/* * (C) 1999 Lars Knoll (knoll@kde.org) * (C) 2000 Dirk Mueller (mueller@kde.org) * Copyright (C) 2004, 2005, 2006, 2007 Apple Inc. All rights reserved. * Copyright (C) 2006 Andrew Wellington (proton@wiretapped.net) * Copyright (C) 2006 Graham Dennis (graham.dennis@gmail.com) * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public License * along with this library; see the file COPYING.LIB. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. * */ #include "config.h" #include "RenderText.h" #include "AXObjectCache.h" #include "CharacterNames.h" #include "EllipsisBox.h" #include "FloatQuad.h" #include "FrameView.h" #include "InlineTextBox.h" #include "Range.h" #include "RenderArena.h" #include "RenderBlock.h" #include "RenderLayer.h" #include "RenderView.h" #include "Text.h" #include "TextBreakIterator.h" #include "VisiblePosition.h" #include "break_lines.h" #include <wtf/AlwaysInline.h> using namespace std; using namespace WTF; using namespace Unicode; namespace WebCore { // FIXME: Move to StringImpl.h eventually. static inline bool charactersAreAllASCII(StringImpl* text) { return charactersAreAllASCII(text->characters(), text->length()); } RenderText::RenderText(Node* node, PassRefPtr<StringImpl> str) : RenderObject(node) , m_minWidth(-1) , m_text(document()->displayStringModifiedByEncoding(str)) , m_firstTextBox(0) , m_lastTextBox(0) , m_maxWidth(-1) , m_beginMinWidth(0) , m_endMinWidth(0) , m_hasTab(false) , m_linesDirty(false) , m_containsReversedText(false) , m_isAllASCII(charactersAreAllASCII(m_text.get())) , m_knownNotToUseFallbackFonts(false) { ASSERT(m_text); setIsText(); // FIXME: It would be better to call this only if !m_text->containsOnlyWhitespace(). // But that might slow things down, and maybe should only be done if visuallyNonEmpty // is still false. Not making any change for now, but should consider in the future. view()->frameView()->setIsVisuallyNonEmpty(); } #ifndef NDEBUG RenderText::~RenderText() { ASSERT(!m_firstTextBox); ASSERT(!m_lastTextBox); } #endif const char* RenderText::renderName() const { return "RenderText"; } bool RenderText::isTextFragment() const { return false; } bool RenderText::isWordBreak() const { return false; } void RenderText::styleDidChange(StyleDifference diff, const RenderStyle* oldStyle) { // There is no need to ever schedule repaints from a style change of a text run, since // we already did this for the parent of the text run. // We do have to schedule layouts, though, since a style change can force us to // need to relayout. if (diff == StyleDifferenceLayout) { setNeedsLayoutAndPrefWidthsRecalc(); m_knownNotToUseFallbackFonts = false; } ETextTransform oldTransform = oldStyle ? oldStyle->textTransform() : TTNONE; ETextSecurity oldSecurity = oldStyle ? oldStyle->textSecurity() : TSNONE; if (oldTransform != style()->textTransform() || oldSecurity != style()->textSecurity()) { if (RefPtr<StringImpl> textToTransform = originalText()) setText(textToTransform.release(), true); } } void RenderText::destroy() { if (!documentBeingDestroyed()) { if (firstTextBox()) { if (isBR()) { RootInlineBox* next = firstTextBox()->root()->nextRootBox(); if (next) next->markDirty(); } for (InlineTextBox* box = firstTextBox(); box; box = box->nextTextBox()) box->remove(); } else if (parent()) parent()->dirtyLinesFromChangedChild(this); } deleteTextBoxes(); RenderObject::destroy(); } void RenderText::extractTextBox(InlineTextBox* box) { checkConsistency(); m_lastTextBox = box->prevTextBox(); if (box == m_firstTextBox) m_firstTextBox = 0; if (box->prevTextBox()) box->prevTextBox()->setNextLineBox(0); box->setPreviousLineBox(0); for (InlineRunBox* curr = box; curr; curr = curr->nextLineBox()) curr->setExtracted(); checkConsistency(); } void RenderText::attachTextBox(InlineTextBox* box) { checkConsistency(); if (m_lastTextBox) { m_lastTextBox->setNextLineBox(box); box->setPreviousLineBox(m_lastTextBox); } else m_firstTextBox = box; InlineTextBox* last = box; for (InlineTextBox* curr = box; curr; curr = curr->nextTextBox()) { curr->setExtracted(false); last = curr; } m_lastTextBox = last; checkConsistency(); } void RenderText::removeTextBox(InlineTextBox* box) { checkConsistency(); if (box == m_firstTextBox) m_firstTextBox = box->nextTextBox(); if (box == m_lastTextBox) m_lastTextBox = box->prevTextBox(); if (box->nextTextBox()) box->nextTextBox()->setPreviousLineBox(box->prevTextBox()); if (box->prevTextBox()) box->prevTextBox()->setNextLineBox(box->nextTextBox()); checkConsistency(); } void RenderText::deleteTextBoxes() { if (firstTextBox()) { RenderArena* arena = renderArena(); InlineTextBox* next; for (InlineTextBox* curr = firstTextBox(); curr; curr = next) { next = curr->nextTextBox(); curr->destroy(arena); } m_firstTextBox = m_lastTextBox = 0; } } PassRefPtr<StringImpl> RenderText::originalText() const { Node* e = node(); return e ? static_cast<Text*>(e)->dataImpl() : 