// Copyright 2006-2008 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Platform specific code for Win32. #ifndef WIN32_LEAN_AND_MEAN // WIN32_LEAN_AND_MEAN implies NOCRYPT and NOGDI. #define WIN32_LEAN_AND_MEAN #endif #ifndef NOMINMAX #define NOMINMAX #endif #ifndef NOKERNEL #define NOKERNEL #endif #ifndef NOUSER #define NOUSER #endif #ifndef NOSERVICE #define NOSERVICE #endif #ifndef NOSOUND #define NOSOUND #endif #ifndef NOMCX #define NOMCX #endif // Require Windows XP or higher (this is required for the RtlCaptureContext // function to be present). #ifndef _WIN32_WINNT #define _WIN32_WINNT 0x501 #endif #include <windows.h> #include <time.h> // For LocalOffset() implementation. #include <mmsystem.h> // For timeGetTime(). #ifdef __MINGW32__ // Require Windows XP or higher when compiling with MinGW. This is for MinGW // header files to expose getaddrinfo. #undef _WIN32_WINNT #define _WIN32_WINNT 0x501 #endif // __MINGW32__ #ifndef __MINGW32__ #include <dbghelp.h> // For SymLoadModule64 and al. #endif // __MINGW32__ #include <limits.h> // For INT_MAX and al. #include <tlhelp32.h> // For Module32First and al. // These additional WIN32 includes have to be right here as the #undef's below // makes it impossible to have them elsewhere. #include <winsock2.h> #include <ws2tcpip.h> #include <process.h> // for _beginthreadex() #include <stdlib.h> #undef VOID #undef DELETE #undef IN #undef THIS #undef CONST #undef NAN #undef GetObject #undef CreateMutex #undef CreateSemaphore #include "v8.h" #include "platform.h" // Extra POSIX/ANSI routines for Win32 when when using Visual Studio C++. Please // refer to The Open Group Base Specification for specification of the correct // semantics for these functions. // (http://www.opengroup.org/onlinepubs/000095399/) #ifdef _MSC_VER namespace v8 { namespace internal { // Test for finite value - usually defined in math.h int isfinite(double x) { return _finite(x); } } // namespace v8 } // namespace internal // Test for a NaN (not a number) value - usually defined in math.h int isnan(double x) { return _isnan(x); } // Test for infinity - usually defined in math.h int isinf(double x) { return (_fpclass(x) & (_FPCLASS_PINF | _FPCLASS_NINF)) != 0; } // Test if x is less than y and both nominal - usually defined in math.h int isless(double x, double y) { return isnan(x) || isnan(y) ? 0 : x < y; } // Test if x is greater than y and both nominal - usually defined in math.h int isgreater(double x, double y) { return isnan(x) || isnan(y) ? 0 : x > y; } // Classify floating point number - usually defined in math.h int fpclassify(double x) { // Use the MS-specific _fpclass() for classification. int flags = _fpclass(x); // Determine class. We cannot use a switch statement because // the _FPCLASS_ constants are defined as flags. if (flags & (_FPCLASS_PN | _FPCLASS_NN)) return FP_NORMAL; if (flags & (_FPCLASS_PZ | _FPCLASS_NZ)) return FP_ZERO; if (flags & (_FPCLASS_PD | _FPCLASS_ND)) return FP_SUBNORMAL; if (flags & (_FPCLASS_PINF | _FPCLASS_NINF)) return FP_INFINITE; // All cases should be covered by the code above. ASSERT(flags & (_FPCLASS_SNAN | _FPCLASS_QNAN)); return FP_NAN; } // Test sign - usually defined in math.h int signbit(double x) { // We need to take care of the special case of both positive // and negative versions of zero. if (x == 0) return _fpclass(x) & _FPCLASS_NZ; else return x < 0; } // Case-insensitive bounded string comparisons. Use stricmp() on Win32. Usually // defined in strings.h. int strncasecmp(const char* s1, const char* s2, int n) { return _strnicmp(s1, s2, n); } #endif // _MSC_VER // Extra functions for MinGW. Most of these are the _s functions which are in // the Microsoft Visual Studio C++ CRT. #ifdef __MINGW32__ int localtime_s(tm* out_tm, const time_t* time) { tm* posix_local_time_struct = localtime(time); if (posix_local_time_struct == NULL) return 1; *out_tm = *posix_local_time_struct; return 0; } // Not sure this the correct interpretation of _mkgmtime time_t _mkgmtime(tm* timeptr) { return mktime(timeptr); } int fopen_s(FILE** pFile, const char* filename, const char* mode) { *pFile = fopen(filename, mode); return *pFile != NULL ? 0 : 1; } int _vsnprintf_s(char* buffer, size_t sizeOfBuffer, size_t count, const char* format, va_list argptr) { return _vsnprintf(buffer, sizeOfBuffer, format, argptr); } #define _TRUNCATE 0 int strncpy_s(char* strDest, size_t numberOfElements, const char* strSource, size_t count) { strncpy(strDest, strSource, count); return 0; } #endif // __MINGW32__ // Generate a pseudo-random number in the range 0-2^31-1. Usually // defined in stdlib.h. Missing in both Microsoft Visual Studio C++ and MinGW. int random() { return rand(); } namespace v8 { namespace internal { double ceiling(double x) { return ceil(x); } #ifdef _WIN64 typedef double (*ModuloFunction)(double, double); // Defined in codegen-x64.cc. ModuloFunction CreateModuloFunction(); double modulo(double x, double y) { static ModuloFunction function = CreateModuloFunction(); return function(x, y); } #else // Win32 double modulo(double x, double y) { // Workaround MS fmod bugs. ECMA-262 says: // dividend is finite and divisor is an infinity => result equals dividend // dividend is a zero and divisor is nonzero finite => result equals dividend if (!(isfinite(x) && (!isfinite(y) && !isnan(y))) && !(x == 0 && (y != 0 && isfinite(y)))) { x = fmod(x, y); } return x; } #endif // _WIN64 // ---------------------------------------------------------------------------- // The Time class represents time on win32. A timestamp is represented as // a 64-bit integer in 100 nano-seconds since January 1, 1601 (UTC). JavaScript // timestamps are represented as a doubles in milliseconds since 00:00:00 UTC, // January 1, 1970. class Time { public: // Constructors. Time(); explicit Time(double jstime); Time(int year, int mon, int day, int hour, int min, int sec); // Convert timestamp to JavaScript representation. double ToJSTime(); // Set timestamp to current time. void SetToCurrentTime(); // Returns the local timezone offset in milliseconds east of UTC. This is // the number of milliseconds you must add to UTC to get local time, i.e. // LocalOffset(CET) = 3600000 and LocalOffset(PST) = -28800000. This // routine also takes into account whether daylight saving is effect // at the time. int64_t