// Copyright 2006-2008 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef V8_HEAP_INL_H_ #define V8_HEAP_INL_H_ #include "log.h" #include "v8-counters.h" namespace v8 { namespace internal { int Heap::MaxObjectSizeInPagedSpace() { return Page::kMaxHeapObjectSize; } Object* Heap::AllocateSymbol(Vector<const char> str, int chars, uint32_t hash_field) { unibrow::Utf8InputBuffer<> buffer(str.start(), static_cast<unsigned>(str.length())); return AllocateInternalSymbol(&buffer, chars, hash_field); } Object* Heap::AllocateRaw(int size_in_bytes, AllocationSpace space, AllocationSpace retry_space) { ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC); ASSERT(space != NEW_SPACE || retry_space == OLD_POINTER_SPACE || retry_space == OLD_DATA_SPACE || retry_space == LO_SPACE); #ifdef DEBUG if (FLAG_gc_interval >= 0 && !disallow_allocation_failure_ && Heap::allocation_timeout_-- <= 0) { return Failure::RetryAfterGC(size_in_bytes, space); } Counters::objs_since_last_full.Increment(); Counters::objs_since_last_young.Increment(); #endif Object* result; if (NEW_SPACE == space) { result = new_space_.AllocateRaw(size_in_bytes); if (always_allocate() && result->IsFailure()) { space = retry_space; } else { return result; } } if (OLD_POINTER_SPACE == space) { result = old_pointer_space_->AllocateRaw(size_in_bytes); } else if (OLD_DATA_SPACE == space) { result = old_data_space_->AllocateRaw(size_in_bytes); } else if (CODE_SPACE == space) { result = code_space_->AllocateRaw(size_in_bytes); } else if (LO_SPACE == space) { result = lo_space_->AllocateRaw(size_in_bytes); } else if (CELL_SPACE == space) { result = cell_space_->AllocateRaw(size_in_bytes); } else { ASSERT(MAP_SPACE == space); result = map_space_->AllocateRaw(size_in_bytes); } if (result->IsFailure()) old_gen_exhausted_ = true; return result; } Object* Heap::NumberFromInt32(int32_t value) { if (Smi::IsValid(value)) return Smi::FromInt(value); // Bypass NumberFromDouble to avoid various redundant checks. return AllocateHeapNumber(FastI2D(value)); } Object* Heap::NumberFromUint32(uint32_t value) { if ((int32_t)value >= 0 && Smi::IsValid((int32_t)value)) { return Smi::FromInt((int32_t)value); } // Bypass NumberFromDouble to avoid various redundant checks. return AllocateHeapNumber(FastUI2D(value)); } void Heap::FinalizeExternalString(String* string) { ASSERT(string->IsExternalString()); v8::String::ExternalStringResourceBase** resource_addr = reinterpret_cast<v8::String::ExternalStringResourceBase**>( reinterpret_cast<byte*>(string) + ExternalString::kResourceOffset - kHeapObjectTag); delete *resource_addr; // Clear the resource pointer in the string. *resource_addr = NULL; } Object* Heap::AllocateRawMap() { #ifdef DEBUG Counters::objs_since_last_full.Increment(); Counters::objs_since_last_young.Increment(); #endif Object* result = map_space_->AllocateRaw(Map::kSize); if (result->IsFailure()) old_gen_exhausted_ = true; #ifdef DEBUG if (!result->IsFailure()) { // Maps have their own alignment. CHECK((OffsetFrom(result) & kMapAlignmentMask) == kHeapObjectTag); } #endif return result; } Object* Heap::AllocateRawCell() { #ifdef DEBUG Counters::objs_since_last_full.Increment(); Counters::objs_since_last_young.Increment(); #endif Object* result = cell_space_->AllocateRaw(JSGlobalPropertyCell::kSize); if (result->IsFailure()) old_gen_exhausted_ = true; return result; } bool Heap::InNewSpace(Object* object) { bool result = new_space_.Contains(object); ASSERT(!result || // Either not in new space gc_state_ != NOT_IN_GC || // ... or