0; } void RenderText::absoluteRects(Vector<IntRect>& rects, int tx, int ty) { for (InlineTextBox* box = firstTextBox(); box; box = box->nextTextBox()) rects.append(IntRect(tx + box->x(), ty + box->y(), box->width(), box->height())); } void RenderText::absoluteRectsForRange(Vector<IntRect>& rects, unsigned start, unsigned end, bool useSelectionHeight) { // Work around signed/unsigned issues. This function takes unsigneds, and is often passed UINT_MAX // to mean "all the way to the end". InlineTextBox coordinates are unsigneds, so changing this // function to take ints causes various internal mismatches. But selectionRect takes ints, and // passing UINT_MAX to it causes trouble. Ideally we'd change selectionRect to take unsigneds, but // that would cause many ripple effects, so for now we'll just clamp our unsigned parameters to INT_MAX. ASSERT(end == UINT_MAX || end <= INT_MAX); ASSERT(start <= INT_MAX); start = min(start, static_cast<unsigned>(INT_MAX)); end = min(end, static_cast<unsigned>(INT_MAX)); FloatPoint absPos = localToAbsolute(FloatPoint()); for (InlineTextBox* box = firstTextBox(); box; box = box->nextTextBox()) { // Note: box->end() returns the index of the last character, not the index past it if (start <= box->start() && box->end() < end) { IntRect r = IntRect(absPos.x() + box->x(), absPos.y() + box->y(), box->width(), box->height()); if (useSelectionHeight) { IntRect selectionRect = box->selectionRect(absPos.x(), absPos.y(), start, end); r.setHeight(selectionRect.height()); r.setY(selectionRect.y()); } rects.append(r); } else { unsigned realEnd = min(box->end() + 1, end); IntRect r = box->selectionRect(absPos.x(), absPos.y(), start, realEnd); if (!r.isEmpty()) { if (!useSelectionHeight) { // change the height and y position because selectionRect uses selection-specific values r.setHeight(box->height()); r.setY(absPos.y() + box->y()); } rects.append(r); } } } } void RenderText::absoluteQuads(Vector<FloatQuad>& quads) { for (InlineTextBox* box = firstTextBox(); box; box = box->nextTextBox()) quads.append(localToAbsoluteQuad(FloatRect(box->x(), box->y(), box->width(), box->height()))); } void RenderText::absoluteQuadsForRange(Vector<FloatQuad>& quads, unsigned start, unsigned end, bool useSelectionHeight) { // Work around signed/unsigned issues. This function takes unsigneds, and is often passed UINT_MAX // to mean "all the way to the end". InlineTextBox coordinates are unsigneds, so changing this // function to take ints causes various internal mismatches. But selectionRect takes ints, and // passing UINT_MAX to it causes trouble. Ideally we'd change selectionRect to take unsigneds, but // that would cause many ripple effects, so for now we'll just clamp our unsigned parameters to INT_MAX. ASSERT(end == UINT_MAX || end <= INT_MAX); ASSERT(start <= INT_MAX); start = min(start, static_cast<unsigned>(INT_MAX)); end = min(end, static_cast<unsigned>(INT_MAX)); for (InlineTextBox* box = firstTextBox(); box; box = box->nextTextBox()) { // Note: box->end() returns the index of the last character, not the index past it if (start <= box->start() && box->end() < end) { IntRect r = IntRect(box->x(), box->y(), box->width(), box->height()); if (useSelectionHeight) { IntRect selectionRect = box->selectionRect(0, 0, start, end); r.setHeight(selectionRect.height()); r.setY(selectionRect.y()); } quads.append(localToAbsoluteQuad(FloatRect(r))); } else { unsigned realEnd = min(box->end() + 1, end); IntRect r = box->selectionRect(0, 0, start, realEnd); if (r.height()) { if (!useSelectionHeight) { // change the height and y position because selectionRect uses selection-specific values r.setHeight(box->height()); r.setY(box->y()); } quads.append(localToAbsoluteQuad(FloatRect(r))); } } } } InlineTextBox* RenderText::findNextInlineTextBox(int offset, int& pos) const { // The text runs point to parts of the RenderText's m_text // (they don't include '\n') // Find the text run that includes the character at offset // and return pos, which is the position of the char in the run. if (!m_firstTextBox) return 0; InlineTextBox* s = m_firstTextBox; int off = s->len(); while (offset > off && s->nextTextBox()) { s = s->nextTextBox(); off = s->start() + s->len(); } // we are now in the correct text run pos = (offset > off ? s->len() : s->len() - (off - offset) ); return s; } VisiblePosition RenderText::positionForPoint(const IntPoint& point) { if (!firstTextBox() || textLength() == 0) return createVisiblePosition(0, DOWNSTREAM); // Get the offset for the position, since this will take rtl text into account. int offset; // FIXME: We should be able to roll these special cases into the general cases in the loop below. if (firstTextBox() && point.y() < firstTextBox()->root()->lineBottom() && point.x() < firstTextBox()->m_x) { // at the y coordinate of the first line or above // and the x coordinate is to the left