// Copyright 2006-2008 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include <stdarg.h> #include "v8.h" #include "conversions-inl.h" #include "factory.h" #include "scanner.h" namespace v8 { namespace internal { int HexValue(uc32 c) { if ('0' <= c && c <= '9') return c - '0'; if ('a' <= c && c <= 'f') return c - 'a' + 10; if ('A' <= c && c <= 'F') return c - 'A' + 10; return -1; } // Provide a common interface to getting a character at a certain // index from a char* or a String object. static inline int GetChar(const char* str, int index) { ASSERT(index >= 0 && index < StrLength(str)); return str[index]; } static inline int GetChar(String* str, int index) { return str->Get(index); } static inline int GetLength(const char* str) { return StrLength(str); } static inline int GetLength(String* str) { return str->length(); } static inline const char* GetCString(const char* str, int index) { return str + index; } static inline const char* GetCString(String* str, int index) { int length = str->length(); char* result = NewArray<char>(length + 1); for (int i = index; i < length; i++) { uc16 c = str->Get(i); if (c <= 127) { result[i - index] = static_cast<char>(c); } else { result[i - index] = 127; // Force number parsing to fail. } } result[length - index] = '\0'; return result; } static inline void ReleaseCString(const char* original, const char* str) { } static inline void ReleaseCString(String* original, const char* str) { DeleteArray(const_cast<char *>(str)); } static inline bool IsSpace(const char* str, int index) { ASSERT(index >= 0 && index < StrLength(str)); return Scanner::kIsWhiteSpace.get(str[index]); } static inline bool IsSpace(String* str, int index) { return Scanner::kIsWhiteSpace.get(str->Get(index)); } static inline bool SubStringEquals(const char* str, int index, const char* other) { return strncmp(str + index, other, strlen(other)) != 0; } static inline bool SubStringEquals(String* str, int index, const char* other) { HandleScope scope; int str_length = str->length(); int other_length = StrLength(other); int end = index + other_length < str_length ? index + other_length : str_length; Handle<String> substring = Factory::NewSubString(Handle<String>(str), index, end); return substring->IsEqualTo(Vector<const char>(other, other_length)); } // Check if a string should be parsed as an octal number. The string // can be either a char* or a String*. template<class S> static bool ShouldParseOctal(S* s, int i) { int index = i; int len = GetLength(s); if (index < len && GetChar(s, index) != '0') return false; // If the first real character (following '0') is not an octal // digit, bail out early. This also takes care of numbers of the // forms 0.xxx and 0exxx by not allowing the first 0 to be // interpreted as an octal. index++; if (index < len) { int d = GetChar(s, index) - '0'; if (d < 0 || d > 7) return false; } else { return false; } // Traverse all digits (including the first). If there is an octal // prefix which is not a part of a longer decimal prefix, we return // true. Otherwise, false is returned. while (index < len) { int d = GetChar(s, index++) - '0'; if (d == 8 || d == 9) return false; if (d < 0 || d > 7) return true; } return true; } extern "C" double gay_strtod(const char* s00, const char** se); // Parse an int from a string starting a given index and in a given // radix. The string can be either a char* or a String*. template <class S> static int InternalStringToInt(S* s, int i, int radix, double* value) { int len = GetLength(s); // Setup limits for computing the value. ASSERT(2 <= radix && radix <= 36); int lim_0 = '0' + (radix < 10 ? radix : 10); int lim_a = 'a' + (radix - 10); int lim_A = 'A' + (radix - 10); // NOTE: The code for computing the value may seem a bit complex at // first glance. It is structured to use 32-bit multiply-and-add // loops as long as possible to avoid loosing precision. double v = 0.0; int j; for (j = i; j < len;) { // Parse the longest part of the string starting at index j // possible while keeping the multiplier, and thus the part // itself, within 32 bits. uint32_t part = 0, multiplier = 1; int k; for (k = j; k < len; k++) { int c = GetChar(s, k); if (c >= '0' && c < lim_0) { c = c - '0'; } else if (c >= 'a' && c < lim_a) { c = c - 'a' + 10; } else if (c >= 'A' && c < lim_A) { c = c - 'A' + 10; } else { break; } // Update