_MODE_INFRA) results[ap_num].caps |= IEEE80211_CAP_ESS; break; case SIOCGIWESSID: ssid_len = iwe->u.essid.length; if (custom + ssid_len > end) break; if (iwe->u.essid.flags && ssid_len > 0 && ssid_len <= IW_ESSID_MAX_SIZE) { if (ap_num < max_size) { os_memcpy(results[ap_num].ssid, custom, ssid_len); results[ap_num].ssid_len = ssid_len; } } break; case SIOCGIWFREQ: if (ap_num < max_size) { int divi = 1000000, i; if (iwe->u.freq.e == 0) { /* * Some drivers do not report * frequency, but a channel. Try to map * this to frequency by assuming they * are using IEEE 802.11b/g. But don't * overwrite a previously parsed * frequency if the driver sends both * frequency and channel, since the * driver may be sending an A-band * channel that we don't handle here. */ if (results[ap_num].freq) break; if (iwe->u.freq.m >= 1 && iwe->u.freq.m <= 13) { results[ap_num].freq = 2407 + 5 * iwe->u.freq.m; break; } else if (iwe->u.freq.m == 14) { results[ap_num].freq = 2484; break; } } if (iwe->u.freq.e > 6) { wpa_printf( MSG_DEBUG, "Invalid freq " "in scan results (BSSID=" MACSTR ": m=%d e=%d\n", MAC2STR(results[ap_num].bssid), iwe->u.freq.m, iwe->u.freq.e); break; } for (i = 0; i < iwe->u.freq.e; i++) divi /= 10; results[ap_num].freq = iwe->u.freq.m / divi; } break; case IWEVQUAL: if (ap_num < max_size) { results[ap_num].qual = iwe->u.qual.qual; results[ap_num].noise = iwe->u.qual.noise; results[ap_num].level = iwe->u.qual.level; } break; case SIOCGIWENCODE: if (ap_num < max_size && !(iwe->u.data.flags & IW_ENCODE_DISABLED)) results[ap_num].caps |= IEEE80211_CAP_PRIVACY; break; case SIOCGIWRATE: custom = pos + IW_EV_LCP_LEN; clen = iwe->len; if (custom + clen > end) break; maxrate = 0; while (((ssize_t) clen) >= (ssize_t) sizeof(struct iw_param)) { /* Note: may be misaligned, make a local, * aligned copy */ os_memcpy(&p, custom, sizeof(struct iw_param)); if (p.value > maxrate) maxrate = p.value; clen -= sizeof(struct iw_param); custom += sizeof(struct iw_param); } if (ap_num < max_size) results[ap_num].maxrate = maxrate; break; case IWEVGENIE: if (ap_num >= max_size) break; gpos = genie = custom; gend = genie + iwe->u.data.length; if (gend > end) { wpa_printf(MSG_INFO, "IWEVGENIE overflow"); break; } while (gpos + 1 < gend && gpos + 2 + (u8) gpos[1] <= gend) { u8 ie = gpos[0], ielen = gpos[1] + 2; if (ielen > SSID_MAX_WPA_IE_LEN) { gpos += ielen; continue; } switch (ie) { case GENERIC_INFO_ELEM: if (ielen < 2 + 4 || os_memcmp(&gpos[2], "\x00\x50\xf2\x01", 4) != 0) break; os_memcpy(results[ap_num].wpa_ie, gpos, ielen); results[ap_num].wpa_ie_len = ielen; break; case RSN_INFO_ELEM: os_memcpy(results[ap_num].rsn_ie, gpos, ielen); results[ap_num].rsn_ie_len = ielen; break; } gpos += ielen; } break; case IWEVCUSTOM: clen = iwe->u.data.length; if (custom + clen > end) break; if (clen > 7 && os_strncmp(custom, "wpa_ie=", 7) == 0 && ap_num < max_size) { char *spos; int bytes; spos = custom + 7; bytes = custom + clen - spos; if (bytes & 1) break; bytes /= 2; if (bytes > SSID_MAX_WPA_IE_LEN) { wpa_printf(MSG_INFO, "Too long WPA IE " "(%d)", bytes); break; } hexstr2bin(spos, results[ap_num].wpa_ie, bytes); results[ap_num].wpa_ie_len = bytes; } else if (clen > 7 && os_strncmp(custom, "rsn_ie=", 7) == 0 && ap_num < max_size) { char *spos; int bytes; spos = custom + 7; bytes = custom + clen - spos; if (bytes & 1) break; bytes /= 2; if (bytes > SSID_MAX_WPA_IE_LEN) { wpa_printf(MSG_INFO, "Too long RSN IE " "(%d)", bytes); break; } hexstr2bin(spos, results[ap_num].rsn_ie, bytes); results[ap_num].rsn_ie_len = bytes; } break; } pos += iwe->len; } os_free(res_buf); res_buf = NULL; if (!first) ap_num++; if (ap_num > max_size) { wpa_printf(MSG_DEBUG, "Too small scan result buffer - " "%lu BSSes but room only for %lu", (unsigned long) ap_num, (unsigned long) max_size); ap_num = max_size; } qsort(results, ap_num, sizeof(struct wpa_scan_result), wpa_scan_result_compar); wpa_printf(MSG_DEBUG, "Received %lu bytes of scan results (%lu BSSes)", (unsigned