of the first text box left edge offset = firstTextBox()->offsetForPosition(point.x()); return createVisiblePosition(offset + firstTextBox()->start(), DOWNSTREAM); } if (lastTextBox() && point.y() >= lastTextBox()->root()->lineTop() && point.x() >= lastTextBox()->m_x + lastTextBox()->m_width) { // at the y coordinate of the last line or below // and the x coordinate is to the right of the last text box right edge offset = lastTextBox()->offsetForPosition(point.x()); return createVisiblePosition(offset + lastTextBox()->start(), VP_UPSTREAM_IF_POSSIBLE); } InlineTextBox* lastBoxAbove = 0; for (InlineTextBox* box = firstTextBox(); box; box = box->nextTextBox()) { if (point.y() >= box->root()->lineTop()) { int bottom = box->root()->nextRootBox() ? box->root()->nextRootBox()->lineTop() : box->root()->lineBottom(); if (point.y() < bottom) { offset = box->offsetForPosition(point.x()); if (point.x() == box->m_x) // the x coordinate is equal to the left edge of this box // the affinity must be downstream so the position doesn't jump back to the previous line return createVisiblePosition(offset + box->start(), DOWNSTREAM); if (point.x() < box->m_x + box->m_width) // and the x coordinate is to the left of the right edge of this box // check to see if position goes in this box return createVisiblePosition(offset + box->start(), offset > 0 ? VP_UPSTREAM_IF_POSSIBLE : DOWNSTREAM); if (!box->prevOnLine() && point.x() < box->m_x) // box is first on line // and the x coordinate is to the left of the first text box left edge return createVisiblePosition(offset + box->start(), DOWNSTREAM); if (!box->nextOnLine()) // box is last on line // and the x coordinate is to the right of the last text box right edge // generate VisiblePosition, use UPSTREAM affinity if possible return createVisiblePosition(offset + box->start(), offset > 0 ? VP_UPSTREAM_IF_POSSIBLE : DOWNSTREAM); } lastBoxAbove = box; } } return createVisiblePosition(lastBoxAbove ? lastBoxAbove->start() + lastBoxAbove->len() : 0, DOWNSTREAM); } IntRect RenderText::localCaretRect(InlineBox* inlineBox, int caretOffset, int* extraWidthToEndOfLine) { if (!inlineBox) return IntRect(); ASSERT(inlineBox->isInlineTextBox()); if (!inlineBox->isInlineTextBox()) return IntRect(); InlineTextBox* box = static_cast<InlineTextBox*>(inlineBox); int height = box->root()->lineBottom() - box->root()->lineTop(); int top = box->root()->lineTop(); int left = box->positionForOffset(caretOffset); // Distribute the caret's width to either side of the offset. int caretWidthLeftOfOffset = caretWidth / 2; left -= caretWidthLeftOfOffset; int caretWidthRightOfOffset = caretWidth - caretWidthLeftOfOffset; int rootLeft = box->root()->x(); int rootRight = rootLeft + box->root()->width(); // FIXME: should we use the width of the root inline box or the // width of the containing block for this? if (extraWidthToEndOfLine) *extraWidthToEndOfLine = (box->root()->width() + rootLeft) - (left + 1); RenderBlock* cb = containingBlock(); if (style()->autoWrap()) { int availableWidth = cb->lineWidth(top, false); if (box->direction() == LTR) left = min(left, rootLeft + availableWidth - caretWidthRightOfOffset); else left = max(left, cb->x()); } else { // If there is no wrapping, the caret can leave its containing block, but not its root line box. if (cb->style()->direction() == LTR) { int rightEdge = max(cb->width(), rootRight); left = min(left, rightEdge - caretWidthRightOfOffset); left = max(left, rootLeft); } else { int leftEdge = min(cb->x(), rootLeft); left = max(left, leftEdge); left = min(left, rootRight - caretWidth); } } return IntRect(left, top, caretWidth, height); } ALWAYS_INLINE int RenderText::widthFromCache(const Font& f, int start, int len, int xPos, HashSet<const SimpleFontData*>* fallbackFonts) const { if (f.isFixedPitch() && !f.isSmallCaps() && m_isAllASCII) { int monospaceCharacterWidth = f.spaceWidth(); int tabWidth = allowTabs() ? monospaceCharacterWidth * 8 : 0; int w = 0; bool isSpace; bool previousCharWasSpace = true; // FIXME: Preserves historical behavior, but seems wrong for start > 0. for (int i = start; i < start + len; i++) { char c = (*m_text)[i]; if (c <= ' ') { if (c == ' ' || c == '\n') { w += monospaceCharacterWidth; isSpace = true; } else if (c == '\t') { w += tabWidth ? tabWidth - ((xPos + w) % tabWidth) : monospaceCharacterWidth; isSpace = true; } else isSpace = false; } else { w += monospaceCharacterWidth; isSpace = false; } if (isSpace && !previousCharWasSpace) w += f.wordSpacing(); previousCharWasSpace = isSpace; } return w; } return f.width(TextRun(text()->characters() + start, len, allowTabs(), xPos), fallbackFonts); } void RenderText::trimmedPrefWidths(int leadWidth, int& beginMinW, bool& beginWS, int& endMinW, bool& endWS, bool& hasBreakableChar, bool& hasBreak, int& beginMaxW, int& endMaxW, int& minW, int& maxW, bool& stripFrontSpaces) { bool collapseWhiteSpace = style()->collapseWhiteSpace(); if (!collapseWhiteSpace) stripFrontSpaces = false; if (m_hasTab || prefWidthsDirty()) calcPrefWidths(leadWidth); beginWS = !stripFrontSpaces && m_hasBeginWS; endWS = m_hasEndWS; int len = textLength(); if (!len || (stripFrontSpaces && m_text->containsOnlyWhitespace())) { beginMinW = 0; endMinW = 0; beginMaxW = 0; endMaxW = 0; minW = 0; maxW = 0; hasBreak = false; return; } minW = m_minWidth; maxW = m_maxWidth; beginMinW = m_beginMinWidth; endMinW = m_endMinWidth; hasBreakableChar = m_hasBreakableChar; hasBreak = m_hasBreak; if ((*m_text)[0] == ' ' || ((*m_text)[0] == '\n' && !style()->preserveNewline()) || (*m_text)[0] == '\t') { const Font& f = style()->font(); // FIXME: This ignores first-line. if (stripFrontSpaces) { const UChar space = ' '; int spaceWidth = f.width(TextRun(&space, 1)); maxW -= spaceWidth; } else maxW += f.wordSpacing(); } stripFrontSpaces = collapseWhiteSpace && m_hasEndWS; if (!style()->autoWrap() || minW > maxW) minW = maxW; // Compute our max widths by scanning the string for newlines. if (hasBreak) { const Font& f = style()->font(); // FIXME: This ignores first-line. bool firstLine = true; beginMaxW = maxW; endMaxW = maxW; for (int i = 0; i < len; i++) { int linelen = 0; while (i + linelen < len && (*m_text)[i + linelen] != '\n') linelen++; if (linelen) { endMaxW = widthFromCache(f, i, linelen, leadWidth + endMaxW, 0); if (firstLine) { firstLine = false; leadWidth = 0; beginMaxW = endMaxW; } i += linelen; } else if (firstLine) { beginMaxW = 0; firstLine = false; leadWidth = 0; } if (i == len - 1) // A <pre> run that ends with a newline, as in, e.g., // <pre>Some text\n\n<span>More text</pre> endMaxW = 0; } } } static inline bool isSpaceAccordingToStyle(UChar c, RenderStyle* style) { return c == ' ' || (c == noBreakSpace && style->nbspMode() == SPACE); } int RenderText::minPrefWidth() const { if (prefWidthsDirty()) const_cast<RenderText*>(this)->calcPrefWidths(0); return m_minWidth; } int RenderText::maxPrefWidth() const { if (prefWidthsDirty()) const_cast<RenderText*>(this)->calcPrefWidths(0); return m_maxWidth; } void RenderText::calcPrefWidths(int leadWidth) { HashSet<const SimpleFontData*> fallbackFonts; calcPrefWidths(leadWidth, fallbackFonts); if (fallbackFonts.isEmpty()) m_knownNotToUseFallbackFonts = true; } void RenderText::calcPrefWidths(int leadWidth, HashSet<const SimpleFontData*>& fallbackFonts) { ASSERT(m_hasTab || prefWidthsDirty() || !m_knownNotToUseFallbackFonts); m_minWidth = 0; m_beginMinWidth = 0; m_endMinWidth = 0; m_maxWidth = 0; if (isBR()) return; int currMinWidth = 0; int currMaxWidth = 0; m_hasBreakableChar = false; m_hasBreak = false; m_hasTab = false; m_hasBeginWS = false; m_hasEndWS = false; const Font& f = style()->font(); // FIXME: This ignores first-line. int wordSpacing = style()->wordSpacing(); int len = textLength(); const UChar* txt = characters(); bool needsWordSpacing = false; bool ignoringSpaces = false; bool isSpace = false; bool firstWord = true; bool firstLine = true; int nextBreakable = -1; int lastWordBoundary = 0; bool breakNBSP = style()->autoWrap() && style()->nbspMode() == SPACE; bool breakAll = (style()->wordBreak() == BreakAllWordBreak || style()->wordBreak() == BreakWordBreak) && style()->autoWrap(); for (int i = 0; i < len; i++) { UChar c = txt[i]; bool previousCharacterIsSpace = isSpace; bool isNewline = false; if (c == '\n') { if (style()->preserveNewline()) { m_hasBreak = true; isNewline = true; isSpace = false; } else isSpace = true; } else if (c == '\t') { if (!style()->collapseWhiteSpace()) { m_hasTab = true; isSpace = false; } else isSpace = true; } else isSpace = c == ' '; if ((isSpace || isNewline) && !i) m_hasBeginWS = true; if ((isSpace || isNewline) && i == len - 1) m_hasEndWS = true; if (!ignoringSpaces && style()->collapseWhiteSpace() && previousCharacterIsSpace && isSpace) ignoringSpaces = true; if (ignoringSpaces && !isSpace) ignoringSpaces = false; // Ignore spaces and soft hyphens if (ignoringSpaces) { ASSERT(lastWordBoundary == i); lastWordBoundary++; continue; } else if (c == softHyphen) { currMaxWidth += widthFromCache(f, lastWordBoundary, i - lastWordBoundary, leadWidth + currMaxWidth, &fallbackFonts); lastWordBoundary = i + 1; continue; } bool hasBreak = breakAll || isBreakable(txt, i, len, nextBreakable, breakNBSP); bool betweenWords = true; int j = i; while (c != '\n' && !isSpaceAccordingToStyle(c, style()) && c != '\t' && c != softHyphen) { j++; if (j == len) break; c = txt[j]; if (isBreakable(txt, j, len, nextBreakable, breakNBSP)) break; if (breakAll) { betweenWords = false; break; } } int wordLen = j - i; if (wordLen) { int w = widthFromCache(f, i, wordLen, leadWidth + currMaxWidth, &fallbackFonts); currMinWidth += w; if (betweenWords) { if (lastWordBoundary == i) currMaxWidth += w; else currMaxWidth += widthFromCache(f, lastWordBoundary, j - lastWordBoundary, leadWidth + currMaxWidth, &fallbackFonts); lastWordBoundary = j; } bool isSpace = (j < len) && isSpaceAccordingToStyle(c, style()); bool isCollapsibleWhiteSpace = (j < len) && style()->isCollapsibleWhiteSpace(c); if (j < len && style()->autoWrap()) m_hasBreakableChar = true; // Add in wordSpacing to our currMaxWidth, but not if this is the last word on a line or the // last word in the run. if (wordSpacing && (isSpace || isCollapsibleWhiteSpace) && !containsOnlyWhitespace(j, len-j)) currMaxWidth += wordSpacing; if (firstWord) { firstWord = false; // If the first character in the run is breakable, then we consider ourselves to have a beginning // minimum width of 0, since a break could occur right before our run starts, preventing us from ever // being appended to a previous text run when considering the total minimum width of the containing block. if (hasBreak) m_hasBreakableChar = true; m_beginMinWidth = hasBreak ? 0 : w; } m_endMinWidth = w; if (currMinWidth > m_minWidth) m_minWidth = currMinWidth; currMinWidth = 0; i += wordLen - 1; } else { // Nowrap can never be broken, so don't bother setting the // breakable character boolean. Pre can only be broken if we encounter a newline. if (style()->autoWrap() || isNewline) m_hasBreakableChar = true; if (currMinWidth > m_minWidth) m_minWidth = currMinWidth; currMinWidth = 0; if (isNewline) { // Only set if preserveNewline was true and we saw a newline. if (firstLine) { firstLine = false; leadWidth = 0; if (!style()->autoWrap()) m_beginMinWidth = currMaxWidth; } if (currMaxWidth > m_maxWidth) m_maxWidth = currMaxWidth; currMaxWidth = 0; } else { currMaxWidth += f.width(TextRun(txt + i, 1, allowTabs(), leadWidth + currMaxWidth)); needsWordSpacing = isSpace && !previousCharacterIsSpace && i == len - 1; } ASSERT(lastWordBoundary == i); lastWordBoundary++; } } if ((needsWordSpacing && len > 1) || (ignoringSpaces && !firstWord)) currMaxWidth += wordSpacing; m_minWidth = max(currMinWidth, m_minWidth); m_maxWidth = max(currMaxWidth, m_maxWidth); if (!style()->autoWrap()) m_minWidth = m_maxWidth; if (style()->whiteSpace() == PRE) { if (firstLine) m_beginMinWidth = m_maxWidth; m_endMinWidth = currMaxWidth; } setPrefWidthsDirty(false); } bool RenderText::isAllCollapsibleWhitespace() { int length = textLength(); const UChar* text = characters(); for (int i = 0; i < length; i++) { if (!style()->isCollapsibleWhiteSpace(text[i])) return false; } return true; } bool RenderText::containsOnlyWhitespace(unsigned from, unsigned len) const { unsigned currPos; for (currPos = from; currPos < from + len && ((*m_text)[currPos] == '\n' || (*m_text)[currPos] == ' ' || (*m_text)[currPos] == '\t'); currPos++) { } return currPos >= (from + len); } IntPoint RenderText::firstRunOrigin() const { return IntPoint(firstRunX(), firstRunY()); } int RenderText::firstRunX() const { return m_firstTextBox ? m_firstTextBox->m_x : 0; } int RenderText::firstRunY() const { return m_firstTextBox ? m_firstTextBox->m_y : 0; } void RenderText::setSelectionState(SelectionState state) { InlineTextBox* box; RenderObject::setSelectionState(state); if (state == SelectionStart || state == SelectionEnd || state == SelectionBoth) { int startPos, endPos; selectionStartEnd(startPos, endPos); if (selectionState() == SelectionStart) { endPos = textLength(); // to handle selection from end of text to end of line if (startPos != 0 && startPos == endPos) startPos = endPos - 1; } else if (selectionState() == SelectionEnd) startPos = 0; for (box = firstTextBox(); box; box = box->nextTextBox()) { if (box->isSelected(startPos, endPos)) { RootInlineBox* line = box->root(); if (line) line->setHasSelectedChildren(true); } } } else { for (box = firstTextBox(); box; box = box->nextTextBox()) { RootInlineBox* line = box->root(); if (line) line->setHasSelectedChildren(state == SelectionInside); } } // The returned value can be null in case of an orphaned tree. if (RenderBlock* cb = containingBlock()) cb->setSelectionState(state); } void RenderText::setTextWithOffset(PassRefPtr<StringImpl> text, unsigned offset, unsigned len, bool force) { unsigned oldLen = textLength(); unsigned newLen = text->length(); int delta = newLen - oldLen; unsigned end = len ? offset + len - 1 : offset; RootInlineBox* firstRootBox = 0; RootInlineBox* lastRootBox = 0; bool dirtiedLines = false; // Dirty all text boxes that include characters in between offset and offset+len. for (InlineTextBox* curr = firstTextBox(); curr; curr = curr->nextTextBox()) { // Text run is entirely before the affected range. if (curr->end() < offset) continue; // Text run is entirely after the affected range. if (curr->start() > end) { curr->offsetRun(delta); RootInlineBox* root = curr->root(); if (!firstRootBox) { firstRootBox = root; if (!dirtiedLines) { // The affected area was in between two runs. Go ahead and mark the root box of // the run after the affected