// Copyright 2006-2008 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Platform specific code for Linux goes here. For the POSIX comaptible parts // the implementation is in platform-posix.cc. #include <pthread.h> #include <semaphore.h> #include <signal.h> #include <sys/time.h> #include <sys/resource.h> #include <sys/types.h> #include <stdlib.h> // Ubuntu Dapper requires memory pages to be marked as // executable. Otherwise, OS raises an exception when executing code // in that page. #include <sys/types.h> // mmap & munmap #include <sys/mman.h> // mmap & munmap #include <sys/stat.h> // open #include <fcntl.h> // open #include <unistd.h> // sysconf #ifdef __GLIBC__ #include <execinfo.h> // backtrace, backtrace_symbols #endif // def __GLIBC__ #include <strings.h> // index #include <errno.h> #include <stdarg.h> #undef MAP_TYPE #include "v8.h" #include "platform.h" #include "top.h" #include "v8threads.h" namespace v8 { namespace internal { // 0 is never a valid thread id on Linux since tids and pids share a // name space and pid 0 is reserved (see man 2 kill). static const pthread_t kNoThread = (pthread_t) 0; double ceiling(double x) { return ceil(x); } void OS::Setup() { // Seed the random number generator. // Convert the current time to a 64-bit integer first, before converting it // to an unsigned. Going directly can cause an overflow and the seed to be // set to all ones. The seed will be identical for different instances that // call this setup code within the same millisecond. uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis()); srandom(static_cast<unsigned int>(seed)); } uint64_t OS::CpuFeaturesImpliedByPlatform() { #if (defined(__VFP_FP__) && !defined(__SOFTFP__)) // Here gcc is telling us that we are on an ARM and gcc is assuming that we // have VFP3 instructions. If gcc can assume it then so can we. return 1u << VFP3; #elif CAN_USE_ARMV7_INSTRUCTIONS return 1u << ARMv7; #else return 0; // Linux runs on anything. #endif } #ifdef __arm__ bool OS::ArmCpuHasFeature(CpuFeature feature) { const char* search_string = NULL; const char* file_name = "/proc/cpuinfo"; // Simple detection of VFP at runtime for Linux. // It is based on /proc/cpuinfo, which reveals hardware configuration // to user-space applications. According to ARM (mid 2009), no similar // facility is universally available on the ARM architectures, // so it's up to individual OSes to provide such. // // This is written as a straight shot one pass parser // and not using STL string and ifstream because, // on Linux, it's reading from a (non-mmap-able) // character special device. switch (feature) { case VFP3: search_string = "vfp"; break; case ARMv7: search_string = "ARMv7"; break; default: UNREACHABLE(); } FILE* f = NULL; const char* what = search_string; if (NULL == (f = fopen(file_name, "r"))) return false; int k; while (EOF != (k = fgetc(f))) { if (k == *what) { ++what; while ((*what != '\0') && (*what == fgetc(f))) { ++what; } if (*what == '\0') { fclose(f); return true; } else { what = search_string; } } } fclose(f); // Did not find string in the proc file. return false; } #endif // def __arm__ int OS::ActivationFrameAlignment() { #ifdef V8_TARGET_ARCH_ARM // On EABI ARM targets this is required for fp correctness in the // runtime system. return 8; #elif V8_TARGET_ARCH_MIPS return 8; #endif // With gcc 4.4 the tree vectorization optimiser can generate code // that requires 16 byte alignment such as movdqa on x86. return 16; } const char* OS::LocalTimezone(double time) { if (isnan(time)) return ""; time_t tv = static_cast<time_t>(floor(time/msPerSecond)); struct tm* t = localtime(&tv); if (NULL == t) return ""; return t->tm_zone; } double OS::LocalTimeOffset() { time_t tv = time(NULL); struct tm* t = localtime(&tv); // tm_gmtoff includes any daylight savings offset, so subtract it. return static_cast<double>(t->tm_gmtoff * msPerSecond - (t->tm_isdst > 0 ? 