in the middle of GC InToSpace(object)); // ... or in to-space (where we allocate). return result; } bool Heap::InFromSpace(Object* object) { return new_space_.FromSpaceContains(object); } bool Heap::InToSpace(Object* object) { return new_space_.ToSpaceContains(object); } bool Heap::ShouldBePromoted(Address old_address, int object_size) { // An object should be promoted if: // - the object has survived a scavenge operation or // - to space is already 25% full. return old_address < new_space_.age_mark() || (new_space_.Size() + object_size) >= (new_space_.Capacity() >> 2); } void Heap::RecordWrite(Address address, int offset) { if (new_space_.Contains(address)) return; ASSERT(!new_space_.FromSpaceContains(address)); SLOW_ASSERT(Contains(address + offset)); Page::SetRSet(address, offset); } OldSpace* Heap::TargetSpace(HeapObject* object) { InstanceType type = object->map()->instance_type(); AllocationSpace space = TargetSpaceId(type); return (space == OLD_POINTER_SPACE) ? old_pointer_space_ : old_data_space_; } AllocationSpace Heap::TargetSpaceId(InstanceType type) { // Heap numbers and sequential strings are promoted to old data space, all // other object types are promoted to old pointer space. We do not use // object->IsHeapNumber() and object->IsSeqString() because we already // know that object has the heap object tag. // These objects are never allocated in new space. ASSERT(type != MAP_TYPE); ASSERT(type != CODE_TYPE); ASSERT(type != ODDBALL_TYPE); ASSERT(type != JS_GLOBAL_PROPERTY_CELL_TYPE); if (type < FIRST_NONSTRING_TYPE) { // There are three string representations: sequential strings, cons // strings, and external strings. Only cons strings contain // non-map-word pointers to heap objects. return ((type & kStringRepresentationMask) == kConsStringTag) ? OLD_POINTER_SPACE : OLD_DATA_SPACE; } else { return (type <= LAST_DATA_TYPE) ? OLD_DATA_SPACE : OLD_POINTER_SPACE; } } void Heap::CopyBlock(Object** dst, Object** src, int byte_size) { ASSERT(IsAligned(byte_size, kPointerSize)); // Use block copying memcpy if the segment we're copying is // enough to justify the extra call/setup overhead. static const int kBlockCopyLimit = 16 * kPointerSize; if (byte_size >= kBlockCopyLimit) { memcpy(dst, src, byte_size); } else { int remaining = byte_size / kPointerSize; do { remaining--; *dst++ = *src++; } while (remaining > 0); } } void Heap::ScavengeObject(HeapObject** p, HeapObject* object) { ASSERT(InFromSpace(object)); // We use the first word (where the map pointer usually is) of a heap // object to record the forwarding pointer. A forwarding pointer can // point to an old space, the code space, or the to space of the new // generation. MapWord first_word = object->map_word(); // If the first word is a forwarding address, the object has already been // copied. if (first_word.IsForwardingAddress()) { *p = first_word.ToForwardingAddress(); return; } // Call the slow part of scavenge object. return ScavengeObjectSlow(p, object); } int Heap::AdjustAmountOfExternalAllocatedMemory(int change_in_bytes) { ASSERT(HasBeenSetup()); int amount = amount_of_external_allocated_memory_ + change_in_bytes; if (change_in_bytes >= 0) { // Avoid overflow. if (amount > amount_of_external_allocated_memory_) { amount_of_external_allocated_memory_ = amount; } int amount_since_last_global_gc = amount_of_external_allocated_memory_ - amount_of_external_allocated_memory_at_last_global_gc_; if (amount_since_last_global_gc > external_allocation_limit_) { CollectAllGarbage(false); } } else { // Avoid underflow. if (amount >= 0) { amount_of_external_allocated_memory_ = amount; } } ASSERT(amount_of_external_allocated_memory_ >= 0); return amount_of_external_allocated_memory_; } void Heap::SetLastScriptId(Object* last_script_id) { roots_[kLastScriptIdRootIndex] = last_script_id; } #define GC_GREEDY_CHECK() \ ASSERT(!FLAG_gc_greedy || v8::internal::Heap::GarbageCollectionGreedyCheck()) // Calls the FUNCTION_CALL function and retries it up to three times // to guarantee that any allocations performed during the call will // succeed if there's enough memory. // Warning: Do not use the identifiers __object__ or __scope__ in a // call to this macro. #define CALL_AND_RETRY(FUNCTION_CALL, RETURN_VALUE, RETURN_EMPTY) \ do { \ GC_GREEDY_CHECK(); \ Object* __object__ = FUNCTION_CALL; \ if (!__object__->IsFailure()) RETURN_VALUE; \ if (__object__->IsOutOfMemoryFailure()) { \ v8::internal::V8::FatalProcessOutOfMemory("CALL_AND_RETRY_0"); \ } \ if (!__object__->IsRetryAfterGC()) RETURN_EMPTY; \ Heap::CollectGarbage(Failure::cast(__object__)->requested(), \ Failure::cast(__object__)->allocation_space()); \ __object__ = FUNCTION_CALL; \ if (!__object__->IsFailure()) RETURN_VALUE; \ if (__object__->IsOutOfMemoryFailure()) { \ v8::internal::V8::FatalProcessOutOfMemory("CALL_AND_RETRY_1"); \ } \ if (!__object__->IsRetryAfterGC()) RETURN_EMPTY; \ Counters::gc_last_resort_from_handles.Increment(); \ Heap::CollectAllGarbage(false); \ { \ AlwaysAllocateScope __scope__; \ __object__ = FUNCTION_CALL; \ } \ if (!__object__->IsFailure()) RETURN_VALUE; \ if (__object__->IsOutOfMemoryFailure() || \ __object__->IsRetryAfterGC()) { \ /* TODO(1181417): Fix this. */ \ v8::internal::V8::FatalProcessOutOfMemory("CALL_AND_RETRY_2"); \ } \ RETURN_EMPTY; \ } while (false) #define CALL_HEAP_FUNCTION(FUNCTION_CALL, TYPE) \ CALL_AND_RETRY(FUNCTION_CALL, \ return Handle<TYPE>(TYPE::cast(__object__)), \ return Handle<TYPE>()) #define CALL_HEAP_FUNCTION_VOID(FUNCTION_CALL) \ CALL_AND_RETRY(FUNCTION_CALL, return, return) #ifdef DEBUG inline bool Heap::allow_allocation(bool new_state) { bool old = allocation_allowed_; allocation_allowed_ = new_state; return old; } #endif void ExternalStringTable::AddString(String* string) { ASSERT(string->IsExternalString()); if (Heap::InNewSpace(string)) { new_space_strings_.Add(string); } else { old_space_strings_.Add(string); } } void ExternalStringTable::Iterate(ObjectVisitor* v) { if (!new_space_strings_.is_empty()) { Object** start = &new_space_strings_[0]; v->VisitPointers(start, start + new_space_strings_.length()); } if (!old_space_strings_.is_empty()) { Object** start = &old_space_strings_[0]; v->VisitPointers(start, start + old_space_strings_.length()); } } // Verify() is inline to avoid ifdef-s around its calls in release // mode. void ExternalStringTable::Verify() { #ifdef DEBUG for (int i = 0; i < new_space_strings_.length(); ++i) { ASSERT(Heap::InNewSpace(new_space_strings_[i])); ASSERT(new_space_strings_[i] != Heap::raw_unchecked_null_value()); } for (int i = 0; i < old_space_strings_.length(); ++i) { ASSERT(!Heap::InNewSpace(old_space_strings_[i])); ASSERT(old_space_strings_[i] != Heap::raw_unchecked_null_value()); } #endif } void ExternalStringTable::AddOldString(String* string) { ASSERT(string->IsExternalString()); ASSERT(!Heap::InNewSpace(string)); old_space_strings_.Add(string); } void ExternalStringTable::ShrinkNewStrings(int position) { new_space_strings_.Rewind(position); Verify(); } } } // namespace v8::internal #endif // V8_HEAP_INL_H_