the value of the part as long as the multiplier fits // in 32 bits. When we can't guarantee that the next iteration // will not overflow the multiplier, we stop parsing the part // by leaving the loop. static const uint32_t kMaximumMultiplier = 0xffffffffU / 36; uint32_t m = multiplier * radix; if (m > kMaximumMultiplier) break; part = part * radix + c; multiplier = m; ASSERT(multiplier > part); } // Compute the number of part digits. If no digits were parsed; // we're done parsing the entire string. int digits = k - j; if (digits == 0) break; // Update the value and skip the part in the string. ASSERT(multiplier == pow(static_cast<double>(radix), static_cast<double>(digits))); v = v * multiplier + part; j = k; } // If the resulting value is larger than 2^53 the value does not fit // in the mantissa of the double and there is a loss of precision. // When the value is larger than 2^53 the rounding depends on the // code generation. If the code generator spills the double value // it uses 64 bits and if it does not it uses 80 bits. // // If there is a potential for overflow we resort to strtod for // radix 10 numbers to get higher precision. For numbers in another // radix we live with the loss of precision. static const double kPreciseConversionLimit = 9007199254740992.0; if (radix == 10 && v > kPreciseConversionLimit) { const char* cstr = GetCString(s, i); const char* end; v = gay_strtod(cstr, &end); ReleaseCString(s, cstr); } *value = v; return j; } int StringToInt(String* str, int index, int radix, double* value) { return InternalStringToInt(str, index, radix, value); } int StringToInt(const char* str, int index, int radix, double* value) { return InternalStringToInt(const_cast<char*>(str), index, radix, value); } static const double JUNK_STRING_VALUE = OS::nan_value(); // Convert a string to a double value. The string can be either a // char* or a String*. template<class S> static double InternalStringToDouble(S* str, int flags, double empty_string_val) { double result = 0.0; int index = 0; int len = GetLength(str); // Skip leading spaces. while ((index < len) && IsSpace(str, index)) index++; // Is the string empty? if (index >= len) return empty_string_val; // Get the first character. uint16_t first = GetChar(str, index); // Numbers can only start with '-', '+', '.', 'I' (Infinity), or a digit. if (first != '-' && first != '+' && first != '.' && first != 'I' && (first > '9' || first < '0')) { return JUNK_STRING_VALUE; } // Compute sign of result based on first character. int sign = 1; if (first == '-') { sign = -1; index++; // String only containing a '-' are junk chars. if (index == len) return JUNK_STRING_VALUE; } // do we have a hex number? // (since the string is 0-terminated, it's ok to look one char beyond the end) if ((flags & ALLOW_HEX) != 0 && (index + 1) < len && GetChar(str, index) == '0' && (GetChar(str, index + 1) == 'x' || GetChar(str, index + 1) == 'X')) { index += 2; index = StringToInt(str, index, 16, &result); } else if ((flags & ALLOW_OCTALS) != 0 && ShouldParseOctal(str, index)) { // NOTE: We optimistically try to parse the number as an octal (if // we're allowed to), even though this is not as dictated by // ECMA-262. The reason for doing this is compatibility with IE and // Firefox. index = StringToInt(str, index, 8, &result); } else { const char* cstr = GetCString(str, index); const char* end; // Optimistically parse the number and then, if that fails, // check if it might have been {+,-,}Infinity. result = gay_strtod(cstr, &end); ReleaseCString(str, cstr); if (result != 0.0 || end != cstr) { // It appears that strtod worked index += static_cast<int>(end - cstr); } else { // Check for {+,-,}Infinity bool is_negative = (GetChar(str, index) == '-'); if (GetChar(str, index) == '+' || GetChar(str, index) == '-') index++; if (!SubStringEquals(str, index, "Infinity")) return JUNK_STRING_VALUE; result = is_negative ? -V8_INFINITY : V8_INFINITY; index += 8; } } if ((flags & ALLOW_TRAILING_JUNK) == 0) { // skip trailing spaces while ((index < len) && IsSpace(str, index)) index++; // string ending with junk? if (index < len) return JUNK_STRING_VALUE; } return sign * result; } double StringToDouble(String* str, int flags, double empty_string_val) { return InternalStringToDouble(str, flags, empty_string_val); } double StringToDouble(const char* str, int