3600 * msPerSecond : 0)); } // We keep the lowest and highest addresses mapped as a quick way of // determining that pointers are outside the heap (used mostly in assertions // and verification). The estimate is conservative, ie, not all addresses in // 'allocated' space are actually allocated to our heap. The range is // [lowest, highest), inclusive on the low and and exclusive on the high end. static void* lowest_ever_allocated = reinterpret_cast<void*>(-1); static void* highest_ever_allocated = reinterpret_cast<void*>(0); static void UpdateAllocatedSpaceLimits(void* address, int size) { lowest_ever_allocated = Min(lowest_ever_allocated, address); highest_ever_allocated = Max(highest_ever_allocated, reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size)); } bool OS::IsOutsideAllocatedSpace(void* address) { return address < lowest_ever_allocated || address >= highest_ever_allocated; } size_t OS::AllocateAlignment() { return sysconf(_SC_PAGESIZE); } void* OS::Allocate(const size_t requested, size_t* allocated, bool is_executable) { const size_t msize = RoundUp(requested, sysconf(_SC_PAGESIZE)); int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0); void* mbase = mmap(NULL, msize, prot, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); if (mbase == MAP_FAILED) { LOG(StringEvent("OS::Allocate", "mmap failed")); return NULL; } *allocated = msize; UpdateAllocatedSpaceLimits(mbase, msize); return mbase; } void OS::Free(void* address, const size_t size) { // TODO(1240712): munmap has a return value which is ignored here. int result = munmap(address, size); USE(result); ASSERT(result == 0); } #ifdef ENABLE_HEAP_PROTECTION void OS::Protect(void* address, size_t size) { // TODO(1240712): mprotect has a return value which is ignored here. mprotect(address, size, PROT_READ); } void OS::Unprotect(void* address, size_t size, bool is_executable) { // TODO(1240712): mprotect has a return value which is ignored here. int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0); mprotect(address, size, prot); } #endif void OS::Sleep(int milliseconds) { unsigned int ms = static_cast<unsigned int>(milliseconds); usleep(1000 * ms); } void OS::Abort() { // Redirect to std abort to signal abnormal program termination. abort(); } void OS::DebugBreak() { // TODO(lrn): Introduce processor define for runtime system (!= V8_ARCH_x, // which is the architecture of generated code). #if (defined(__arm__) || defined(__thumb__)) && \ defined(CAN_USE_ARMV5_INSTRUCTIONS) asm("bkpt 0"); #elif defined(__mips__) asm("break"); #else asm("int $3"); #endif } class PosixMemoryMappedFile : public OS::MemoryMappedFile { public: PosixMemoryMappedFile(FILE* file, void* memory, int size) : file_(file), memory_(memory), size_(size) { } virtual ~PosixMemoryMappedFile(); virtual void* memory() { return memory_; } private: FILE* file_; void* memory_; int size_; }; OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size, void* initial) { FILE* file = fopen(name, "w+"); if (file == NULL) return NULL; int result = fwrite(initial, size, 1, file); if (result < 1) { fclose(file); return NULL; } void* memory = mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0); return new PosixMemoryMappedFile(file, memory, size); } PosixMemoryMappedFile::~PosixMemoryMappedFile() { if (memory_) munmap(memory_, size_); fclose(file_); } void OS::LogSharedLibraryAddresses() { #ifdef ENABLE_LOGGING_AND_PROFILING // This function assumes that the layout of the file is as follows: // hex_start_addr-hex_end_addr rwxp <unused data> [binary_file_name] // If we encounter an unexpected situation we abort scanning further entries. FILE* fp = fopen("/proc/self/maps", "r"); if (fp == NULL) return; // Allocate enough room to be able to store a full file name. const int kLibNameLen = FILENAME_MAX + 1; char* lib_name = reinterpret_cast<char*>(malloc(kLibNameLen)); // This loop will terminate once the scanning hits an EOF. while (true) { uintptr_t start, end; char attr_r, attr_w, attr_x, attr_p; // Parse the addresses and permission bits at the beginning of the line. if (fscanf(fp, "%" V8PRIxPTR "-%" V8PRIxPTR, &start, &end) != 2) break; if (fscanf(fp, " %c%c%c%c", &attr_r, &attr_w, &attr_x, &attr_p) != 4) break; int c; if (attr_r == 'r' && attr_x == 'x') { // Found a readable and executable entry. Skip characters until we reach // the beginning