// Copyright 2008 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // A simple interpreter for the Irregexp byte code. #include "v8.h" #include "unicode.h" #include "utils.h" #include "ast.h" #include "bytecodes-irregexp.h" #include "interpreter-irregexp.h" namespace v8 { namespace internal { static unibrow::Mapping<unibrow::Ecma262Canonicalize> interp_canonicalize; static bool BackRefMatchesNoCase(int from, int current, int len, Vector<const uc16> subject) { for (int i = 0; i < len; i++) { unibrow::uchar old_char = subject[from++]; unibrow::uchar new_char = subject[current++]; if (old_char == new_char) continue; unibrow::uchar old_string[1] = { old_char }; unibrow::uchar new_string[1] = { new_char }; interp_canonicalize.get(old_char, '\0', old_string); interp_canonicalize.get(new_char, '\0', new_string); if (old_string[0] != new_string[0]) { return false; } } return true; } static bool BackRefMatchesNoCase(int from, int current, int len, Vector<const char> subject) { for (int i = 0; i < len; i++) { unsigned int old_char = subject[from++]; unsigned int new_char = subject[current++]; if (old_char == new_char) continue; if (old_char - 'A' <= 'Z' - 'A') old_char |= 0x20; if (new_char - 'A' <= 'Z' - 'A') new_char |= 0x20; if (old_char != new_char) return false; } return true; } #ifdef DEBUG static void TraceInterpreter(const byte* code_base, const byte* pc, int stack_depth, int current_position, uint32_t current_char, int bytecode_length, const char* bytecode_name) { if (FLAG_trace_regexp_bytecodes) { bool printable = (current_char < 127 && current_char >= 32); const char* format = printable ? "pc = %02x, sp = %d, curpos = %d, curchar = %08x (%c), bc = %s" : "pc = %02x, sp = %d, curpos = %d, curchar = %08x .%c., bc = %s"; PrintF(format, pc - code_base, stack_depth, current_position, current_char, printable ? current_char : '.', bytecode_name); for (int i = 0; i < bytecode_length; i++) { printf(", %02x", pc[i]); } printf(" "); for (int i = 1; i < bytecode_length; i++) { unsigned char b = pc[i]; if (b < 127 && b >= 32) { printf("%c", b); } else { printf("."); } } printf("\n"); } } #define BYTECODE(name) \ case BC_##name: \ TraceInterpreter(code_base, \ pc, \ static_cast<int>(backtrack_sp - backtrack_stack_base), \ current, \ current_char, \ BC_##name##_LENGTH, \ #name); #else #define BYTECODE(name) \ case BC_##name: #endif static int32_t Load32Aligned(const byte* pc) { ASSERT((reinterpret_cast<intptr_t>(pc) & 3) == 0); return *reinterpret_cast<const int32_t *>(pc); } static int32_t Load16Aligned(const byte* pc) { ASSERT((reinterpret_cast<intptr_t>(pc) & 1) == 0); return *reinterpret_cast<const uint16_t *>(pc); } // A simple abstraction over the backtracking stack used by the interpreter. // This backtracking stack does not grow automatically, but it ensures that the // the memory held by the stack is released or remembered in a cache if the // matching terminates. class BacktrackStack { public: explicit BacktrackStack() { if (cache_ != NULL) { // If the cache is not empty reuse the previously allocated stack. data_ = cache_; cache_ = NULL; } else { // Cache was empty. Allocate a new backtrack stack. data_ = NewArray<int>(kBacktrackStackSize); } } ~BacktrackStack() { if (cache_ == NULL) { // The cache is empty. Keep this backtrack stack around. cache_ = data_; } else { // A backtrack stack was already cached, just release this one. DeleteArray(data_); } } int* data() const { return data_; } int max_size() const { return kBacktrackStackSize; } private: static const int kBacktrackStackSize = 10000; int* data_; static int* cache_; DISALLOW_COPY_AND_ASSIGN(BacktrackStack); }; int* BacktrackStack::cache_ = NULL; template <typename Char> static bool RawMatch(const byte* code_base, Vector<const Char> subject, int* registers, int current, uint32_t current_char) { const byte* pc = code_base; // BacktrackStack ensures that the memory allocated for the backtracking stack // is returned to the system or cached if there is no stack being cached at // the moment. BacktrackStack backtrack_stack; int* backtrack_stack_base = backtrack_stack.data(); int* backtrack_sp = backtrack_stack_base; int backtrack_stack_space = backtrack_stack.max_size(); #ifdef DEBUG if (FLAG_trace_regexp_bytecodes) { PrintF("\n\nStart bytecode interpreter\n\n"); } #endif while (true) { int32_t insn = Load32Aligned(pc); switch (insn & BYTECODE_MASK) { BYTECODE(BREAK) UNREACHABLE(); return false; BYTECODE(PUSH_CP) if (--backtrack_stack_space < 0) { return false; // No match on backtrack stack overflow. } *backtrack_sp++ = current; pc += BC_PUSH_CP_LENGTH; break; BYTECODE(PUSH_BT) if (--backtrack_stack_space < 0) { return false; // No match on backtrack stack overflow. } *backtrack_sp++ = Load32Aligned(pc + 4); pc += BC_PUSH_BT_LENGTH; break; BYTECODE(PUSH_REGISTER) if (--backtrack_stack_space < 0) { return false; // No match on backtrack stack overflow. } *backtrack_sp++ = registers[insn >> BYTECODE_SHIFT]; pc += BC_PUSH_REGISTER_LENGTH; break; BYTECODE(SET_REGISTER) registers[insn >> BYTECODE_SHIFT] = Load32Aligned(pc + 4); pc += BC_SET_REGISTER_LENGTH; break; BYTECODE(ADVANCE_REGISTER) registers[insn >> BYTECODE_SHIFT] += Load32Aligned(pc + 4); pc += BC_ADVANCE_REGISTER_LENGTH; break; BYTECODE(SET_REGISTER_TO_CP) registers[insn >> BYTECODE_SHIFT] = current + Load32Aligned(pc + 4); pc += BC_SET_REGISTER_TO_CP_LENGTH; break; BYTECODE(SET_CP_TO_REGISTER) current = registers[insn >> BYTECODE_SHIFT]; pc += BC_SET_CP_TO_REGISTER_LENGTH; break; BYTECODE(SET_REGISTER_TO_SP) registers[insn >> BYTECODE_SHIFT] = static_cast<int>(backtrack_sp - backtrack_stack_base); pc += BC_SET_REGISTER_TO_SP_LENGTH; break; BYTECODE(SET_SP_TO_REGISTER) backtrack_sp = backtrack_stack_base + registers[insn >> BYTECODE_SHIFT]; backtrack_stack_space = backtrack_stack.max_size() - static_cast<int>(backtrack_sp - backtrack_stack_base); pc += BC_SET_SP_TO_REGISTER_LENGTH; break; BYTECODE(POP_CP) backtrack_stack_space++; --backtrack_sp; current = *backtrack_sp; pc += BC_POP_CP_LENGTH; break; BYTECODE(POP_BT) backtrack_stack_space++; --backtrack_sp; pc = code_base + *backtrack_sp; break; BYTECODE(POP_REGISTER) backtrack_stack_space++; --backtrack_sp; registers[insn >> BYTECODE_SHIFT] = *backtrack_sp; pc += BC_POP_REGISTER_LENGTH; break; BYTECODE(FAIL) return false; BYTECODE(SUCCEED) return true; BYTECODE(ADVANCE_CP) current += insn >> BYTECODE_SHIFT; pc += BC_ADVANCE_CP_LENGTH; break; BYTECODE(GOTO) pc = code_base + Load32Aligned(pc + 4); break; BYTECODE(ADVANCE_CP_AND_GOTO) current += insn >> BYTECODE_SHIFT; pc = code_base + Load32Aligned(pc + 4); break; BYTECODE(CHECK_GREEDY) if (current == backtrack_sp[-1]) { backtrack_sp--; backtrack_stack_space++; pc = code_base + Load32Aligned(pc + 4); } else { pc += BC_CHECK_GREEDY_LENGTH; } break; BYTECODE(LOAD_CURRENT_CHAR) { int pos = current + (insn >> BYTECODE_SHIFT); if (pos >= subject.length()) { pc = code_base + Load32Aligned(pc + 4); } else { current_char = subject[pos]; pc += BC_LOAD_CURRENT_CHAR_LENGTH; } break; } BYTECODE(LOAD_CURRENT_CHAR_UNCHECKED) { int pos = current + (insn >> BYTECODE_SHIFT); current_char = subject[pos]; pc += BC_LOAD_CURRENT_CHAR_UNCHECKED_LENGTH; break; } BYTECODE(LOAD_2_CURRENT_CHARS) { int pos = current + (insn >> BYTECODE_SHIFT); if (pos + 2 > subject.length()) { pc = code_base + Load32Aligned(pc + 4); } else { Char next = subject[pos + 1]; current_char = (subject[pos] | (next << (kBitsPerByte * sizeof(Char)))); pc += BC_LOAD_2_CURRENT_CHARS_LENGTH; } break; } BYTECODE(LOAD_2_CURRENT_CHARS_UNCHECKED) { int pos = current + (insn >> BYTECODE_SHIFT); Char next = subject[pos + 1]; current_char = (subject[pos] | (next << (kBitsPerByte * sizeof(Char)))); pc += BC_LOAD_2_CURRENT_CHARS_UNCHECKED_LENGTH; break; } BYTECODE(LOAD_4_CURRENT_CHARS) { ASSERT(sizeof(Char) == 1); int pos = current + (insn >> BYTECODE_SHIFT); if (pos + 4 > subject.length()) { pc = code_base + Load32Aligned(pc + 4); } else { Char next1 = subject[pos + 1]; Char next2 = subject[pos + 2]; Char next3 = subject[pos + 3]; current_char = (subject[pos] | (next1 << 8) | (next2 << 16) | (next3 << 24)); pc += BC_LOAD_4_CURRENT_CHARS_LENGTH; } break; } BYTECODE(LOAD_4_CURRENT_CHARS_UNCHECKED) { ASSERT(sizeof(Char) == 1); int pos = current + (insn >> BYTECODE_SHIFT); Char next1 = subject[pos + 1]; Char next2 = subject[pos + 2]; Char next3 = subject[pos + 3]; current_char = (subject[pos] | (next1 << 8) | (next2 << 16) | (next3 << 24)); pc += BC_LOAD_4_CURRENT_CHARS_UNCHECKED_LENGTH; break; } BYTECODE(CHECK_4_CHARS) { uint32_t c = Load32Aligned(pc + 4); if (c == current_char) { pc = code_base + Load32Aligned(pc + 8); } else { pc += BC_CHECK_4_CHARS_LENGTH; } break; } BYTECODE(CHECK_CHAR) { uint32_t c = (insn >> BYTECODE_SHIFT); if (c == current_char) { pc = code_base + Load32Aligned(pc + 4); } else { pc += BC_CHECK_CHAR_LENGTH; } break; } BYTECODE(CHECK_NOT_4_CHARS) { uint32_t c = Load32Aligned(pc + 4); if (c != current_char) { pc = code_base + Load32Aligned(pc + 8); } else { pc += BC_CHECK_NOT_4_CHARS_LENGTH; } break; } BYTECODE(CHECK_NOT_CHAR) { uint32_t c = (insn >> BYTECODE_SHIFT); if (c != current_char) { pc = code_base + Load32Aligned(pc + 4); } else { pc += BC_CHECK_NOT_CHAR_LENGTH; } break; } BYTECODE(AND_CHECK_4_CHARS) { uint32_t c = Load32Aligned(pc + 4); if (c == (current_char & Load32Aligned(pc + 8))) { pc = code_base + Load32Aligned(pc + 12); } else { pc += BC_AND_CHECK_4_CHARS_LENGTH; } break; } BYTECODE(AND_CHECK_CHAR) { uint32_t c = (insn >> BYTECODE_SHIFT); if (c == (current_char & Load32Aligned(pc + 4))) { pc = code_base + Load32Aligned(pc + 8); } else { pc += BC_AND_CHECK_CHAR_LENGTH; } break; } BYTECODE(AND_CHECK_NOT_4_CHARS) { uint32_t c = Load32Aligned(pc + 4); if (c != (current_char & Load32Aligned(pc + 8))) { pc = code_base + Load32Aligned(pc + 12); } else { pc += BC_AND_CHECK_NOT_4_CHARS_LENGTH; } break; } BYTECODE(AND_CHECK_NOT_CHAR) { uint32_t c = (insn >> BYTECODE_SHIFT); if (c != (current_char & Load32Aligned(pc + 4))) { pc = code_base + Load32Aligned(pc + 8); } else { pc += BC_AND_CHECK_NOT_CHAR_LENGTH; } break; } BYTECODE(MINUS_AND_CHECK_NOT_CHAR) { uint32_t c = (insn >> BYTECODE_SHIFT); uint32_t minus = Load16Aligned(pc + 4); uint32_t mask = Load16Aligned(pc + 6); if (c != ((current_char - minus) & mask)) { pc = code_base + Load32Aligned(pc + 8); } else { pc += BC_MINUS_AND_CHECK_NOT_CHAR_LENGTH; } break; } BYTECODE(CHECK_LT) { uint32_t limit = (insn >> BYTECODE_SHIFT); if (current_char < limit) { pc = code_base + Load32Aligned(pc + 4); } else { pc += BC_CHECK_LT_LENGTH; } break; } BYTECODE(CHECK_GT) { uint32_t limit = (insn >> BYTECODE_SHIFT); if (current_char > limit) { pc = code_base + Load32Aligned(pc + 4); } else { pc += BC_CHECK_GT_LENGTH; } break; } BYTECODE(CHECK_REGISTER_LT) if (registers[insn >> BYTECODE_SHIFT] < Load32Aligned(pc + 4)) { pc = code_base + Load32Aligned(pc + 8); } else { pc += BC_CHECK_REGISTER_LT_LENGTH; } break; BYTECODE(CHECK_REGISTER_GE) if (registers[insn >> BYTECODE_SHIFT] >= Load32Aligned(pc + 4)) { pc = code_base + Load32Aligned(pc + 8); } else { pc += BC_CHECK_REGISTER_GE_LENGTH; } break; BYTECODE(CHECK_REGISTER_EQ_POS) if (registers[insn >> BYTECODE_SHIFT] == current) { pc = code_base + Load32Aligned(pc + 4); } else { pc += BC_CHECK_REGISTER_EQ_POS_LENGTH; } break; BYTECODE(LOOKUP_MAP1) { // Look up character in a bitmap. If we find a 0, then jump to the // location at pc + 8. Otherwise fall through! int index = current_char - (insn >> BYTECODE_SHIFT); byte map = code_base[Load32Aligned(pc + 4) + (index >> 3)]; map = ((map >> (index & 7)) & 1); if (map == 0) { pc = code_base + Load32Aligned(pc + 8); } else { pc += BC_LOOKUP_MAP1_LENGTH; } break; } BYTECODE(LOOKUP_MAP2) { // Look up character in a half-nibble map. If we find 00, then jump to // the location at pc + 8. If we find 01 then jump to location at // pc + 11, etc. int index = (current_char - (insn >> BYTECODE_SHIFT)) << 1; byte map = code_base[Load32Aligned(pc + 3) + (index >> 3)]; map = ((map >> (index & 7)) & 3); if (map < 2) { if (map == 0) { pc = code_base + Load32Aligned(pc + 8); } else { pc = code_base + Load32Aligned(pc + 12); } } else { if (map == 2) { pc = code_base + Load32Aligned(pc + 16); } else { pc = code_base + Load32Aligned(pc + 20); } } break; } BYTECODE(LOOKUP_MAP8) { // Look