long) len, (unsigned long) ap_num); return ap_num; } static int wpa_driver_wext_get_range(void *priv) { struct wpa_driver_wext_data *drv = priv; struct iw_range *range; struct iwreq iwr; int minlen; size_t buflen; /* * Use larger buffer than struct iw_range in order to allow the * structure to grow in the future. */ buflen = sizeof(struct iw_range) + 500; range = os_zalloc(buflen); if (range == NULL) return -1; os_memset(&iwr, 0, sizeof(iwr)); os_strncpy(iwr.ifr_name, drv->ifname, IFNAMSIZ); iwr.u.data.pointer = (caddr_t) range; iwr.u.data.length = buflen; minlen = ((char *) &range->enc_capa) - (char *) range + sizeof(range->enc_capa); if (ioctl(drv->ioctl_sock, SIOCGIWRANGE, &iwr) < 0) { perror("ioctl[SIOCGIWRANGE]"); os_free(range); return -1; } else if (iwr.u.data.length >= minlen && range->we_version_compiled >= 18) { wpa_printf(MSG_DEBUG, "SIOCGIWRANGE: WE(compiled)=%d " "WE(source)=%d enc_capa=0x%x", range->we_version_compiled, range->we_version_source, range->enc_capa); drv->has_capability = 1; drv->we_version_compiled = range->we_version_compiled; if (range->enc_capa & IW_ENC_CAPA_WPA) { drv->capa.key_mgmt |= WPA_DRIVER_CAPA_KEY_MGMT_WPA | WPA_DRIVER_CAPA_KEY_MGMT_WPA_PSK; } if (range->enc_capa & IW_ENC_CAPA_WPA2) { drv->capa.key_mgmt |= WPA_DRIVER_CAPA_KEY_MGMT_WPA2 | WPA_DRIVER_CAPA_KEY_MGMT_WPA2_PSK; } drv->capa.enc |= WPA_DRIVER_CAPA_ENC_WEP40 | WPA_DRIVER_CAPA_ENC_WEP104; if (range->enc_capa & IW_ENC_CAPA_CIPHER_TKIP) drv->capa.enc |= WPA_DRIVER_CAPA_ENC_TKIP; if (range->enc_capa & IW_ENC_CAPA_CIPHER_CCMP) drv->capa.enc |= WPA_DRIVER_CAPA_ENC_CCMP; wpa_printf(MSG_DEBUG, " capabilities: key_mgmt 0x%x enc 0x%x", drv->capa.key_mgmt, drv->capa.enc); } else { wpa_printf(MSG_DEBUG, "SIOCGIWRANGE: too old (short) data - " "assuming WPA is not supported"); } os_free(range); return 0; } static int wpa_driver_wext_set_wpa(void *priv, int enabled) { struct wpa_driver_wext_data *drv = priv; wpa_printf(MSG_DEBUG, "%s", __FUNCTION__); return wpa_driver_wext_set_auth_param(drv, IW_AUTH_WPA_ENABLED, enabled); } static int wpa_driver_wext_set_key_ext(void *priv, wpa_alg alg, const u8 *addr, int key_idx, int set_tx, const u8 *seq, size_t seq_len, const u8 *key, size_t key_len) { struct wpa_driver_wext_data *drv = priv; struct iwreq iwr; int ret = 0; struct iw_encode_ext *ext; if (seq_len > IW_ENCODE_SEQ_MAX_SIZE) { wpa_printf(MSG_DEBUG, "%s: Invalid seq_len %lu", __FUNCTION__, (unsigned long) seq_len); return -1; } ext = os_zalloc(sizeof(*ext) + key_len); if (ext == NULL) return -1; os_memset(&iwr, 0, sizeof(iwr)); os_strncpy(iwr.ifr_name, drv->ifname, IFNAMSIZ); iwr.u.encoding.flags = key_idx + 1; if (alg == WPA_ALG_NONE) iwr.u.encoding.flags |= IW_ENCODE_DISABLED; iwr.u.encoding.pointer = (caddr_t) ext; iwr.u.encoding.length = sizeof(*ext) + key_len; if (addr == NULL || os_memcmp(addr, "\xff\xff\xff\xff\xff\xff", ETH_ALEN) == 0) ext->ext_flags |= IW_ENCODE_EXT_GROUP_KEY; if (set_tx) ext->ext_flags |= IW_ENCODE_EXT_SET_TX_KEY; ext->addr.sa_family = ARPHRD_ETHER; if (addr) os_memcpy(ext->addr.sa_data, addr, ETH_ALEN); else os_memset(ext->addr.sa_data, 0xff, ETH_ALEN); if (key && key_len) { os_memcpy(ext + 1, key, key_len); ext->key_len = key_len; } switch (alg) { case WPA_ALG_NONE: ext->alg = IW_ENCODE_ALG_NONE; break; case WPA_ALG_WEP: ext->alg = IW_ENCODE_ALG_WEP; break; case WPA_ALG_TKIP: ext->alg = IW_ENCODE_ALG_TKIP; break; case WPA_ALG_CCMP: ext->alg = IW_ENCODE_ALG_CCMP; break; default: wpa_printf(MSG_DEBUG, "%s: Unknown algorithm %d", __FUNCTION__, alg); os_free(ext); return -1; } if (seq && seq_len) { ext->ext_flags |= IW_ENCODE_EXT_RX_SEQ_VALID; os_memcpy(ext->rx_seq, seq, seq_len); } if (ioctl(drv->ioctl_sock, SIOCSIWENCODEEXT, &iwr) < 0) { ret = errno == EOPNOTSUPP ? -2 : -1; if (errno == ENODEV) { /* * ndiswrapper seems to be returning incorrect error * code.. */ ret = -2; } perror("ioctl[SIOCSIWENCODEEXT]"); } os_free(ext); return ret; } /** * wpa_driver_wext_set_key - Configure