LocalOffset(); // Returns the daylight savings time offset for the time in milliseconds. int64_t DaylightSavingsOffset(); // Returns a string identifying the current timezone for the // timestamp taking into account daylight saving. char* LocalTimezone(); private: // Constants for time conversion. static const int64_t kTimeEpoc = 116444736000000000LL; static const int64_t kTimeScaler = 10000; static const int64_t kMsPerMinute = 60000; // Constants for timezone information. static const int kTzNameSize = 128; static const bool kShortTzNames = false; // Timezone information. We need to have static buffers for the // timezone names because we return pointers to these in // LocalTimezone(). static bool tz_initialized_; static TIME_ZONE_INFORMATION tzinfo_; static char std_tz_name_[kTzNameSize]; static char dst_tz_name_[kTzNameSize]; // Initialize the timezone information (if not already done). static void TzSet(); // Guess the name of the timezone from the bias. static const char* GuessTimezoneNameFromBias(int bias); // Return whether or not daylight savings time is in effect at this time. bool InDST(); // Return the difference (in milliseconds) between this timestamp and // another timestamp. int64_t Diff(Time* other); // Accessor for FILETIME representation. FILETIME& ft() { return time_.ft_; } // Accessor for integer representation. int64_t& t() { return time_.t_; } // Although win32 uses 64-bit integers for representing timestamps, // these are packed into a FILETIME structure. The FILETIME structure // is just a struct representing a 64-bit integer. The TimeStamp union // allows access to both a FILETIME and an integer representation of // the timestamp. union TimeStamp { FILETIME ft_; int64_t t_; }; TimeStamp time_; }; // Static variables. bool Time::tz_initialized_ = false; TIME_ZONE_INFORMATION Time::tzinfo_; char Time::std_tz_name_[kTzNameSize]; char Time::dst_tz_name_[kTzNameSize]; // Initialize timestamp to start of epoc. Time::Time() { t() = 0; } // Initialize timestamp from a JavaScript timestamp. Time::Time(double jstime) { t() = static_cast<int64_t>(jstime) * kTimeScaler + kTimeEpoc; } // Initialize timestamp from date/time components. Time::Time(int year, int mon, int day, int hour, int min, int sec) { SYSTEMTIME st; st.wYear = year; st.wMonth = mon; st.wDay = day; st.wHour = hour; st.wMinute = min; st.wSecond = sec; st.wMilliseconds = 0; SystemTimeToFileTime(&st, &ft()); } // Convert timestamp to JavaScript timestamp. double Time::ToJSTime() { return static_cast<double>((t() - kTimeEpoc) / kTimeScaler); } // Guess the name of the timezone from the bias. // The guess is very biased towards the northern hemisphere. const char* Time::GuessTimezoneNameFromBias(int bias) { static const int kHour = 60; switch (-bias) { case -9*kHour: return "Alaska"; case -8*kHour: return "Pacific"; case -7*kHour: return "Mountain"; case -6*kHour: return "Central"; case -5*kHour: return "Eastern"; case -4*kHour: return "Atlantic"; case 0*kHour: return "GMT"; case +1*kHour: return "Central Europe"; case +2*kHour: return "Eastern Europe"; case +3*kHour: return "Russia"; case +5*kHour + 30: return "India"; case +8*kHour: return "China"; case +9*kHour: return "Japan"; case +12*kHour: return "New Zealand"; default: return "Local"; } } // Initialize timezone information. The timezone information is obtained from // windows. If we cannot get the timezone information we fall back to CET. // Please notice that this code is not thread-safe. void Time::TzSet() { // Just return if timezone information has already been initialized. if (tz_initialized_) return; // Initialize POSIX time zone data. _tzset(); // Obtain timezone information from operating system. memset(&tzinfo_, 0, sizeof(tzinfo_)); if (GetTimeZoneInformation(&tzinfo_) == TIME_ZONE_ID_INVALID) { // If we cannot get timezone information we fall back to CET. tzinfo_.Bias = -60; tzinfo_.StandardDate.wMonth = 10; tzinfo_.StandardDate.wDay = 5; tzinfo_.StandardDate.wHour = 3; tzinfo_.StandardBias = 0; tzinfo_.DaylightDate.wMonth = 3; tzinfo_.DaylightDate.wDay = 5; tzinfo_.DaylightDate.wHour = 2; tzinfo_.DaylightBias = -60; } // Make standard and DST timezone names. OS::SNPrintF(Vector<char>(std_tz_name_, kTzNameSize), "%S", tzinfo_.StandardName); std_tz_name_[kTzNameSize - 1] = '\0'; OS::SNPrintF(Vector<char>(dst_tz_name_, kTzNameSize), "%S", tzinfo_.DaylightName); dst_tz_name_[kTzNameSize - 1] = '\0'; // If OS returned empty string or resource id (like "@tzres.dll,-211") // simply guess the name from the UTC bias of the timezone. // To properly resolve the resource identifier requires a library load, // which is not possible in a sandbox. if (std_tz_name_[0] == '\0' || std_tz_name_[0] == '@') { OS::SNPrintF(Vector<char>(std_tz_name_, kTzNameSize - 1), "%s Standard Time", GuessTimezoneNameFromBias(tzinfo_.Bias)); } if (dst_tz_name_[0] == '\0' || dst_tz_name_[0] == '@') { OS::SNPrintF(Vector<char>(dst_tz_name_, kTzNameSize - 1), "%s Daylight Time", GuessTimezoneNameFromBias(tzinfo_.Bias)); } // Timezone information initialized. tz_initialized_ = true; } // Return the difference in milliseconds between this and another timestamp. int64_t Time::Diff(Time* other) { return (t() - other->t()) / kTimeScaler; } // Set timestamp to current time. void Time::SetToCurrentTime() { // The default GetSystemTimeAsFileTime has a ~15.5ms resolution. // Because we're fast, we like fast timers which have at least a // 1ms resolution. // // timeGetTime() provides 1ms granularity when combined with // timeBeginPeriod(). If the host application for v8 wants fast // timers, it can use timeBeginPeriod to increase the resolution. // // Using timeGetTime() has a drawback because it is a 32bit value // and hence rolls-over every ~49days. // // To use the clock, we use GetSystemTimeAsFileTime as our base; // and then use timeGetTime to extrapolate current time from the // start time. To deal with rollovers, we resync the clock // any time when more than kMaxClockElapsedTime has passed or // whenever timeGetTime creates a rollover. static bool initialized = false; static TimeStamp init_time; static DWORD init_ticks; static const int64_t kHundredNanosecondsPerSecond = 10000000; static const int64_t kMaxClockElapsedTime = 60*kHundredNanosecondsPerSecond; // 1 minute // If we are uninitialized, we need to resync the