of the filename or the end of the line. do { c = getc(fp); } while ((c != EOF) && (c != '\n') && (c != '/')); if (c == EOF) break; // EOF: Was unexpected, just exit. // Process the filename if found. if (c == '/') { ungetc(c, fp); // Push the '/' back into the stream to be read below. // Read to the end of the line. Exit if the read fails. if (fgets(lib_name, kLibNameLen, fp) == NULL) break; // Drop the newline character read by fgets. We do not need to check // for a zero-length string because we know that we at least read the // '/' character. lib_name[strlen(lib_name) - 1] = '\0'; } else { // No library name found, just record the raw address range. snprintf(lib_name, kLibNameLen, "%08" V8PRIxPTR "-%08" V8PRIxPTR, start, end); } LOG(SharedLibraryEvent(lib_name, start, end)); } else { // Entry not describing executable data. Skip to end of line to setup // reading the next entry. do { c = getc(fp); } while ((c != EOF) && (c != '\n')); if (c == EOF) break; } } free(lib_name); fclose(fp); #endif } int OS::StackWalk(Vector<OS::StackFrame> frames) { // backtrace is a glibc extension. #ifdef __GLIBC__ int frames_size = frames.length(); void** addresses = NewArray<void*>(frames_size); int frames_count = backtrace(addresses, frames_size); char** symbols; symbols = backtrace_symbols(addresses, frames_count); if (symbols == NULL) { DeleteArray(addresses); return kStackWalkError; } for (int i = 0; i < frames_count; i++) { frames[i].address = addresses[i]; // Format a text representation of the frame based on the information // available. SNPrintF(MutableCStrVector(frames[i].text, kStackWalkMaxTextLen), "%s", symbols[i]); // Make sure line termination is in place. frames[i].text[kStackWalkMaxTextLen - 1] = '\0'; } DeleteArray(addresses); free(symbols); return frames_count; #else // ndef __GLIBC__ return 0; #endif // ndef __GLIBC__ } // Constants used for mmap. static const int kMmapFd = -1; static const int kMmapFdOffset = 0; VirtualMemory::VirtualMemory(size_t size) { address_ = mmap(NULL, size, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE, kMmapFd, kMmapFdOffset); size_ = size; } VirtualMemory::~VirtualMemory() { if (IsReserved()) { if (0 == munmap(address(), size())) address_ = MAP_FAILED; } } bool VirtualMemory::IsReserved() { return address_ != MAP_FAILED; } bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) { int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0); if (MAP_FAILED == mmap(address, size, prot, MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, kMmapFd, kMmapFdOffset)) { return false; } UpdateAllocatedSpaceLimits(address, size); return true; } bool VirtualMemory::Uncommit(void* address, size_t size) { return mmap(address, size, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE | MAP_FIXED, kMmapFd, kMmapFdOffset) != MAP_FAILED; } class ThreadHandle::PlatformData : public Malloced { public: explicit PlatformData(ThreadHandle::Kind kind) { Initialize(kind); } void Initialize(ThreadHandle::Kind kind) { switch (kind) { case ThreadHandle::SELF: thread_ = pthread_self(); break; case ThreadHandle::INVALID: thread_ = kNoThread; break; } } pthread_t thread_; // Thread handle for pthread. }; ThreadHandle::ThreadHandle(Kind kind) { data_ = new PlatformData(kind); } void ThreadHandle::Initialize(ThreadHandle::Kind kind) { data_->Initialize(kind); } ThreadHandle::~ThreadHandle() { delete data_; } bool ThreadHandle::IsSelf() const { return pthread_equal(data_->thread_, pthread_self()); } bool ThreadHandle::IsValid() const { return data_->thread_ != kNoThread; } Thread::Thread() : ThreadHandle(ThreadHandle::INVALID) { } Thread::~Thread() { } static void* ThreadEntry(void* arg) { Thread* thread = reinterpret_cast<Thread*>(arg); // This is also initialized by the first argument to pthread_create() but we // don't know which thread will run first (the original thread or the new // one) so we initialize it here too. thread->thread_handle_data()->thread_ = pthread_self(); ASSERT(thread->IsValid()); thread->Run(); return NULL; } void Thread::Start() { pthread_create(&thread_handle_data()->thread_, NULL, ThreadEntry, this); ASSERT(IsValid()); } void