encryption key * @priv: Pointer to private wext data from wpa_driver_wext_init() * @priv: Private driver interface data * @alg: Encryption algorithm (%WPA_ALG_NONE, %WPA_ALG_WEP, * %WPA_ALG_TKIP, %WPA_ALG_CCMP); %WPA_ALG_NONE clears the key. * @addr: Address of the peer STA or ff:ff:ff:ff:ff:ff for * broadcast/default keys * @key_idx: key index (0..3), usually 0 for unicast keys * @set_tx: Configure this key as the default Tx key (only used when * driver does not support separate unicast/individual key * @seq: Sequence number/packet number, seq_len octets, the next * packet number to be used for in replay protection; configured * for Rx keys (in most cases, this is only used with broadcast * keys and set to zero for unicast keys) * @seq_len: Length of the seq, depends on the algorithm: * TKIP: 6 octets, CCMP: 6 octets * @key: Key buffer; TKIP: 16-byte temporal key, 8-byte Tx Mic key, * 8-byte Rx Mic Key * @key_len: Length of the key buffer in octets (WEP: 5 or 13, * TKIP: 32, CCMP: 16) * Returns: 0 on success, -1 on failure * * This function uses SIOCSIWENCODEEXT by default, but tries to use * SIOCSIWENCODE if the extended ioctl fails when configuring a WEP key. */ int wpa_driver_wext_set_key(void *priv, wpa_alg alg, const u8 *addr, int key_idx, int set_tx, const u8 *seq, size_t seq_len, const u8 *key, size_t key_len) { struct wpa_driver_wext_data *drv = priv; struct iwreq iwr; int ret = 0; wpa_printf(MSG_DEBUG, "%s: alg=%d key_idx=%d set_tx=%d seq_len=%lu " "key_len=%lu", __FUNCTION__, alg, key_idx, set_tx, (unsigned long) seq_len, (unsigned long) key_len); ret = wpa_driver_wext_set_key_ext(drv, alg, addr, key_idx, set_tx, seq, seq_len, key, key_len); if (ret == 0) return 0; if (ret == -2 && (alg == WPA_ALG_NONE || alg == WPA_ALG_WEP)) { wpa_printf(MSG_DEBUG, "Driver did not support " "SIOCSIWENCODEEXT, trying SIOCSIWENCODE"); ret = 0; } else { wpa_printf(MSG_DEBUG, "Driver did not support " "SIOCSIWENCODEEXT"); return ret; } os_memset(&iwr, 0, sizeof(iwr)); os_strncpy(iwr.ifr_name, drv->ifname, IFNAMSIZ); iwr.u.encoding.flags = key_idx + 1; if (alg == WPA_ALG_NONE) iwr.u.encoding.flags |= IW_ENCODE_DISABLED; iwr.u.encoding.pointer = (caddr_t) key; iwr.u.encoding.length = key_len; if (ioctl(drv->ioctl_sock, SIOCSIWENCODE, &iwr) < 0) { perror("ioctl[SIOCSIWENCODE]"); ret = -1; } if (set_tx && alg != WPA_ALG_NONE) { os_memset(&iwr, 0, sizeof(iwr)); os_strncpy(iwr.ifr_name, drv->ifname, IFNAMSIZ); iwr.u.encoding.flags = key_idx + 1; iwr.u.encoding.pointer = (caddr_t) NULL; iwr.u.encoding.length = 0; if (ioctl(drv->ioctl_sock, SIOCSIWENCODE, &iwr) < 0) { perror("ioctl[SIOCSIWENCODE] (set_tx)"); ret = -1; } } return ret; } static int wpa_driver_wext_set_countermeasures(void *priv, int enabled) { struct wpa_driver_wext_data *drv = priv; wpa_printf(MSG_DEBUG, "%s", __FUNCTION__); return wpa_driver_wext_set_auth_param(drv, IW_AUTH_TKIP_COUNTERMEASURES, enabled); } static int wpa_driver_wext_set_drop_unencrypted(void *priv, int enabled) { struct wpa_driver_wext_data *drv = priv; wpa_printf(MSG_DEBUG, "%s", __FUNCTION__); drv->use_crypt = enabled; return wpa_driver_wext_set_auth_param(drv, IW_AUTH_DROP_UNENCRYPTED, enabled); } static int wpa_driver_wext_mlme(struct wpa_driver_wext_data *drv, const u8 *addr, int cmd, int reason_code) { struct iwreq iwr; struct iw_mlme mlme; int ret = 0; os_memset(&iwr, 0, sizeof(iwr)); os_strncpy(iwr.ifr_name, drv->ifname, IFNAMSIZ); os_memset(&mlme, 0, sizeof(mlme)); mlme.cmd = cmd; mlme.reason_code = reason_code; mlme.addr.sa_family = ARPHRD_ETHER; os_memcpy(mlme.addr.sa_data, addr, ETH_ALEN); iwr.u.data.pointer = (caddr_t) &mlme; iwr.u.data.length = sizeof(mlme); if (ioctl(drv->ioctl_sock, SIOCSIWMLME, &iwr) < 0) { perror("ioctl[SIOCSIWMLME]"); ret = -1; } return ret; } static int wpa_driver_wext_deauthenticate(void *priv, const u8 *addr, int reason_code) { struct wpa_driver_wext_data *drv = priv; wpa_printf(MSG_DEBUG, "%s", __FUNCTION__); return