clock. bool needs_resync = !initialized; // Get the current time. TimeStamp time_now; GetSystemTimeAsFileTime(&time_now.ft_); DWORD ticks_now = timeGetTime(); // Check if we need to resync due to clock rollover. needs_resync |= ticks_now < init_ticks; // Check if we need to resync due to elapsed time. needs_resync |= (time_now.t_ - init_time.t_) > kMaxClockElapsedTime; // Resync the clock if necessary. if (needs_resync) { GetSystemTimeAsFileTime(&init_time.ft_); init_ticks = ticks_now = timeGetTime(); initialized = true; } // Finally, compute the actual time. Why is this so hard. DWORD elapsed = ticks_now - init_ticks; this->time_.t_ = init_time.t_ + (static_cast<int64_t>(elapsed) * 10000); } // Return the local timezone offset in milliseconds east of UTC. This // takes into account whether daylight saving is in effect at the time. // Only times in the 32-bit Unix range may be passed to this function. // Also, adding the time-zone offset to the input must not overflow. // The function EquivalentTime() in date.js guarantees this. int64_t Time::LocalOffset() { // Initialize timezone information, if needed. TzSet(); Time rounded_to_second(*this); rounded_to_second.t() = rounded_to_second.t() / 1000 / kTimeScaler * 1000 * kTimeScaler; // Convert to local time using POSIX localtime function. // Windows XP Service Pack 3 made SystemTimeToTzSpecificLocalTime() // very slow. Other browsers use localtime(). // Convert from JavaScript milliseconds past 1/1/1970 0:00:00 to // POSIX seconds past 1/1/1970 0:00:00. double unchecked_posix_time = rounded_to_second.ToJSTime() / 1000; if (unchecked_posix_time > INT_MAX || unchecked_posix_time < 0) { return 0; } // Because _USE_32BIT_TIME_T is defined, time_t is a 32-bit int. time_t posix_time = static_cast<time_t>(unchecked_posix_time); // Convert to local time, as struct with fields for day, hour, year, etc. tm posix_local_time_struct; if (localtime_s(&posix_local_time_struct, &posix_time)) return 0; // Convert local time in struct to POSIX time as if it were a UTC time. time_t local_posix_time = _mkgmtime(&posix_local_time_struct); Time localtime(1000.0 * local_posix_time); return localtime.Diff(&rounded_to_second); } // Return whether or not daylight savings time is in effect at this time. bool Time::InDST() { // Initialize timezone information, if needed. TzSet(); // Determine if DST is in effect at the specified time. bool in_dst = false; if (tzinfo_.StandardDate.wMonth != 0 || tzinfo_.DaylightDate.wMonth != 0) { // Get the local timezone offset for the timestamp in milliseconds. int64_t offset = LocalOffset(); // Compute the offset for DST. The bias parameters in the timezone info // are specified in minutes. These must be converted to milliseconds. int64_t dstofs = -(tzinfo_.Bias + tzinfo_.DaylightBias) * kMsPerMinute; // If the local time offset equals the timezone bias plus the daylight // bias then DST is in effect. in_dst = offset == dstofs; } return in_dst; } // Return the daylight savings time offset for this time. int64_t Time::DaylightSavingsOffset() { return InDST() ? 60 * kMsPerMinute : 0; } // Returns a string identifying the current timezone for the // timestamp taking into account daylight saving. char* Time::LocalTimezone() { // Return the standard or DST time zone name based on whether daylight // saving is in effect at the given time. return InDST() ? dst_tz_name_ : std_tz_name_; } void OS::Setup() { // Seed the random number generator. // Convert the current time to a 64-bit integer first, before converting it // to an unsigned. Going directly can cause an overflow and the seed to be // set to all ones. The seed will be identical for different instances that // call this setup code within the same millisecond. uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis()); srand(static_cast<unsigned int>(seed)); } // Returns the accumulated user time for thread. int OS::GetUserTime(uint32_t* secs, uint32_t* usecs) { FILETIME dummy; uint64_t usertime; // Get the amount of time that the thread has executed in user mode. if (!GetThreadTimes(GetCurrentThread(), &dummy, &dummy, &dummy, reinterpret_cast<FILETIME*>(&usertime))) return -1; // Adjust the resolution to micro-seconds. usertime /= 10; // Convert to seconds and microseconds *secs = static_cast<uint32_t>(usertime / 1000000); *usecs = static_cast<uint32_t>(usertime % 1000000); return 0; } // Returns current time as the number of milliseconds since // 00:00:00 UTC, January 1, 1970. double OS::TimeCurrentMillis() { Time t; t.SetToCurrentTime(); return t.ToJSTime(); } // Returns the tickcounter based on timeGetTime. int64_t OS::Ticks() { return timeGetTime() * 1000; // Convert to microseconds. } // Returns a string identifying the current timezone taking into // account daylight saving. const char* OS::LocalTimezone(double time) { return Time(time).LocalTimezone(); } // Returns the local time offset in milliseconds east of UTC without // taking daylight savings time into account. double OS::LocalTimeOffset() { // Use current time, rounded to the millisecond. Time t(TimeCurrentMillis()); // Time::LocalOffset inlcudes any daylight savings offset, so subtract it. return static_cast<double>(t.LocalOffset() - t.DaylightSavingsOffset()); } // Returns the daylight savings offset in milliseconds for the given // time. double OS::DaylightSavingsOffset(double time) { int64_t offset = Time(time).DaylightSavingsOffset(); return static_cast<double>(offset); } // ---------------------------------------------------------------------------- // Win32 console output. // // If a Win32 application is linked as a console application it has a normal // standard output and standard error. In this case normal printf works fine // for output. However, if the application is linked as a GUI application, // the process doesn't have a console, and therefore (debugging) output is lost. // This is the case if we are embedded in a windows program (like a browser). // In order to be able to get debug output in this case the the debugging // facility using OutputDebugString. This output goes to the active debugger // for the process (if any). Else the output can be monitored using DBMON.EXE. enum OutputMode { UNKNOWN, // Output method has not yet been determined. CONSOLE, // Output is written to stdout. ODS // Output is written to debug facility. }; static