up character in a byte map. Use the byte as an index into a // table that follows this instruction immediately. int index = current_char - (insn >> BYTECODE_SHIFT); byte map = code_base[Load32Aligned(pc + 4) + index]; const byte* new_pc = code_base + Load32Aligned(pc + 8) + (map << 2); pc = code_base + Load32Aligned(new_pc); break; } BYTECODE(LOOKUP_HI_MAP8) { // Look up high byte of this character in a byte map. Use the byte as // an index into a table that follows this instruction immediately. int index = (current_char >> 8) - (insn >> BYTECODE_SHIFT); byte map = code_base[Load32Aligned(pc + 4) + index]; const byte* new_pc = code_base + Load32Aligned(pc + 8) + (map << 2); pc = code_base + Load32Aligned(new_pc); break; } BYTECODE(CHECK_NOT_REGS_EQUAL) if (registers[insn >> BYTECODE_SHIFT] == registers[Load32Aligned(pc + 4)]) { pc += BC_CHECK_NOT_REGS_EQUAL_LENGTH; } else { pc = code_base + Load32Aligned(pc + 8); } break; BYTECODE(CHECK_NOT_BACK_REF) { int from = registers[insn >> BYTECODE_SHIFT]; int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from; if (from < 0 || len <= 0) { pc += BC_CHECK_NOT_BACK_REF_LENGTH; break; } if (current + len > subject.length()) { pc = code_base + Load32Aligned(pc + 4); break; } else { int i; for (i = 0; i < len; i++) { if (subject[from + i] != subject[current + i]) { pc = code_base + Load32Aligned(pc + 4); break; } } if (i < len) break; current += len; } pc += BC_CHECK_NOT_BACK_REF_LENGTH; break; } BYTECODE(CHECK_NOT_BACK_REF_NO_CASE) { int from = registers[insn >> BYTECODE_SHIFT]; int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from; if (from < 0 || len <= 0) { pc += BC_CHECK_NOT_BACK_REF_NO_CASE_LENGTH; break; } if (current + len > subject.length()) { pc = code_base + Load32Aligned(pc + 4); break; } else { if (BackRefMatchesNoCase(from, current, len, subject)) { current += len; pc += BC_CHECK_NOT_BACK_REF_NO_CASE_LENGTH; } else { pc = code_base + Load32Aligned(pc + 4); } } break; } BYTECODE(CHECK_AT_START) if (current == 0) { pc = code_base + Load32Aligned(pc + 4); } else { pc += BC_CHECK_AT_START_LENGTH; } break; BYTECODE(CHECK_NOT_AT_START) if (current == 0) { pc += BC_CHECK_NOT_AT_START_LENGTH; } else { pc = code_base + Load32Aligned(pc + 4); } break; default: UNREACHABLE(); break; } } } bool IrregexpInterpreter::Match(Handle<ByteArray> code_array, Handle<String> subject, int* registers, int start_position) { ASSERT(subject->IsFlat()); AssertNoAllocation a; const byte* code_base = code_array->GetDataStartAddress(); uc16 previous_char = '\n'; if (subject->IsAsciiRepresentation()) { Vector<const char> subject_vector = subject->ToAsciiVector(); if (start_position != 0) previous_char = subject_vector[start_position - 1]; return RawMatch(code_base, subject_vector, registers, start_position, previous_char); } else { Vector<const uc16> subject_vector = subject->ToUC16Vector(); if (start_position != 0) previous_char = subject_vector[start_position - 1]; return RawMatch(code_base, subject_vector, registers, start_position, previous_char); } } } } // namespace v8::internal