wpa_driver_wext_mlme(drv, addr, IW_MLME_DEAUTH, reason_code); } static int wpa_driver_wext_disassociate(void *priv, const u8 *addr, int reason_code) { struct wpa_driver_wext_data *drv = priv; wpa_printf(MSG_DEBUG, "%s", __FUNCTION__); return wpa_driver_wext_mlme(drv, addr, IW_MLME_DISASSOC, reason_code); } static int wpa_driver_wext_set_gen_ie(void *priv, const u8 *ie, size_t ie_len) { struct wpa_driver_wext_data *drv = priv; struct iwreq iwr; int ret = 0; os_memset(&iwr, 0, sizeof(iwr)); os_strncpy(iwr.ifr_name, drv->ifname, IFNAMSIZ); iwr.u.data.pointer = (caddr_t) ie; iwr.u.data.length = ie_len; if (ioctl(drv->ioctl_sock, SIOCSIWGENIE, &iwr) < 0) { perror("ioctl[SIOCSIWGENIE]"); ret = -1; } return ret; } static int wpa_driver_wext_cipher2wext(int cipher) { switch (cipher) { case CIPHER_NONE: return IW_AUTH_CIPHER_NONE; case CIPHER_WEP40: return IW_AUTH_CIPHER_WEP40; case CIPHER_TKIP: return IW_AUTH_CIPHER_TKIP; case CIPHER_CCMP: return IW_AUTH_CIPHER_CCMP; case CIPHER_WEP104: return IW_AUTH_CIPHER_WEP104; default: return 0; } } static int wpa_driver_wext_keymgmt2wext(int keymgmt) { switch (keymgmt) { case KEY_MGMT_802_1X: case KEY_MGMT_802_1X_NO_WPA: return IW_AUTH_KEY_MGMT_802_1X; case KEY_MGMT_PSK: return IW_AUTH_KEY_MGMT_PSK; default: return 0; } } static int wpa_driver_wext_auth_alg_fallback(struct wpa_driver_wext_data *drv, struct wpa_driver_associate_params *params) { struct iwreq iwr; int ret = 0; wpa_printf(MSG_DEBUG, "WEXT: Driver did not support " "SIOCSIWAUTH for AUTH_ALG, trying SIOCSIWENCODE"); os_memset(&iwr, 0, sizeof(iwr)); os_strncpy(iwr.ifr_name, drv->ifname, IFNAMSIZ); /* Just changing mode, not actual keys */ iwr.u.encoding.flags = 0; iwr.u.encoding.pointer = (caddr_t) NULL; iwr.u.encoding.length = 0; /* * Note: IW_ENCODE_{OPEN,RESTRICTED} can be interpreted to mean two * different things. Here they are used to indicate Open System vs. * Shared Key authentication algorithm. However, some drivers may use * them to select between open/restricted WEP encrypted (open = allow * both unencrypted and encrypted frames; restricted = only allow * encrypted frames). */ if (!drv->use_crypt) { iwr.u.encoding.flags |= IW_ENCODE_DISABLED; } else { if (params->auth_alg & AUTH_ALG_OPEN_SYSTEM) iwr.u.encoding.flags |= IW_ENCODE_OPEN; if (params->auth_alg & AUTH_ALG_SHARED_KEY) iwr.u.encoding.flags |= IW_ENCODE_RESTRICTED; } if (ioctl(drv->ioctl_sock, SIOCSIWENCODE, &iwr) < 0) { perror("ioctl[SIOCSIWENCODE]"); ret = -1; } return ret; } static int wpa_driver_wext_associate(void *priv, struct wpa_driver_associate_params *params) { struct wpa_driver_wext_data *drv = priv; int ret = 0; int allow_unencrypted_eapol; int value, flags; wpa_printf(MSG_DEBUG, "%s", __FUNCTION__); if (wpa_driver_wext_get_ifflags(drv, &flags) == 0) { if (!(flags & IFF_UP)) { wpa_driver_wext_set_ifflags(drv, flags | IFF_UP); } } /* * If the driver did not support SIOCSIWAUTH, fallback to * SIOCSIWENCODE here. */ if (drv->auth_alg_fallback && wpa_driver_wext_auth_alg_fallback(drv, params) < 0) ret = -1; if (!params->bssid && wpa_driver_wext_set_bssid(drv, NULL) < 0) ret = -1; if (wpa_driver_wext_set_mode(drv, params->mode) < 0) ret = -1; /* TODO: should consider getting wpa version and cipher/key_mgmt suites * from configuration, not from here, where only the selected suite is * available */ if (wpa_driver_wext_set_gen_ie(drv, params->wpa_ie, params->wpa_ie_len) < 0) ret = -1; if (params->wpa_ie == NULL || params->wpa_ie_len == 0) value = IW_AUTH_WPA_VERSION_DISABLED; else if (params->wpa_ie[0] == RSN_INFO_ELEM) value = IW_AUTH_WPA_VERSION_WPA2; else value = IW_AUTH_WPA_VERSION_WPA; if (wpa_driver_wext_set_auth_param(drv, IW_AUTH_WPA_VERSION, value) < 0) ret = -1; value = wpa_driver_wext_cipher2wext(params->pairwise_suite); if (wpa_driver_wext_set_auth_param(drv, IW_AUTH_CIPHER_PAIRWISE, value) < 0) ret = -1; value = wpa_driver_wext_cipher2wext(params->group_suite); if (wpa_driver_wext_set_auth_param(drv, IW_AUTH_CIPHER_GROUP, value) < 0) ret = -1; value = wpa_driver_wext_keymgmt2wext(params->key_mgmt_suite); if (wpa_driver_wext_set_auth_param(drv, IW_AUTH_KEY_MGMT, value) < 0) ret = -1; value = params->key_mgmt_suite != KEY_MGMT_NONE || params->pairwise_suite != CIPHER_NONE || params->group_suite != CIPHER_NONE || params->wpa_ie_len; if (wpa_driver_wext_set_auth_param(drv, IW_AUTH_PRIVACY_INVOKED, value) < 0) ret = -1; /* Allow unencrypted EAPOL messages even if pairwise keys are set when * not using WPA. IEEE 802.1X specifies that these frames are not * encrypted, but WPA encrypts them when pairwise keys are in use. */ if (params->key_mgmt_suite == KEY_MGMT_802_1X || params->key_mgmt_suite == KEY_MGMT_PSK) allow_unencrypted_eapol = 0; else allow_unencrypted_eapol = 1; if (wpa_driver_wext_set_auth_param(drv, IW_AUTH_RX_UNENCRYPTED_EAPOL, allow_unencrypted_eapol) < 0) ret = -1; if (params->freq && wpa_driver_wext_set_freq(drv, params->freq) < 0) ret = -1; if (wpa_driver_wext_set_ssid(drv, params->ssid, params->ssid_len) < 0) ret = -1; if (params->bssid && wpa_driver_wext_set_bssid(drv, params->bssid) < 0) ret = -1; return ret; } static int wpa_driver_wext_set_auth_alg(void *priv, int auth_alg) { struct wpa_driver_wext_data *drv = priv; int algs = 0, res; if (auth_alg & AUTH_ALG_OPEN_SYSTEM) algs |= IW_AUTH_ALG_OPEN_SYSTEM; if (auth_alg & AUTH_ALG_SHARED_KEY) algs |= IW_AUTH_ALG_SHARED_KEY; if (auth_alg & AUTH_ALG_LEAP) algs |= IW_AUTH_ALG_LEAP; if (algs == 0) { /* at least one algorithm should be set */ algs = IW_AUTH_ALG_OPEN_SYSTEM; } res = wpa_driver_wext_set_auth_param(drv, IW_AUTH_80211_AUTH_ALG, algs); drv->auth_alg_fallback = res == -2; return res; } /** * wpa_driver_wext_set_mode - Set wireless mode (infra/adhoc), SIOCSIWMODE * @priv: Pointer to private wext data from wpa_driver_wext_init() * @mode: 0 = infra/BSS (associate with an AP), 1 = adhoc/IBSS * Returns: 0 on success, -1 on failure */ int wpa_driver_wext_set_mode(void *priv, int mode) { struct wpa_driver_wext_data *drv = priv; struct iwreq iwr; int ret = -1, flags; unsigned int new_mode = mode ? IW_MODE_ADHOC : IW_MODE_INFRA; os_memset(&iwr, 0, sizeof(iwr)); os_strncpy(iwr.ifr_name, drv->ifname, IFNAMSIZ); iwr.u.mode = new_mode; if (ioctl(drv->ioctl_sock, SIOCSIWMODE, &iwr) == 0) { ret = 0; goto done; } if (errno != EBUSY) { perror("ioctl[SIOCSIWMODE]"); goto done; } /* mac80211 doesn't allow mode changes while the device is up, so if * the device isn't in the mode we're about to change to, take device * down, try to set the mode again, and bring it back up. */ if (ioctl(drv->ioctl_sock, SIOCGIWMODE, &iwr) < 0) { perror("ioctl[SIOCGIWMODE]"); goto done; } if (iwr.u.mode == new_mode) { ret = 0; goto done; } if (wpa_driver_wext_get_ifflags(drv, &flags) == 0) { (void) wpa_driver_wext_set_ifflags(drv, flags & ~IFF_UP); /* Try to set the mode again while the interface is down */ iwr.u.mode = new_mode; if (ioctl(drv->ioctl_sock, SIOCSIWMODE, &iwr) < 0) perror("ioctl[SIOCSIWMODE]"); else ret = 0; /* Ignore return value of get_ifflags to ensure that the device * is always up like it was before this function was called. */ (void) wpa_driver_wext_get_ifflags(drv, &flags); (void) wpa_driver_wext_set_ifflags(drv, flags | IFF_UP); } done: return ret; } static int wpa_driver_wext_pmksa(struct wpa_driver_wext_data *drv, u32 cmd, const u8 *bssid, const u8 *pmkid) { struct iwreq iwr; struct iw_pmksa pmksa; int ret = 0; os_memset(&iwr, 0, sizeof(iwr)); os_strncpy(iwr.ifr_name, drv->ifname, IFNAMSIZ); os_memset(&pmksa, 0, sizeof(pmksa)); pmksa.cmd = cmd; pmksa.bssid.sa_family = ARPHRD_ETHER; if (bssid) os_memcpy(pmksa.bssid.sa_data, bssid, ETH_ALEN); if (pmkid) os_memcpy(pmksa.pmkid, pmkid, IW_PMKID_LEN); iwr.u.data.pointer = (caddr_t) &pmksa; iwr.u.data.length = sizeof(pmksa); if (ioctl(drv->ioctl_sock, SIOCSIWPMKSA, &iwr) < 0) { if (errno != EOPNOTSUPP) perror("ioctl[SIOCSIWPMKSA]"); ret = -1; } return ret; } static int wpa_driver_wext_add_pmkid(void *priv, const u8 *bssid, const u8 *pmkid) { struct