OutputMode output_mode = UNKNOWN; // Current output mode. // Determine if the process has a console for output. static bool HasConsole() { // Only check the first time. Eventual race conditions are not a problem, // because all threads will eventually determine the same mode. if (output_mode == UNKNOWN) { // We cannot just check that the standard output is attached to a console // because this would fail if output is redirected to a file. Therefore we // say that a process does not have an output console if either the // standard output handle is invalid or its file type is unknown. if (GetStdHandle(STD_OUTPUT_HANDLE) != INVALID_HANDLE_VALUE && GetFileType(GetStdHandle(STD_OUTPUT_HANDLE)) != FILE_TYPE_UNKNOWN) output_mode = CONSOLE; else output_mode = ODS; } return output_mode == CONSOLE; } static void VPrintHelper(FILE* stream, const char* format, va_list args) { if (HasConsole()) { vfprintf(stream, format, args); } else { // It is important to use safe print here in order to avoid // overflowing the buffer. We might truncate the output, but this // does not crash. EmbeddedVector<char, 4096> buffer; OS::VSNPrintF(buffer, format, args); OutputDebugStringA(buffer.start()); } } FILE* OS::FOpen(const char* path, const char* mode) { FILE* result; if (fopen_s(&result, path, mode) == 0) { return result; } else { return NULL; } } // Open log file in binary mode to avoid /n -> /r/n conversion. const char* OS::LogFileOpenMode = "wb"; // Print (debug) message to console. void OS::Print(const char* format, ...) { va_list args; va_start(args, format); VPrint(format, args); va_end(args); } void OS::VPrint(const char* format, va_list args) { VPrintHelper(stdout, format, args); } // Print error message to console. void OS::PrintError(const char* format, ...) { va_list args; va_start(args, format); VPrintError(format, args); va_end(args); } void OS::VPrintError(const char* format, va_list args) { VPrintHelper(stderr, format, args); } int OS::SNPrintF(Vector<char> str, const char* format, ...) { va_list args; va_start(args, format); int result = VSNPrintF(str, format, args); va_end(args); return result; } int OS::VSNPrintF(Vector<char> str, const char* format, va_list args) { int n = _vsnprintf_s(str.start(), str.length(), _TRUNCATE, format, args); // Make sure to zero-terminate the string if the output was // truncated or if there was an error. if (n < 0 || n >= str.length()) { str[str.length() - 1] = '\0'; return -1; } else { return n; } } char* OS::StrChr(char* str, int c) { return const_cast<char*>(strchr(str, c)); } void OS::StrNCpy(Vector<char> dest, const char* src, size_t n) { int result = strncpy_s(dest.start(), dest.length(), src, n); USE(result); ASSERT(result == 0); } // We keep the lowest and highest addresses mapped as a quick way of // determining that pointers are outside the heap (used mostly in assertions // and verification). The estimate is conservative, ie, not all addresses in // 'allocated' space are actually allocated to our heap. The range is // [lowest, highest), inclusive on the low and and exclusive on the high end. static void* lowest_ever_allocated = reinterpret_cast<void*>(-1); static void* highest_ever_allocated = reinterpret_cast<void*>(0); static void UpdateAllocatedSpaceLimits(void* address, int size) { lowest_ever_allocated = Min(lowest_ever_allocated, address); highest_ever_allocated = Max(highest_ever_allocated, reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size)); } bool OS::IsOutsideAllocatedSpace(void* pointer) { if (pointer < lowest_ever_allocated || pointer >= highest_ever_allocated) return true; // Ask the Windows API if (IsBadWritePtr(pointer, 1)) return true; return false; } // Get the system's page size used by VirtualAlloc() or the next power // of two. The reason for always returning a power of two is that the // rounding up in OS::Allocate expects that. static size_t GetPageSize() { static size_t page_size = 0; if (page_size == 0) { SYSTEM_INFO info; GetSystemInfo(&info); page_size = RoundUpToPowerOf2(info.dwPageSize); } return page_size; } // The allocation alignment is the guaranteed alignment for // VirtualAlloc'ed blocks of memory. size_t OS::AllocateAlignment() { static size_t allocate_alignment = 0; if (allocate_alignment == 0) { SYSTEM_INFO info; GetSystemInfo(&info); allocate_alignment = info.dwAllocationGranularity; } return allocate_alignment; } void* OS::Allocate(const size_t requested, size_t* allocated, bool is_executable) { // VirtualAlloc rounds allocated size to page size automatically. size_t msize = RoundUp(requested, static_cast<int>(GetPageSize())); // Windows XP SP2 allows Data Excution Prevention (DEP). int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE; LPVOID mbase = VirtualAlloc(NULL, msize, MEM_COMMIT | MEM_RESERVE, prot); if (mbase == NULL) { LOG(StringEvent("OS::Allocate", "VirtualAlloc failed")); return NULL; } ASSERT(IsAligned(reinterpret_cast<size_t>(mbase), OS::AllocateAlignment())); *allocated = msize; UpdateAllocatedSpaceLimits(mbase, static_cast<int>(msize)); return mbase; } void OS::Free(void* address, const size_t size) { // TODO(1240712): VirtualFree has a return value which is ignored here. VirtualFree(address, 0, MEM_RELEASE); USE(size); } #ifdef ENABLE_HEAP_PROTECTION void OS::Protect(void* address, size_t size) { // TODO(1240712): VirtualProtect has a return value which is ignored here. DWORD old_protect; VirtualProtect(address, size, PAGE_READONLY, &old_protect); } void OS::Unprotect(void* address, size_t size, bool is_executable) { // TODO(1240712): VirtualProtect has a return value which is ignored here. DWORD new_protect = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE; DWORD old_protect; VirtualProtect(address, size, new_protect, &old_protect); } #endif void OS::Sleep(int milliseconds) { ::Sleep(milliseconds); } void OS::Abort() { if (!IsDebuggerPresent()) { #ifdef _MSC_VER // Make the MSVCRT do a silent abort. _set_abort_behavior(0, _WRITE_ABORT_MSG); _set_abort_behavior(0, _CALL_REPORTFAULT); #endif // _MSC_VER abort(); } else { DebugBreak(); } } void OS::DebugBreak() { #ifdef _MSC_VER __debugbreak(); #else ::DebugBreak(); #endif } class Win32MemoryMappedFile : public OS::MemoryMappedFile { public: Win32MemoryMappedFile(HANDLE file, HANDLE file_mapping, void* memory) : file_(file), file_mapping_(file_mapping), memory_(memory) { } virtual ~Win32MemoryMappedFile(); virtual void* memory() { return memory_; } private: HANDLE file_; HANDLE file_mapping_; void* memory_; }; OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size, void* initial) { // Open a physical file HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE, FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_ALWAYS, 0, NULL); if (file == NULL) return NULL; // Create a file mapping for the physical file HANDLE file_mapping = CreateFileMapping(file, NULL, PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL); if (file_mapping == NULL) return NULL; // Map a view of the file into memory void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size); if (memory) memmove(memory, initial, size); return new Win32MemoryMappedFile(file, file_mapping, memory); } Win32MemoryMappedFile::~Win32MemoryMappedFile() { if (memory_ != NULL) UnmapViewOfFile(memory_); CloseHandle(file_mapping_); CloseHandle(file_); } // The following code loads functions defined in DbhHelp.h and TlHelp32.h // dynamically. This is to avoid being depending on dbghelp.dll and // tlhelp32.dll when running (the functions in tlhelp32.dll have been moved to // kernel32.dll at some point so loading functions defines in TlHelp32.h // dynamically might not be necessary any more - for some versions of Windows?). // Function pointers to functions dynamically loaded from dbghelp.dll. #define DBGHELP_FUNCTION_LIST(V) \ V(SymInitialize) \ V(SymGetOptions) \ V(SymSetOptions) \ V(SymGetSearchPath) \ V(SymLoadModule64) \ V(StackWalk64) \ V(SymGetSymFromAddr64) \ V(SymGetLineFromAddr64) \ V(SymFunctionTableAccess64) \ V(SymGetModuleBase64) // Function pointers to functions dynamically loaded from dbghelp.dll. #define TLHELP32_FUNCTION_LIST(V) \ V(CreateToolhelp32Snapshot) \ V(Module32FirstW) \ V(Module32NextW) // Define the decoration to use for the type and variable name used for // dynamically loaded DLL function.. #define DLL_FUNC_TYPE(name) _##name##_ #define DLL_FUNC_VAR(name) _##name // Define the type for each dynamically loaded DLL function. The function // definitions are copied from DbgHelp.h and TlHelp32.h. The IN and VOID macros // from the Windows include files are redefined here to have the function // definitions to be as close to the ones in the original .h files as possible. #ifndef IN #define IN #endif #ifndef VOID #define VOID void #endif // DbgHelp isn't supported on MinGW yet #ifndef __MINGW32__ // DbgHelp.h functions. typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymInitialize))(IN HANDLE hProcess, IN PSTR UserSearchPath, IN BOOL fInvadeProcess); typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymGetOptions))(VOID); typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymSetOptions))(IN DWORD SymOptions); typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSearchPath))( IN HANDLE hProcess, OUT PSTR SearchPath, IN DWORD SearchPathLength); typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymLoadModule64))( IN HANDLE hProcess, IN HANDLE hFile, IN PSTR ImageName, IN PSTR ModuleName, IN DWORD64 BaseOfDll, IN DWORD SizeOfDll); typedef BOOL (__stdcall *DLL_FUNC_TYPE(StackWalk64))( DWORD MachineType, HANDLE hProcess, HANDLE hThread, LPSTACKFRAME64 StackFrame, PVOID ContextRecord, PREAD_PROCESS_MEMORY_ROUTINE64 ReadMemoryRoutine, PFUNCTION_TABLE_ACCESS_ROUTINE64 FunctionTableAccessRoutine, PGET_MODULE_BASE_ROUTINE64 GetModuleBaseRoutine, PTRANSLATE_ADDRESS_ROUTINE64 TranslateAddress); typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSymFromAddr64))( IN HANDLE hProcess, IN DWORD64 qwAddr, OUT PDWORD64 pdwDisplacement, OUT PIMAGEHLP_SYMBOL64 Symbol); typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetLineFromAddr64))( IN HANDLE hProcess, IN DWORD64 qwAddr, OUT PDWORD pdwDisplacement, OUT PIMAGEHLP_LINE64 Line64); // DbgHelp.h typedefs. Implementation found in dbghelp.dll. typedef PVOID (__stdcall *DLL_FUNC_TYPE(SymFunctionTableAccess64))( HANDLE hProcess, DWORD64 AddrBase); // DbgHelp.h typedef PFUNCTION_TABLE_ACCESS_ROUTINE64 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymGetModuleBase64))( HANDLE hProcess, DWORD64 AddrBase); // DbgHelp.h typedef PGET_MODULE_BASE_ROUTINE64 // TlHelp32.h functions. typedef HANDLE (__stdcall *DLL_FUNC_TYPE(CreateToolhelp32Snapshot))( DWORD dwFlags, DWORD th32ProcessID); typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32FirstW))(HANDLE hSnapshot, LPMODULEENTRY32W lpme); typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32NextW))(HANDLE hSnapshot, LPMODULEENTRY32W lpme); #undef IN #undef VOID // Declare a variable for each dynamically loaded DLL function. #define DEF_DLL_FUNCTION(name) DLL_FUNC_TYPE(name) DLL_FUNC_VAR(name) = NULL; DBGHELP_FUNCTION_LIST(DEF_DLL_FUNCTION) TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION) #undef DEF_DLL_FUNCTION // Load the functions. This function has a lot of "ugly" macros in order to // keep down code duplication. static bool LoadDbgHelpAndTlHelp32() { static bool dbghelp_loaded = false; if (dbghelp_loaded) return true; HMODULE module; // Load functions from the dbghelp.dll module. module = LoadLibrary(TEXT("dbghelp.dll")); if (module == NULL) { return false; } #define LOAD_DLL_FUNC(name) \ DLL_FUNC_VAR(name) = \ reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name)); DBGHELP_FUNCTION_LIST(LOAD_DLL_FUNC) #undef LOAD_DLL_FUNC // Load functions from the kernel32.dll module (the TlHelp32.h function used // to be in tlhelp32.dll but are now moved to kernel32.dll). module = LoadLibrary(TEXT("kernel32.dll")); if (module == NULL) { return false; } #define LOAD_DLL_FUNC(name) \ DLL_FUNC_VAR(name) = \ reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name)); TLHELP32_FUNCTION_LIST(LOAD_DLL_FUNC) #undef LOAD_DLL_FUNC // Check that all functions where loaded. bool result = #define DLL_FUNC_LOADED(name) (DLL_FUNC_VAR(name) != NULL) && DBGHELP_FUNCTION_LIST(DLL_FUNC_LOADED) TLHELP32_FUNCTION_LIST(DLL_FUNC_LOADED) #undef DLL_FUNC_LOADED true; dbghelp_loaded = result; return result; // NOTE: The modules are never unloaded and will stay around until the // application is closed. } // Load the symbols for generating stack traces. static bool LoadSymbols(HANDLE process_handle) { static bool symbols_loaded = false; if (symbols_loaded) return true; BOOL ok; // Initialize