area as dirty. firstRootBox->markDirty(); dirtiedLines = true; } } lastRootBox = root; } else if (curr->end() >= offset && curr->end() <= end) { // Text run overlaps with the left end of the affected range. curr->dirtyLineBoxes(); dirtiedLines = true; } else if (curr->start() <= offset && curr->end() >= end) { // Text run subsumes the affected range. curr->dirtyLineBoxes(); dirtiedLines = true; } else if (curr->start() <= end && curr->end() >= end) { // Text run overlaps with right end of the affected range. curr->dirtyLineBoxes(); dirtiedLines = true; } } // Now we have to walk all of the clean lines and adjust their cached line break information // to reflect our updated offsets. if (lastRootBox) lastRootBox = lastRootBox->nextRootBox(); if (firstRootBox) { RootInlineBox* prev = firstRootBox->prevRootBox(); if (prev) firstRootBox = prev; } else if (lastTextBox()) { ASSERT(!lastRootBox); firstRootBox = lastTextBox()->root(); firstRootBox->markDirty(); dirtiedLines = true; } for (RootInlineBox* curr = firstRootBox; curr && curr != lastRootBox; curr = curr->nextRootBox()) { if (curr->lineBreakObj() == this && curr->lineBreakPos() > end) curr->setLineBreakPos(curr->lineBreakPos() + delta); } // If the text node is empty, dirty the line where new text will be inserted. if (!firstTextBox() && parent()) { parent()->dirtyLinesFromChangedChild(this); dirtiedLines = true; } m_linesDirty = dirtiedLines; setText(text, force); } static inline bool isInlineFlowOrEmptyText(RenderObject* o) { if (o->isRenderInline()) return true; if (!o->isText()) return false; StringImpl* text = toRenderText(o)->text(); if (!text) return true; return !text->length(); } UChar RenderText::previousCharacter() { // find previous text renderer if one exists RenderObject* previousText = this; while ((previousText = previousText->previousInPreOrder())) if (!isInlineFlowOrEmptyText(previousText)) break; UChar prev = ' '; if (previousText && previousText->isText()) if (StringImpl* previousString = toRenderText(previousText)->text()) prev = (*previousString)[previousString->length() - 1]; return prev; } void RenderText::setTextInternal(PassRefPtr<StringImpl> text) { ASSERT(text); m_text = document()->displayStringModifiedByEncoding(text); ASSERT(m_text); #if ENABLE(SVG) if (isSVGText()) { if (style() && style()->whiteSpace() == PRE) { // Spec: When xml:space="preserve", the SVG user agent will do the following using a // copy of the original character data content. It will convert all newline and tab // characters into space characters. Then, it will draw all space characters, including // leading, trailing and multiple contiguous space characters. m_text = m_text->replace('\n', ' '); // If xml:space="preserve" is set, white-space is set to "pre", which // preserves leading, trailing & contiguous space character for us. } else { // Spec: When xml:space="default", the SVG user agent will do the following using a // copy of the original character data content. First, it will remove all newline // characters. Then it will convert all tab characters into space characters. // Then, it will strip off all leading and trailing space characters. // Then, all contiguous space characters will be consolidated. m_text = m_text->replace('\n', StringImpl::empty()); // If xml:space="default" is set, white-space is set to "nowrap", which handles // leading, trailing & contiguous space character removal for us. } m_text = m_text->replace('\t', ' '); } #endif if (style()) { switch (style()->textTransform()) { case TTNONE: break; case CAPITALIZE: { m_text = m_text->capitalize(previousCharacter()); break; } case UPPERCASE: m_text = m_text->upper(); break; case LOWERCASE: m_text = m_text->lower(); break; } // We use the same characters here as for list markers. // See the listMarkerText function in RenderListMarker.cpp. switch (style()->textSecurity()) { case TSNONE: break; case TSCIRCLE: m_text = m_text->secure(whiteBullet); break; case TSDISC: m_text = m_text->secure(bullet); break; case TSSQUARE: m_text = m_text->secure(blackSquare); } } ASSERT(m_text); ASSERT(!isBR() || (textLength() == 1 && (*m_text)[0] == '\n')); m_isAllASCII = charactersAreAllASCII(m_text.get()); } void RenderText::setText(PassRefPtr<StringImpl> text, bool force) { ASSERT(text); if (!force && equal(m_text.get(), text.get())) return; setTextInternal(text); setNeedsLayoutAndPrefWidthsRecalc(); m_knownNotToUseFallbackFonts = false; AXObjectCache* axObjectCache = document()->axObjectCache(); if (axObjectCache->accessibilityEnabled()) axObjectCache->contentChanged(this); } int RenderText::lineHeight(bool firstLine, bool) const { // Always use the interior line height of the parent (e.g., if our parent is an inline block). return parent()->lineHeight(firstLine, true); } void RenderText::dirtyLineBoxes(bool fullLayout) { if (fullLayout) deleteTextBoxes(); else if (!m_linesDirty) { for (InlineTextBox* box = firstTextBox(); box; box = box->nextTextBox()) box->dirtyLineBoxes(); } m_linesDirty = false; } InlineTextBox* RenderText::createTextBox() { return new (renderArena()) InlineTextBox(this); } InlineTextBox* RenderText::createInlineTextBox() { InlineTextBox* textBox = createTextBox(); if (!m_firstTextBox) m_firstTextBox = m_lastTextBox = textBox; else { m_lastTextBox->setNextLineBox(textBox); textBox->setPreviousLineBox(m_lastTextBox); m_lastTextBox = textBox; } textBox->setIsText(true); return textBox; } void RenderText::positionLineBox(InlineBox* box) { InlineTextBox* s = static_cast<InlineTextBox*>(box); // FIXME: should not be needed!!! if (!s->len()) { // We want the box to be destroyed. s->remove(); if (m_firstTextBox == s) m_firstTextBox = s->nextTextBox(); else s->prevTextBox()->setNextLineBox(s->nextTextBox()); if (m_lastTextBox == s) m_lastTextBox = s->prevTextBox(); else s->nextTextBox()->setPreviousLineBox(s->prevTextBox()); s->destroy(renderArena()); return; } m_containsReversedText |= s->direction() == RTL; } unsigned RenderText::width(unsigned from, unsigned len, int xPos, bool firstLine, HashSet<const SimpleFontData*>* fallbackFonts) const { if (from >= textLength()) return 0; if (from + len > textLength()) len = textLength() - from; return width(from, len, style(firstLine)->font(), xPos, fallbackFonts); } unsigned RenderText::width(unsigned from, unsigned len, const Font& f, int xPos, HashSet<const SimpleFontData*>* fallbackFonts) const { ASSERT(from + len <= textLength()); if (!characters()) return 0; int w; if (&f == &style()->font()) { if (!style()->preserveNewline() && !from && len == textLength()) { if (fallbackFonts) { if (prefWidthsDirty() || !m_knownNotToUseFallbackFonts) { const_cast<RenderText*>(this)->calcPrefWidths(0, *fallbackFonts); if (fallbackFonts->isEmpty()) m_knownNotToUseFallbackFonts = true; } w = m_maxWidth; } else w = maxPrefWidth(); } else w = widthFromCache(f, from, len, xPos, fallbackFonts); } else w = f.width(TextRun(text()->characters() + from, len, allowTabs(), xPos), fallbackFonts); return w; } IntRect RenderText::linesBoundingBox() const { IntRect result; ASSERT(!firstTextBox() == !lastTextBox()); // Either both are null or both exist. if (firstTextBox() && lastTextBox()) { // Return the width of the minimal left side and the maximal right side. int leftSide = 0; int rightSide = 0; for (InlineTextBox* curr = firstTextBox(); curr; curr = curr->nextTextBox()) { if (curr == firstTextBox() || curr->x() < leftSide) leftSide = curr->x(); if (curr == firstTextBox() || curr->x() + curr->width() > rightSide) rightSide = curr->x() + curr->width(); } result.setWidth(rightSide - leftSide); result.setX(leftSide); result.setHeight(lastTextBox()->y() + lastTextBox()->height() - firstTextBox()->y()); result.setY(firstTextBox()->y()); } return result; } IntRect RenderText::clippedOverflowRectForRepaint(RenderBoxModelObject* repaintContainer) { RenderObject* cb = containingBlock(); return cb->clippedOverflowRectForRepaint(repaintContainer); } IntRect RenderText::selectionRectForRepaint(RenderBoxModelObject* repaintContainer, bool clipToVisibleContent) { ASSERT(!needsLayout()); if (selectionState() == SelectionNone) return IntRect(); RenderBlock* cb = containingBlock(); if (!cb) return IntRect(); // Now calculate startPos and endPos for painting selection. // We include a selection while endPos > 0 int startPos, endPos; if (selectionState() == SelectionInside) { // We are fully selected. startPos = 0; endPos = textLength(); } else { selectionStartEnd(startPos, endPos); if (selectionState() == SelectionStart) endPos = textLength(); else if (selectionState() == SelectionEnd) startPos = 0; } if (startPos == endPos) return IntRect(); IntRect rect; for (InlineTextBox* box = firstTextBox(); box; box = box->nextTextBox()) { rect.unite(box->selectionRect(0, 0, startPos, endPos)); // Check if there are ellipsis which fall within the selection. unsigned short truncation = box->truncation(); if (truncation != cNoTruncation) { if (EllipsisBox* ellipsis = box->root()->ellipsisBox()) { int ePos = min<int>(endPos - box->start(), box->len()); int sPos = max<int>(startPos - box->start(), 0); // The ellipsis should be considered to be selected if the end of // the selection is past the beginning of the truncation and the // beginning of the selection is before or at the beginning of the // truncation. if (ePos >= truncation && sPos <= truncation) rect.unite(ellipsis->selectionRect(0, 0)); } } } if (clipToVisibleContent) computeRectForRepaint(repaintContainer, rect); else { if (cb->hasColumns()) cb->adjustRectForColumns(rect); rect = localToContainerQuad(FloatRect(rect), repaintContainer).enclosingBoundingBox(); } return rect; } int RenderText::caretMinOffset() const { InlineTextBox* box = firstTextBox(); if (!box) return 0; int minOffset = box->start(); for (box = box->nextTextBox(); box; box = box->nextTextBox()) minOffset = min<int>(minOffset, box->start()); return minOffset; } int RenderText::caretMaxOffset() const { InlineTextBox* box = lastTextBox(); if (!box) return textLength(); int maxOffset = box->start() + box->len(); for (box = box->prevTextBox(); box; box = box->prevTextBox()) maxOffset = max<int>(maxOffset, box->start() + box->len()); return maxOffset; } unsigned RenderText::caretMaxRenderedOffset() const { int l = 0; for (InlineTextBox* box = firstTextBox(); box; box = box->nextTextBox()) l += box->len(); return l; } int RenderText::previousOffset(int current) const { StringImpl* si = m_text.get(); TextBreakIterator* iterator = cursorMovementIterator(si->characters(), si->length()); if (!iterator) return current - 1; long result = textBreakPreceding(iterator, current); if (result == TextBreakDone) result = current - 1; #ifdef BUILDING_ON_TIGER // ICU 3.2 allows character breaks before a half-width Katakana voiced mark. if (static_cast<unsigned>(result) < si->length()) { UChar character = (*si)[result]; if (character == 0xFF9E || character == 0xFF9F) --result; } #endif return result; } #define HANGUL_CHOSEONG_START (0x1100) #define HANGUL_CHOSEONG_END (0x115F) #define HANGUL_JUNGSEONG_START (0x1160) #define HANGUL_JUNGSEONG_END (0x11A2) #define HANGUL_JONGSEONG_START (0x11A8) #define HANGUL_JONGSEONG_END (0x11F9) #define HANGUL_SYLLABLE_START (0xAC00) #define HANGUL_SYLLABLE_END (0xD7AF) #define HANGUL_JONGSEONG_COUNT (28) enum HangulState { HangulStateL, HangulStateV, HangulStateT, HangulStateLV, HangulStateLVT, HangulStateBreak }; inline bool isHangulLVT(UChar32 character) { return (character - HANGUL_SYLLABLE_START) % HANGUL_JONGSEONG_COUNT; } int RenderText::previousOffsetForBackwardDeletion(int current) const { #if PLATFORM(MAC) UChar32 character; while (current > 0) { if (U16_IS_TRAIL((*m_text)[--current])) --current; if (current < 0) break; UChar32 character = m_text->characterStartingAt(current); // We don't combine characters in Armenian ... Limbu range for backward deletion. if ((character >= 0x0530) && (character < 0x1950)) break; if (u_isbase(character) && (character != 0xFF9E) && (character != 0xFF9F)) break; } if (current <= 0) return current; // Hangul character = m_text->characterStartingAt(current); if (((character >= HANGUL_CHOSEONG_START) && (character <= HANGUL_JONGSEONG_END)) || ((character >= HANGUL_SYLLABLE_START) && (character <= HANGUL_SYLLABLE_END))) { HangulState state; HangulState initialState; if (character < HANGUL_JUNGSEONG_START) state = HangulStateL; else if (character < HANGUL_JONGSEONG_START) state = HangulStateV; else if (character < HANGUL_SYLLABLE_START) state = HangulStateT; else state = isHangulLVT(character) ? HangulStateLVT : HangulStateLV; initialState = state; while (current > 0 && ((character = m_text->characterStartingAt(current - 1)) >= HANGUL_CHOSEONG_START) && (character <= HANGUL_SYLLABLE_END) && ((character <= HANGUL_JONGSEONG_END) || (character >= HANGUL_SYLLABLE_START))) { switch (state) { case HangulStateV: if (character <= HANGUL_CHOSEONG_END) state = HangulStateL; else if ((character >= HANGUL_SYLLABLE_START) && (character <= HANGUL_SYLLABLE_END) && !isHangulLVT(character)) state = HangulStateLV; else if (character > HANGUL_JUNGSEONG_END) state = HangulStateBreak; break; case HangulStateT: if ((character >= HANGUL_JUNGSEONG_START) && (character <= HANGUL_JUNGSEONG_END)) state = HangulStateV; else if ((character >= HANGUL_SYLLABLE_START) && (character <= HANGUL_SYLLABLE_END)) state = (isHangulLVT(character) ? HangulStateLVT : HangulStateLV); else if (character < HANGUL_JUNGSEONG_START) state = HangulStateBreak; break; default: state = (character < HANGUL_JUNGSEONG_START) ? HangulStateL : HangulStateBreak; break; } if (state == HangulStateBreak) break; --current; } } return current; #else // Platforms other than Mac delete by one code point. return current - 1; #endif } int RenderText::nextOffset(int current) const { StringImpl* si = m_text.get(); TextBreakIterator* iterator = cursorMovementIterator(si->characters(), si->length()); if (!iterator) return current + 1; long result = textBreakFollowing(iterator, current); if (result == TextBreakDone) result = current + 1; #ifdef BUILDING_ON_TIGER // ICU 3.2 allows character breaks before a half-width Katakana voiced mark. if (static_cast<unsigned>(result) < si->length()) { UChar character = (*si)[result]; if (character == 0xFF9E || character == 0xFF9F) ++result; } #endif return result; } #ifndef NDEBUG void RenderText::checkConsistency() const { #ifdef CHECK_CONSISTENCY const InlineTextBox* prev = 0; for (const InlineTextBox* child = m_firstTextBox; child != 0; child = child->nextTextBox()) { ASSERT(child->renderer() == this); ASSERT(child->prevTextBox() == prev); prev = child; } ASSERT(prev == m_lastTextBox); #endif } #endif } // namespace WebCore