wpa_driver_wext_data *drv = priv; return wpa_driver_wext_pmksa(drv, IW_PMKSA_ADD, bssid, pmkid); } static int wpa_driver_wext_remove_pmkid(void *priv, const u8 *bssid, const u8 *pmkid) { struct wpa_driver_wext_data *drv = priv; return wpa_driver_wext_pmksa(drv, IW_PMKSA_REMOVE, bssid, pmkid); } static int wpa_driver_wext_flush_pmkid(void *priv) { struct wpa_driver_wext_data *drv = priv; return wpa_driver_wext_pmksa(drv, IW_PMKSA_FLUSH, NULL, NULL); } static int wpa_driver_wext_get_capa(void *priv, struct wpa_driver_capa *capa) { struct wpa_driver_wext_data *drv = priv; if (!drv->has_capability) return -1; os_memcpy(capa, &drv->capa, sizeof(*capa)); return 0; } int wpa_driver_wext_alternative_ifindex(struct wpa_driver_wext_data *drv, const char *ifname) { if (ifname == NULL) { drv->ifindex2 = -1; return 0; } drv->ifindex2 = if_nametoindex(ifname); if (drv->ifindex2 <= 0) return -1; wpa_printf(MSG_DEBUG, "Added alternative ifindex %d (%s) for " "wireless events", drv->ifindex2, ifname); return 0; } int wpa_driver_wext_set_operstate(void *priv, int state) { struct wpa_driver_wext_data *drv = priv; wpa_printf(MSG_DEBUG, "%s: operstate %d->%d (%s)", __func__, drv->operstate, state, state ? "UP" : "DORMANT"); drv->operstate = state; return wpa_driver_wext_send_oper_ifla( drv, -1, state ? IF_OPER_UP : IF_OPER_DORMANT); } #ifdef CONFIG_CLIENT_MLME static int hostapd_ioctl(struct wpa_driver_wext_data *drv, struct prism2_hostapd_param *param, int len) { struct iwreq iwr; os_memset(&iwr, 0, sizeof(iwr)); os_strncpy(iwr.ifr_name, drv->ifname, IFNAMSIZ); iwr.u.data.pointer = (caddr_t) param; iwr.u.data.length = len; if (ioctl(drv->ioctl_sock, PRISM2_IOCTL_HOSTAPD, &iwr) < 0) { perror("ioctl[PRISM2_IOCTL_HOSTAPD]"); return -1; } return 0; } static struct wpa_hw_modes * wpa_driver_wext_get_hw_feature_data(void *priv, u16 *num_modes, u16 *flags) { struct wpa_driver_wext_data *drv = priv; struct prism2_hostapd_param *param; u8 *pos, *end; struct wpa_hw_modes *modes = NULL; int i; param = os_zalloc(PRISM2_HOSTAPD_MAX_BUF_SIZE); if (param == NULL) return NULL; param->cmd = PRISM2_HOSTAPD_GET_HW_FEATURES; if (hostapd_ioctl(drv, param, PRISM2_HOSTAPD_MAX_BUF_SIZE) < 0) { perror("ioctl[PRISM2_IOCTL_HOSTAPD]"); goto out; } *num_modes = param->u.hw_features.num_modes; *flags = param->u.hw_features.flags; pos = param->u.hw_features.data; end = pos + PRISM2_HOSTAPD_MAX_BUF_SIZE - (param->u.hw_features.data - (u8 *) param); modes = os_zalloc(*num_modes * sizeof(struct wpa_hw_modes)); if (modes == NULL) goto out; for (i = 0; i < *num_modes; i++) { struct hostapd_ioctl_hw_modes_hdr *hdr; struct wpa_hw_modes *feature; int clen, rlen; hdr = (struct hostapd_ioctl_hw_modes_hdr *) pos; pos = (u8 *) (hdr + 1); clen = hdr->num_channels * sizeof(struct wpa_channel_data); rlen = hdr->num_rates * sizeof(struct wpa_rate_data); feature = &modes[i]; switch (hdr->mode) { case MODE_IEEE80211A: feature->mode = WPA_MODE_IEEE80211A; break; case MODE_IEEE80211B: feature->mode = WPA_MODE_IEEE80211B; break; case MODE_IEEE80211G: feature->mode = WPA_MODE_IEEE80211G; break; case MODE_ATHEROS_TURBO: case MODE_ATHEROS_TURBOG: wpa_printf(MSG_ERROR, "Skip unsupported hw_mode=%d in " "get_hw_features data", hdr->mode); pos += clen + rlen; continue; default: wpa_printf(MSG_ERROR, "Unknown hw_mode=%d in " "get_hw_features data", hdr->mode); ieee80211_sta_free_hw_features(modes, *num_modes); modes = NULL; break; } feature->num_channels = hdr->num_channels; feature->num_rates = hdr->num_rates; feature->channels = os_malloc(clen); feature->rates = os_malloc(rlen); if (!feature->channels || !feature->rates || pos + clen + rlen > end) { ieee80211_sta_free_hw_features(modes, *num_modes); modes = NULL; break; } os_memcpy(feature->channels, pos, clen); pos += clen; os_memcpy(feature->rates, pos, rlen); pos += rlen; } out: os_free(param); return modes; } int wpa_driver_wext_set_channel(void *priv, wpa_hw_mode phymode, int chan, int freq) { return