Thread::Join() { pthread_join(thread_handle_data()->thread_, NULL); } Thread::LocalStorageKey Thread::CreateThreadLocalKey() { pthread_key_t key; int result = pthread_key_create(&key, NULL); USE(result); ASSERT(result == 0); return static_cast<LocalStorageKey>(key); } void Thread::DeleteThreadLocalKey(LocalStorageKey key) { pthread_key_t pthread_key = static_cast<pthread_key_t>(key); int result = pthread_key_delete(pthread_key); USE(result); ASSERT(result == 0); } void* Thread::GetThreadLocal(LocalStorageKey key) { pthread_key_t pthread_key = static_cast<pthread_key_t>(key); return pthread_getspecific(pthread_key); } void Thread::SetThreadLocal(LocalStorageKey key, void* value) { pthread_key_t pthread_key = static_cast<pthread_key_t>(key); pthread_setspecific(pthread_key, value); } void Thread::YieldCPU() { sched_yield(); } class LinuxMutex : public Mutex { public: LinuxMutex() { pthread_mutexattr_t attrs; int result = pthread_mutexattr_init(&attrs); ASSERT(result == 0); result = pthread_mutexattr_settype(&attrs, PTHREAD_MUTEX_RECURSIVE); ASSERT(result == 0); result = pthread_mutex_init(&mutex_, &attrs); ASSERT(result == 0); } virtual ~LinuxMutex() { pthread_mutex_destroy(&mutex_); } virtual int Lock() { int result = pthread_mutex_lock(&mutex_); return result; } virtual int Unlock() { int result = pthread_mutex_unlock(&mutex_); return result; } private: pthread_mutex_t mutex_; // Pthread mutex for POSIX platforms. }; Mutex* OS::CreateMutex() { return new LinuxMutex(); } class LinuxSemaphore : public Semaphore { public: explicit LinuxSemaphore(int count) { sem_init(&sem_, 0, count); } virtual ~LinuxSemaphore() { sem_destroy(&sem_); } virtual void Wait(); virtual bool Wait(int timeout); virtual void Signal() { sem_post(&sem_); } private: sem_t sem_; }; void LinuxSemaphore::Wait() { while (true) { int result = sem_wait(&sem_); if (result == 0) return; // Successfully got semaphore. CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup. } } #ifndef TIMEVAL_TO_TIMESPEC #define TIMEVAL_TO_TIMESPEC(tv, ts) do { \ (ts)->tv_sec = (tv)->tv_sec; \ (ts)->tv_nsec = (tv)->tv_usec * 1000; \ } while (false) #endif bool LinuxSemaphore::Wait(int timeout) { const long kOneSecondMicros = 1000000; // NOLINT // Split timeout into second and nanosecond parts. struct timeval delta; delta.tv_usec = timeout % kOneSecondMicros; delta.tv_sec = timeout / kOneSecondMicros; struct timeval current_time; // Get the current time. if (gettimeofday(¤t_time, NULL) == -1) { return false; } // Calculate time for end of timeout. struct timeval end_time; timeradd(¤t_time, &delta, &end_time); struct timespec ts; TIMEVAL_TO_TIMESPEC(&end_time, &ts); // Wait for semaphore signalled or timeout. while (true) { int result = sem_timedwait(&sem_, &ts); if (result == 0) return true; // Successfully got semaphore. if (result > 0) { // For glibc prior to 2.3.4 sem_timedwait returns the error instead of -1. errno = result; result = -1; } if (result == -1 && errno == ETIMEDOUT) return false; // Timeout. CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup. } } Semaphore* OS::CreateSemaphore(int count) { return new LinuxSemaphore(count); } #ifdef ENABLE_LOGGING_AND_PROFILING static Sampler* active_sampler_ = NULL; static pthread_t vm_thread_ = 0; #if !defined(__GLIBC__) && (defined(__arm__) || defined(__thumb__)) // Android runs a fairly new Linux kernel, so signal info is there, // but the C library doesn't have the structs defined. struct sigcontext { uint32_t trap_no; uint32_t error_code; uint32_t oldmask; uint32_t gregs[16]; uint32_t arm_cpsr; uint32_t fault_address; }; typedef uint32_t __sigset_t; typedef struct sigcontext mcontext_t; typedef struct ucontext { uint32_t uc_flags; struct ucontext* uc_link; stack_t uc_stack; mcontext_t uc_mcontext; __sigset_t uc_sigmask; } ucontext_t; enum ArmRegisters {R15 = 15, R13 = 13, R11 = 11}; #endif // A function that determines if a signal handler is called in the context // of a VM thread. // // The problem is that SIGPROF signal can be delivered to an arbitrary thread // (see http://code.google.com/p/google-perftools/issues/detail?id=106#c2) // So, if