the symbol engine. ok = _SymInitialize(process_handle, // hProcess NULL, // UserSearchPath FALSE); // fInvadeProcess if (!ok) return false; DWORD options = _SymGetOptions(); options |= SYMOPT_LOAD_LINES; options |= SYMOPT_FAIL_CRITICAL_ERRORS; options = _SymSetOptions(options); char buf[OS::kStackWalkMaxNameLen] = {0}; ok = _SymGetSearchPath(process_handle, buf, OS::kStackWalkMaxNameLen); if (!ok) { int err = GetLastError(); PrintF("%d\n", err); return false; } HANDLE snapshot = _CreateToolhelp32Snapshot( TH32CS_SNAPMODULE, // dwFlags GetCurrentProcessId()); // th32ProcessId if (snapshot == INVALID_HANDLE_VALUE) return false; MODULEENTRY32W module_entry; module_entry.dwSize = sizeof(module_entry); // Set the size of the structure. BOOL cont = _Module32FirstW(snapshot, &module_entry); while (cont) { DWORD64 base; // NOTE the SymLoadModule64 function has the peculiarity of accepting a // both unicode and ASCII strings even though the parameter is PSTR. base = _SymLoadModule64( process_handle, // hProcess 0, // hFile reinterpret_cast<PSTR>(module_entry.szExePath), // ImageName reinterpret_cast<PSTR>(module_entry.szModule), // ModuleName reinterpret_cast<DWORD64>(module_entry.modBaseAddr), // BaseOfDll module_entry.modBaseSize); // SizeOfDll if (base == 0) { int err = GetLastError(); if (err != ERROR_MOD_NOT_FOUND && err != ERROR_INVALID_HANDLE) return false; } LOG(SharedLibraryEvent( module_entry.szExePath, reinterpret_cast<unsigned int>(module_entry.modBaseAddr), reinterpret_cast<unsigned int>(module_entry.modBaseAddr + module_entry.modBaseSize))); cont = _Module32NextW(snapshot, &module_entry); } CloseHandle(snapshot); symbols_loaded = true; return true; } void OS::LogSharedLibraryAddresses() { // SharedLibraryEvents are logged when loading symbol information. // Only the shared libraries loaded at the time of the call to // LogSharedLibraryAddresses are logged. DLLs loaded after // initialization are not accounted for. if (!LoadDbgHelpAndTlHelp32()) return; HANDLE process_handle = GetCurrentProcess(); LoadSymbols(process_handle); } // Walk the stack using the facilities in dbghelp.dll and tlhelp32.dll // Switch off warning 4748 (/GS can not protect parameters and local variables // from local buffer overrun because optimizations are disabled in function) as // it is triggered by the use of inline assembler. #pragma warning(push) #pragma warning(disable : 4748) int OS::StackWalk(Vector<OS::StackFrame> frames) { BOOL ok; // Load the required functions from DLL's. if (!LoadDbgHelpAndTlHelp32()) return kStackWalkError; // Get the process and thread handles. HANDLE process_handle = GetCurrentProcess(); HANDLE thread_handle = GetCurrentThread(); // Read the symbols. if (!LoadSymbols(process_handle)) return kStackWalkError; // Capture current context. CONTEXT context; RtlCaptureContext(&context); // Initialize the stack walking STACKFRAME64 stack_frame; memset(&stack_frame, 0, sizeof(stack_frame)); #ifdef _WIN64 stack_frame.AddrPC.Offset = context.Rip; stack_frame.AddrFrame.Offset = context.Rbp; stack_frame.AddrStack.Offset = context.Rsp; #else stack_frame.AddrPC.Offset = context.Eip; stack_frame.AddrFrame.Offset = context.Ebp; stack_frame.AddrStack.Offset = context.Esp; #endif stack_frame.AddrPC.Mode = AddrModeFlat; stack_frame.AddrFrame.Mode = AddrModeFlat; stack_frame.AddrStack.Mode = AddrModeFlat; int frames_count = 0; // Collect stack frames. int frames_size = frames.length(); while (frames_count < frames_size) { ok = _StackWalk64( IMAGE_FILE_MACHINE_I386, // MachineType process_handle, // hProcess thread_handle, // hThread &stack_frame, // StackFrame &context, // ContextRecord NULL, // ReadMemoryRoutine _SymFunctionTableAccess64, // FunctionTableAccessRoutine _SymGetModuleBase64, // GetModuleBaseRoutine NULL); // TranslateAddress if (!ok) break; // Store the address. ASSERT((stack_frame.AddrPC.Offset >> 32) == 0); // 32-bit address. frames[frames_count].address = reinterpret_cast<void*>(stack_frame.AddrPC.Offset); // Try to locate a symbol for this frame. DWORD64 symbol_displacement; IMAGEHLP_SYMBOL64* symbol = NULL; symbol = NewArray<IMAGEHLP_SYMBOL64>(kStackWalkMaxNameLen); if (!symbol) return kStackWalkError; // Out of memory. memset(symbol, 0, sizeof(IMAGEHLP_SYMBOL64) + kStackWalkMaxNameLen); symbol->SizeOfStruct = sizeof(IMAGEHLP_SYMBOL64); symbol->MaxNameLength = kStackWalkMaxNameLen; ok = _SymGetSymFromAddr64(process_handle, // hProcess stack_frame.AddrPC.Offset, // Address &symbol_displacement, // Displacement symbol); // Symbol if (ok) { // Try to locate more source information for the symbol. IMAGEHLP_LINE64 Line; memset(&Line, 0, sizeof(Line)); Line.SizeOfStruct = sizeof(Line); DWORD line_displacement; ok = _SymGetLineFromAddr64( process_handle, // hProcess stack_frame.AddrPC.Offset, // dwAddr &line_displacement, // pdwDisplacement &Line); // Line // Format a text representation of the frame based on the information // available. if (ok) { SNPrintF(MutableCStrVector(frames[frames_count].text, kStackWalkMaxTextLen), "%s %s:%d:%d", symbol->Name, Line.FileName, Line.LineNumber, line_displacement); } else { SNPrintF(MutableCStrVector(frames[frames_count].text, kStackWalkMaxTextLen), "%s", symbol->Name); } // Make sure line termination is in place. frames[frames_count].text[kStackWalkMaxTextLen - 1] = '\0'; } else { // No text representation of this frame frames[frames_count].text[0] = '\0'; // Continue if we are just missing a module (for non C/C++ frames a // module will never be found). int err = GetLastError(); if (err != ERROR_MOD_NOT_FOUND) { DeleteArray(symbol); break; } } DeleteArray(symbol); frames_count++; } // Return the number of frames filled in. return frames_count; } // Restore warnings to previous settings. #pragma warning(pop) #else // __MINGW32__ void OS::LogSharedLibraryAddresses() { } int OS::StackWalk(Vector<OS::StackFrame> frames) { return 0; } #endif // __MINGW32__ uint64_t OS::CpuFeaturesImpliedByPlatform() { return 0; // Windows runs on anything. } double OS::nan_value() { #ifdef _MSC_VER // Positive Quiet NaN with no payload (aka. Indeterminate) has all bits // in mask set, so value equals mask. static const __int64 nanval = kQuietNaNMask; return *reinterpret_cast<const double*>(&nanval); #else // _MSC_VER return NAN; #endif // _MSC_VER } int OS::ActivationFrameAlignment() { #ifdef _WIN64 return 16; // Windows 64-bit ABI requires the stack to be 16-byte aligned. #else return 8; // Floating-point math runs faster with 8-byte alignment. #endif } bool VirtualMemory::IsReserved() { return address_ != NULL; } VirtualMemory::VirtualMemory(size_t size) { address_ = VirtualAlloc(NULL, size, MEM_RESERVE, PAGE_NOACCESS); size_ = size; } VirtualMemory::~VirtualMemory() { if (IsReserved()) { if (0 == VirtualFree(address(), 0, MEM_RELEASE)) address_ = NULL; } } bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) { int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE; if (NULL == VirtualAlloc(address, size, MEM_COMMIT, prot)) { return false; } UpdateAllocatedSpaceLimits(address, static_cast<int>(size)); return true; } bool VirtualMemory::Uncommit(void* address, size_t size) { ASSERT(IsReserved()); return VirtualFree(address, size, MEM_DECOMMIT) != FALSE; } // ---------------------------------------------------------------------------- // Win32 thread support. // Definition of invalid thread handle and id. static const HANDLE kNoThread = INVALID_HANDLE_VALUE; static const DWORD kNoThreadId = 0; class ThreadHandle::PlatformData : public Malloced { public: explicit PlatformData(ThreadHandle::Kind kind) { Initialize(kind); } void Initialize(ThreadHandle::Kind kind) { switch (kind) { case ThreadHandle::SELF: tid_ = GetCurrentThreadId(); break; case ThreadHandle::INVALID: tid_ = kNoThreadId; break; } } DWORD tid_; // Win32 thread identifier. }; // Entry point for threads. The supplied argument is a pointer to the thread // object. The entry function dispatches to the run method in the thread // object. It is important that this function has __stdcall calling // convention. static unsigned int __stdcall ThreadEntry(void* arg) { Thread* thread = reinterpret_cast<Thread*>(arg); // This is also initialized by the last parameter to _beginthreadex() but we // don't know which thread will run first (the original thread or the new // one) so we initialize it here too. thread->thread_handle_data()->tid_ = GetCurrentThreadId(); thread->Run(); return 0; } // Initialize thread handle to invalid handle. ThreadHandle::ThreadHandle(ThreadHandle::Kind kind) { data_ = new PlatformData(kind); } ThreadHandle::~ThreadHandle() { delete data_; } // The thread is running if it has the same id as the current thread. bool ThreadHandle::IsSelf() const { return GetCurrentThreadId() == data_->tid_; } // Test for invalid thread handle. bool ThreadHandle::IsValid() const { return data_->tid_ != kNoThreadId; } void ThreadHandle::Initialize(ThreadHandle::Kind kind) { data_->Initialize(kind); } class Thread::PlatformData : public Malloced { public: explicit PlatformData(HANDLE thread) : thread_(thread) {} HANDLE thread_; }; // Initialize a Win32 thread object. The thread has an invalid thread // handle until it is started. Thread::Thread() : ThreadHandle(ThreadHandle::INVALID) { data_ = new PlatformData(kNoThread); } // Close our own handle for the thread. Thread::~Thread() { if (data_->thread_ != kNoThread) CloseHandle(data_->thread_); delete data_; } // Create a new thread. It is important to use _beginthreadex() instead of // the Win32 function CreateThread(), because the CreateThread() does not // initialize thread specific structures in the C runtime library. void Thread::Start() { data_->thread_ = reinterpret_cast<HANDLE>( _beginthreadex(NULL, 0, ThreadEntry, this, 0, reinterpret_cast<unsigned int*>( &thread_handle_data()->tid_))); ASSERT(IsValid()); } // Wait for thread to terminate. void Thread::Join() { WaitForSingleObject(data_->thread_, INFINITE); } Thread::LocalStorageKey Thread::CreateThreadLocalKey() { DWORD result = TlsAlloc(); ASSERT(result != TLS_OUT_OF_INDEXES); return static_cast<LocalStorageKey>(result); } void Thread::DeleteThreadLocalKey(LocalStorageKey key) { BOOL result = TlsFree(static_cast<DWORD>(key)); USE(result); ASSERT(result); } void* Thread::GetThreadLocal(LocalStorageKey key) { return TlsGetValue(static_cast<DWORD>(key)); } void Thread::SetThreadLocal(LocalStorageKey key, void* value) { BOOL result = TlsSetValue(static_cast<DWORD>(key), value); USE(result); ASSERT(result); } void Thread::YieldCPU() { Sleep(0); } // ---------------------------------------------------------------------------- // Win32 mutex support. // // On Win32 mutexes are implemented using CRITICAL_SECTION objects. These are // faster than Win32 Mutex objects because they are implemented using user mode // atomic instructions. Therefore we only do ring transitions if there is lock // contention. class Win32Mutex : public Mutex { public: Win32Mutex() { InitializeCriticalSection(&cs_); } ~Win32Mutex() { DeleteCriticalSection(&cs_); } int Lock() { EnterCriticalSection(&cs_); return 0; } int Unlock() { LeaveCriticalSection(&cs_); return 0; } private: CRITICAL_SECTION cs_; // Critical section used for mutex }; Mutex* OS::CreateMutex() { return new Win32Mutex(); } // ---------------------------------------------------------------------------- // Win32 semaphore support. // // On Win32 semaphores are implemented using Win32 Semaphore objects. The // semaphores are anonymous. Also, the semaphores are initialized to have // no upper limit on count. class Win32Semaphore : public Semaphore { public: explicit Win32Semaphore(int count) { sem = ::CreateSemaphoreA(NULL, count, 0x7fffffff, NULL); } ~Win32Semaphore() { CloseHandle(sem); } void Wait() { WaitForSingleObject(sem, INFINITE); } bool Wait(int timeout) { // Timeout in Windows API is in milliseconds. DWORD millis_timeout = timeout / 1000; return WaitForSingleObject(sem, millis_timeout) != WAIT_TIMEOUT; } void Signal() { LONG dummy; ReleaseSemaphore(sem, 1, &dummy); } private: HANDLE sem; }; Semaphore* OS::CreateSemaphore(int count) { return new Win32Semaphore(count); } // ---------------------------------------------------------------------------- // Win32 socket support. // class Win32Socket : public Socket { public: explicit Win32Socket() { // Create the socket. socket_ = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); } explicit Win32Socket(SOCKET socket): socket_(socket) { } virtual ~Win32Socket() { Shutdown(); } // Server initialization. bool Bind(const int port); bool Listen(int backlog) const; Socket* Accept() const; // Client initialization. bool Connect(const char* host, const