wpa_driver_wext_set_freq(priv, freq); } static void wpa_driver_wext_mlme_read(int sock, void *eloop_ctx, void *sock_ctx) { struct wpa_driver_wext_data *drv = eloop_ctx; int len; unsigned char buf[3000]; struct ieee80211_frame_info *fi; struct ieee80211_rx_status rx_status; len = recv(sock, buf, sizeof(buf), 0); if (len < 0) { perror("recv[MLME]"); return; } if (len < (int) sizeof(struct ieee80211_frame_info)) { wpa_printf(MSG_DEBUG, "WEXT: Too short MLME frame (len=%d)", len); return; } fi = (struct ieee80211_frame_info *) buf; if (ntohl(fi->version) != IEEE80211_FI_VERSION) { wpa_printf(MSG_DEBUG, "WEXT: Invalid MLME frame info version " "0x%x", ntohl(fi->version)); return; } os_memset(&rx_status, 0, sizeof(rx_status)); rx_status.ssi = ntohl(fi->ssi_signal); rx_status.channel = ntohl(fi->channel); ieee80211_sta_rx(drv->ctx, buf + sizeof(struct ieee80211_frame_info), len - sizeof(struct ieee80211_frame_info), &rx_status); } static int wpa_driver_wext_open_mlme(struct wpa_driver_wext_data *drv) { int flags, ifindex, s, *i; struct sockaddr_ll addr; struct iwreq iwr; os_memset(&iwr, 0, sizeof(iwr)); os_strncpy(iwr.ifr_name, drv->ifname, IFNAMSIZ); i = (int *) iwr.u.name; *i++ = PRISM2_PARAM_USER_SPACE_MLME; *i++ = 1; if (ioctl(drv->ioctl_sock, PRISM2_IOCTL_PRISM2_PARAM, &iwr) < 0) { wpa_printf(MSG_ERROR, "WEXT: Failed to configure driver to " "use user space MLME"); return -1; } ifindex = if_nametoindex(drv->mlmedev); if (ifindex == 0) { wpa_printf(MSG_ERROR, "WEXT: mlmedev='%s' not found", drv->mlmedev); return -1; } if (wpa_driver_wext_get_ifflags_ifname(drv, drv->mlmedev, &flags) != 0 || wpa_driver_wext_set_ifflags_ifname(drv, drv->mlmedev, flags | IFF_UP) != 0) { wpa_printf(MSG_ERROR, "WEXT: Could not set interface " "'%s' UP", drv->mlmedev); return -1; } s = socket(PF_PACKET, SOCK_RAW, htons(ETH_P_ALL)); if (s < 0) { perror("socket[PF_PACKET,SOCK_RAW]"); return -1; } os_memset(&addr, 0, sizeof(addr)); addr.sll_family = AF_PACKET; addr.sll_ifindex = ifindex; if (bind(s, (struct sockaddr *) &addr, sizeof(addr)) < 0) { perror("bind(MLME)"); return -1; } if (eloop_register_read_sock(s, wpa_driver_wext_mlme_read, drv, NULL)) { wpa_printf(MSG_ERROR, "WEXT: Could not register MLME read " "socket"); close(s); return -1; } return s; } static int wpa_driver_wext_send_mlme(void *priv, const u8 *data, size_t data_len) { struct wpa_driver_wext_data *drv = priv; int ret; ret = send(drv->mlme_sock, data, data_len, 0); if (ret < 0) { perror("send[MLME]"); return -1; } return 0; } static int wpa_driver_wext_mlme_add_sta(void *priv, const u8 *addr, const u8 *supp_rates, size_t supp_rates_len) { struct wpa_driver_wext_data *drv = priv; struct prism2_hostapd_param param; size_t len; os_memset(¶m, 0, sizeof(param)); param.cmd = PRISM2_HOSTAPD_ADD_STA; os_memcpy(param.sta_addr, addr, ETH_ALEN); len = supp_rates_len; if (len > sizeof(param.u.add_sta.supp_rates)) len = sizeof(param.u.add_sta.supp_rates); os_memcpy(param.u.add_sta.supp_rates, supp_rates, len); return hostapd_ioctl(drv, ¶m, sizeof(param)); } static int wpa_driver_wext_mlme_remove_sta(void *priv, const u8 *addr) { struct wpa_driver_wext_data *drv = priv; struct prism2_hostapd_param param; os_memset(¶m, 0, sizeof(param)); param.cmd = PRISM2_HOSTAPD_REMOVE_STA; os_memcpy(param.sta_addr, addr, ETH_ALEN); return hostapd_ioctl(drv, ¶m, sizeof(param)); } #endif /* CONFIG_CLIENT_MLME */ static int wpa_driver_wext_set_param(void *priv, const char *param) { #ifdef CONFIG_CLIENT_MLME struct wpa_driver_wext_data *drv = priv; const char *pos, *pos2; size_t len; if (param == NULL) return 0; wpa_printf(MSG_DEBUG, "%s: param='%s'", __func__, param); pos = os_strstr(param, "mlmedev="); if (pos) { pos += 8; pos2 = os_strchr(pos, ' '); if (pos2) len = pos2 - pos; else len = os_strlen(pos); if (len + 1 > sizeof(drv->mlmedev)) return -1; os_memcpy(drv->mlmedev, pos, len); drv->mlmedev[len] = '\0'; wpa_printf(MSG_DEBUG, "WEXT: Using user space MLME with " "mlmedev='%s'", drv->mlmedev); drv->capa.flags |= WPA_DRIVER_FLAGS_USER_SPACE_MLME; drv->mlme_sock = wpa_driver_wext_open_mlme(drv); if (drv->mlme_sock < 0) return -1; } #endif /* CONFIG_CLIENT_MLME */ return 0; } int wpa_driver_wext_get_version(struct wpa_driver_wext_data *drv) { return drv->we_version_compiled; } #ifdef ANDROID static char *wpa_driver_get_country_code(int channels) { char *country = "US"; /* WEXT_NUMBER_SCAN_CHANNELS_FCC */ if (channels == WEXT_NUMBER_SCAN_CHANNELS_ETSI) country = "EU"; else if( channels == WEXT_NUMBER_SCAN_CHANNELS_MKK1) country = "JP"; return country; } static int wpa_driver_priv_driver_cmd(void *priv, char *cmd, char *buf, size_t buf_len) { struct wpa_driver_wext_data *drv = priv; struct wpa_supplicant *wpa_s = (struct wpa_supplicant *)(drv->ctx); struct iwreq iwr; int ret = 0, flags; wpa_printf(MSG_DEBUG, "%s %s len = %d", __func__, cmd, buf_len); if (os_strcasecmp(cmd, "RSSI-APPROX") == 0) { os_strncpy(cmd, "RSSI", MAX_DRV_CMD_SIZE); } else if( os_strncasecmp(cmd, "SCAN-CHANNELS", 13) == 0 ) { int no_of_chan; no_of_chan = atoi(cmd + 13); os_snprintf(cmd, MAX_DRV_CMD_SIZE, "COUNTRY %s", wpa_driver_get_country_code(no_of_chan)); } else if (os_strcasecmp(cmd, "STOP") == 0) { if ((wpa_driver_wext_get_ifflags(drv, &flags) == 0) && (flags & IFF_UP)) { wpa_printf(MSG_ERROR, "WEXT: %s when iface is UP", cmd); wpa_driver_wext_set_ifflags(drv, flags & ~IFF_UP); } } else if( os_strcasecmp(cmd, "RELOAD") == 0 ) { wpa_printf(MSG_DEBUG,"Reload command"); wpa_msg(drv->ctx, MSG_INFO, WPA_EVENT_DRIVER_STATE "HANGED"); return ret; } os_memset(&iwr, 0, sizeof(iwr)); os_strncpy(iwr.ifr_name, drv->ifname, IFNAMSIZ); os_memcpy(buf, cmd, strlen(cmd) + 1); iwr.u.data.pointer = buf; iwr.u.data.length = buf_len; if ((ret = ioctl(drv->ioctl_sock, SIOCSIWPRIV, &iwr)) < 0) { perror("ioctl[SIOCSIWPRIV]"); } if (ret < 0) { wpa_printf(MSG_ERROR, "%s failed", __func__); drv->errors++; if (drv->errors > WEXT_NUMBER_SEQUENTIAL_ERRORS) { drv->errors = 0; wpa_msg(drv->ctx, MSG_INFO, WPA_EVENT_DRIVER_STATE "HANGED"); } } else { drv->errors = 0; ret = 0; if ((os_strcasecmp(cmd, "RSSI") == 0) || (os_strcasecmp(cmd, "LINKSPEED") == 0) || (os_strcasecmp(cmd, "MACADDR") == 0)) { ret = strlen(buf); } /* else if (os_strcasecmp(cmd, "START") == 0) { os_sleep(0, WPA_DRIVER_WEXT_WAIT_US); wpa_msg(drv->ctx, MSG_INFO, WPA_EVENT_DRIVER_STATE "STARTED"); } else if (os_strcasecmp(cmd, "STOP") == 0) { wpa_msg(drv->ctx, MSG_INFO, WPA_EVENT_DRIVER_STATE "STOPPED"); }*/ wpa_printf(MSG_DEBUG, "%s %s len = %d, %d", __func__, buf, ret, strlen(buf)); } return ret; } #endif const struct wpa_driver_ops wpa_driver_wext_ops = { .name = "wext", .desc = "Linux wireless extensions (generic)", .get_bssid = wpa_driver_wext_get_bssid, .get_ssid = wpa_driver_wext_get_ssid, .set_wpa = wpa_driver_wext_set_wpa, .set_key = wpa_driver_wext_set_key, .set_countermeasures = wpa_driver_wext_set_countermeasures, .set_drop_unencrypted = wpa_driver_wext_set_drop_unencrypted, .scan = wpa_driver_wext_scan, .get_scan_results = wpa_driver_wext_get_scan_results, .deauthenticate = wpa_driver_wext_deauthenticate, .disassociate = wpa_driver_wext_disassociate, .associate = wpa_driver_wext_associate, .set_auth_alg = wpa_driver_wext_set_auth_alg, .init = wpa_driver_wext_init, .deinit = wpa_driver_wext_deinit, .set_param = wpa_driver_wext_set_param, .add_pmkid = wpa_driver_wext_add_pmkid, .remove_pmkid = wpa_driver_wext_remove_pmkid, .flush_pmkid = wpa_driver_wext_flush_pmkid, .get_capa = wpa_driver_wext_get_capa, .set_operstate = wpa_driver_wext_set_operstate, #ifdef CONFIG_CLIENT_MLME .get_hw_feature_data = wpa_driver_wext_get_hw_feature_data, .set_channel = wpa_driver_wext_set_channel, .set_ssid = wpa_driver_wext_set_ssid, .set_bssid = wpa_driver_wext_set_bssid, .send_mlme = wpa_driver_wext_send_mlme, .mlme_add_sta = wpa_driver_wext_mlme_add_sta, .mlme_remove_sta = wpa_driver_wext_mlme_remove_sta, #endif /* CONFIG_CLIENT_MLME */ #ifdef ANDROID .driver_cmd = wpa_driver_priv_driver_cmd, #endif };