the signal is being handled in the context of a non-VM thread, // it means that the VM thread is running, and trying to sample its stack can // cause a crash. static inline bool IsVmThread() { // In the case of a single VM thread, this check is enough. if (pthread_equal(pthread_self(), vm_thread_)) return true; // If there are multiple threads that use VM, they must have a thread id // stored in TLS. To verify that the thread is really executing VM, // we check Top's data. Having that ThreadManager::RestoreThread first // restores ThreadLocalTop from TLS, and only then erases the TLS value, // reading Top::thread_id() should not be affected by races. if (ThreadManager::HasId() && !ThreadManager::IsArchived() && ThreadManager::CurrentId() == Top::thread_id()) { return true; } return false; } static void ProfilerSignalHandler(int signal, siginfo_t* info, void* context) { #ifndef V8_HOST_ARCH_MIPS USE(info); if (signal != SIGPROF) return; if (active_sampler_ == NULL) return; TickSample sample; // If profiling, we extract the current pc and sp. if (active_sampler_->IsProfiling()) { // Extracting the sample from the context is extremely machine dependent. ucontext_t* ucontext = reinterpret_cast<ucontext_t*>(context); mcontext_t& mcontext = ucontext->uc_mcontext; #if V8_HOST_ARCH_IA32 sample.pc = reinterpret_cast<Address>(mcontext.gregs[REG_EIP]); sample.sp = reinterpret_cast<Address>(mcontext.gregs[REG_ESP]); sample.fp = reinterpret_cast<Address>(mcontext.gregs[REG_EBP]); #elif V8_HOST_ARCH_X64 sample.pc = reinterpret_cast<Address>(mcontext.gregs[REG_RIP]); sample.sp = reinterpret_cast<Address>(mcontext.gregs[REG_RSP]); sample.fp = reinterpret_cast<Address>(mcontext.gregs[REG_RBP]); #elif V8_HOST_ARCH_ARM // An undefined macro evaluates to 0, so this applies to Android's Bionic also. #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3)) sample.pc = reinterpret_cast<Address>(mcontext.gregs[R15]); sample.sp = reinterpret_cast<Address>(mcontext.gregs[R13]); sample.fp = reinterpret_cast<Address>(mcontext.gregs[R11]); #else sample.pc = reinterpret_cast<Address>(mcontext.arm_pc); sample.sp = reinterpret_cast<Address>(mcontext.arm_sp); sample.fp = reinterpret_cast<Address>(mcontext.arm_fp); #endif #elif V8_HOST_ARCH_MIPS // Implement this on MIPS. UNIMPLEMENTED(); #endif if (IsVmThread()) active_sampler_->SampleStack(&sample); } // We always sample the VM state. sample.state = Logger::state(); active_sampler_->Tick(&sample); #endif } class Sampler::PlatformData : public Malloced { public: PlatformData() { signal_handler_installed_ = false; } bool signal_handler_installed_; struct sigaction old_signal_handler_; struct itimerval old_timer_value_; }; Sampler::Sampler(int interval, bool profiling) : interval_(interval), profiling_(profiling), active_(false) { data_ = new PlatformData(); } Sampler::~Sampler() { delete data_; } void Sampler::Start() { // There can only be one active sampler at the time on POSIX // platforms. if (active_sampler_ != NULL) return; vm_thread_ = pthread_self(); // Request profiling signals. struct sigaction sa; sa.sa_sigaction = ProfilerSignalHandler; sigemptyset(&sa.sa_mask); sa.sa_flags = SA_SIGINFO; if (sigaction(SIGPROF, &sa, &data_->old_signal_handler_) != 0) return; data_->signal_handler_installed_ = true; // Set the itimer to generate a tick for each interval. itimerval itimer; itimer.it_interval.tv_sec = interval_ / 1000; itimer.it_interval.tv_usec = (interval_ % 1000) * 1000; itimer.it_value.tv_sec = itimer.it_interval.tv_sec; itimer.it_value.tv_usec = itimer.it_interval.tv_usec; setitimer(ITIMER_PROF, &itimer, &data_->old_timer_value_); // Set this sampler as the active sampler. active_sampler_ = this; active_ = true; } void Sampler::Stop() { // Restore old signal handler if (data_->signal_handler_installed_) { setitimer(ITIMER_PROF, &data_->old_timer_value_, NULL); sigaction(SIGPROF, &data_->old_signal_handler_, 0); data_->signal_handler_installed_ = false; } // This sampler is no longer the active sampler. active_sampler_ = NULL; active_ = false; } #endif // ENABLE_LOGGING_AND_PROFILING } } // namespace v8::internal