char* port); // Shutdown socket for both read and write. bool Shutdown(); // Data Transimission int Send(const char* data, int len) const; int Receive(char* data, int len) const; bool SetReuseAddress(bool reuse_address); bool IsValid() const { return socket_ != INVALID_SOCKET; } private: SOCKET socket_; }; bool Win32Socket::Bind(const int port) { if (!IsValid()) { return false; } sockaddr_in addr; memset(&addr, 0, sizeof(addr)); addr.sin_family = AF_INET; addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK); addr.sin_port = htons(port); int status = bind(socket_, reinterpret_cast<struct sockaddr *>(&addr), sizeof(addr)); return status == 0; } bool Win32Socket::Listen(int backlog) const { if (!IsValid()) { return false; } int status = listen(socket_, backlog); return status == 0; } Socket* Win32Socket::Accept() const { if (!IsValid()) { return NULL; } SOCKET socket = accept(socket_, NULL, NULL); if (socket == INVALID_SOCKET) { return NULL; } else { return new Win32Socket(socket); } } bool Win32Socket::Connect(const char* host, const char* port) { if (!IsValid()) { return false; } // Lookup host and port. struct addrinfo *result = NULL; struct addrinfo hints; memset(&hints, 0, sizeof(addrinfo)); hints.ai_family = AF_INET; hints.ai_socktype = SOCK_STREAM; hints.ai_protocol = IPPROTO_TCP; int status = getaddrinfo(host, port, &hints, &result); if (status != 0) { return false; } // Connect. status = connect(socket_, result->ai_addr, static_cast<int>(result->ai_addrlen)); freeaddrinfo(result); return status == 0; } bool Win32Socket::Shutdown() { if (IsValid()) { // Shutdown socket for both read and write. int status = shutdown(socket_, SD_BOTH); closesocket(socket_); socket_ = INVALID_SOCKET; return status == SOCKET_ERROR; } return true; } int Win32Socket::Send(const char* data, int len) const { int status = send(socket_, data, len, 0); return status; } int Win32Socket::Receive(char* data, int len) const { int status = recv(socket_, data, len, 0); return status; } bool Win32Socket::SetReuseAddress(bool reuse_address) { BOOL on = reuse_address ? TRUE : FALSE; int status = setsockopt(socket_, SOL_SOCKET, SO_REUSEADDR, reinterpret_cast<char*>(&on), sizeof(on)); return status == SOCKET_ERROR; } bool Socket::Setup() { // Initialize Winsock32 int err; WSADATA winsock_data; WORD version_requested = MAKEWORD(1, 0); err = WSAStartup(version_requested, &winsock_data); if (err != 0) { PrintF("Unable to initialize Winsock, err = %d\n", Socket::LastError()); } return err == 0; } int Socket::LastError() { return WSAGetLastError(); } uint16_t Socket::HToN(uint16_t value) { return htons(value); } uint16_t Socket::NToH(uint16_t value) { return ntohs(value); } uint32_t Socket::HToN(uint32_t value) { return htonl(value); } uint32_t Socket::NToH(uint32_t value) { return ntohl(value); } Socket* OS::CreateSocket() { return new Win32Socket(); } #ifdef ENABLE_LOGGING_AND_PROFILING // ---------------------------------------------------------------------------- // Win32 profiler support. // // On win32 we use a sampler thread with high priority to sample the program // counter for the profiled thread. class Sampler::PlatformData : public Malloced { public: explicit PlatformData(Sampler* sampler) { sampler_ = sampler; sampler_thread_ = INVALID_HANDLE_VALUE; profiled_thread_ = INVALID_HANDLE_VALUE; } Sampler* sampler_; HANDLE sampler_thread_; HANDLE profiled_thread_; // Sampler thread handler. void Runner() { // Context used for sampling the register state of the profiled thread. CONTEXT context; memset(&context, 0, sizeof(context)); // Loop until the sampler is disengaged. while (sampler_->IsActive()) { TickSample sample; // If profiling, we record the pc and sp of the profiled thread. if (sampler_->IsProfiling() && SuspendThread(profiled_thread_) != (DWORD)-1) { context.ContextFlags = CONTEXT_FULL; if (GetThreadContext(profiled_thread_, &context) != 0) { #if V8_HOST_ARCH_X64 sample.pc = reinterpret_cast<Address>(context.Rip); sample.sp = reinterpret_cast<Address>(context.Rsp); sample.fp = reinterpret_cast<Address>(context.Rbp); #else sample.pc = reinterpret_cast<Address>(context.Eip); sample.sp = reinterpret_cast<Address>(context.Esp); sample.fp = reinterpret_cast<Address>(context.Ebp); #endif sampler_->SampleStack(&sample); } ResumeThread(profiled_thread_); } // We always sample the VM state. sample.state = Logger::state(); // Invoke tick handler with program counter and stack pointer. sampler_->Tick(&sample); // Wait until next sampling. Sleep(sampler_->interval_); } } }; // Entry point for sampler thread. static unsigned int __stdcall SamplerEntry(void* arg) { Sampler::PlatformData* data = reinterpret_cast<Sampler::PlatformData*>(arg); data->Runner(); return 0; } // Initialize a profile sampler. Sampler::Sampler(int interval, bool profiling) : interval_(interval), profiling_(profiling), active_(false) { data_ = new PlatformData(this); } Sampler::~Sampler() { delete data_; } // Start profiling. void Sampler::Start() { // If we are profiling, we need to be able to access the calling // thread. if (IsProfiling()) { // Get a handle to the calling thread. This is the thread that we are // going to profile. We need to make a copy of the handle because we are // going to use it in the sampler thread. Using GetThreadHandle() will // not work in this case. We're using OpenThread because DuplicateHandle // for some reason doesn't work in Chrome's sandbox. data_->profiled_thread_ = OpenThread(THREAD_GET_CONTEXT | THREAD_SUSPEND_RESUME | THREAD_QUERY_INFORMATION, FALSE, GetCurrentThreadId()); BOOL ok = data_->profiled_thread_ != NULL; if (!ok) return; } // Start sampler thread. unsigned int tid; active_ = true; data_->sampler_thread_ = reinterpret_cast<HANDLE>( _beginthreadex(NULL, 0, SamplerEntry, data_, 0, &tid)); // Set thread to high priority to increase sampling accuracy. SetThreadPriority(data_->sampler_thread_, THREAD_PRIORITY_TIME_CRITICAL); } // Stop profiling. void Sampler::Stop() { // Seting active to false triggers termination of the sampler // thread. active_ = false; // Wait for sampler thread to terminate. WaitForSingleObject(data_->sampler_thread_, INFINITE); // Release the thread handles CloseHandle(data_->sampler_thread_); CloseHandle(data_->profiled_thread_); } #endif // ENABLE_LOGGING_AND_PROFILING } } // namespace v8::internal