flags, double empty_string_val) { return InternalStringToDouble(str, flags, empty_string_val); } extern "C" char* dtoa(double d, int mode, int ndigits, int* decpt, int* sign, char** rve); extern "C" void freedtoa(char* s); const char* DoubleToCString(double v, Vector<char> buffer) { StringBuilder builder(buffer.start(), buffer.length()); switch (fpclassify(v)) { case FP_NAN: builder.AddString("NaN"); break; case FP_INFINITE: if (v < 0.0) { builder.AddString("-Infinity"); } else { builder.AddString("Infinity"); } break; case FP_ZERO: builder.AddCharacter('0'); break; default: { int decimal_point; int sign; char* decimal_rep = dtoa(v, 0, 0, &decimal_point, &sign, NULL); int length = StrLength(decimal_rep); if (sign) builder.AddCharacter('-'); if (length <= decimal_point && decimal_point <= 21) { // ECMA-262 section 9.8.1 step 6. builder.AddString(decimal_rep); builder.AddPadding('0', decimal_point - length); } else if (0 < decimal_point && decimal_point <= 21) { // ECMA-262 section 9.8.1 step 7. builder.AddSubstring(decimal_rep, decimal_point); builder.AddCharacter('.'); builder.AddString(decimal_rep + decimal_point); } else if (decimal_point <= 0 && decimal_point > -6) { // ECMA-262 section 9.8.1 step 8. builder.AddString("0."); builder.AddPadding('0', -decimal_point); builder.AddString(decimal_rep); } else { // ECMA-262 section 9.8.1 step 9 and 10 combined. builder.AddCharacter(decimal_rep[0]); if (length != 1) { builder.AddCharacter('.'); builder.AddString(decimal_rep + 1); } builder.AddCharacter('e'); builder.AddCharacter((decimal_point >= 0) ? '+' : '-'); int exponent = decimal_point - 1; if (exponent < 0) exponent = -exponent; builder.AddFormatted("%d", exponent); } freedtoa(decimal_rep); } } return builder.Finalize(); } const char* IntToCString(int n, Vector<char> buffer) { bool negative = false; if (n < 0) { // We must not negate the most negative int. if (n == kMinInt) return DoubleToCString(n, buffer); negative = true; n = -n; } // Build the string backwards from the least significant digit. int i = buffer.length(); buffer[--i] = '\0'; do { buffer[--i] = '0' + (n % 10); n /= 10; } while (n); if (negative) buffer[--i] = '-'; return buffer.start() + i; } char* DoubleToFixedCString(double value, int f) { ASSERT(f >= 0); bool negative = false; double abs_value = value; if (value < 0) { abs_value = -value; negative = true; } if (abs_value >= 1e21) { char arr[100]; Vector<char> buffer(arr, ARRAY_SIZE(arr)); return StrDup(DoubleToCString(value, buffer)); } // Find a sufficiently precise decimal representation of n. int decimal_point; int sign; char* decimal_rep = dtoa(abs_value, 3, f, &decimal_point, &sign, NULL); int decimal_rep_length = StrLength(decimal_rep); // Create a representation that is padded with zeros if needed. int zero_prefix_length = 0; int zero_postfix_length = 0; if (decimal_point <= 0) { zero_prefix_length = -decimal_point + 1; decimal_point = 1; } if (zero_prefix_length + decimal_rep_length < decimal_point + f) { zero_postfix_length = decimal_point + f - decimal_rep_length - zero_prefix_length; } unsigned rep_length = zero_prefix_length + decimal_rep_length + zero_postfix_length; StringBuilder rep_builder(rep_length + 1); rep_builder.AddPadding('0', zero_prefix_length); rep_builder.AddString(decimal_rep); rep_builder.AddPadding('0', zero_postfix_length); char* rep = rep_builder.Finalize(); freedtoa(decimal_rep); // Create the result string by appending a minus and putting in a // decimal point if needed. unsigned result_size = decimal_point + f + 2; StringBuilder builder(result_size + 1); if (negative) builder.AddCharacter('-'); builder.AddSubstring(rep, decimal_point); if (f > 0) { builder.AddCharacter('.'); builder.AddSubstring(rep + decimal_point, f); } DeleteArray(rep); return builder.Finalize(); } static char* CreateExponentialRepresentation(char* decimal_rep, int exponent, bool negative, int significant_digits) { bool negative_exponent = false; if (exponent < 0) { negative_exponent = true; exponent = -exponent; } // Leave room in the result for appending a minus, for a period, the // letter 'e', a minus or a plus depending on the exponent, and a // three digit exponent. unsigned result_size = significant_digits + 7; StringBuilder builder(result_size + 1); if (negative) builder.AddCharacter('-'); builder.AddCharacter(decimal_rep[0]); if (significant_digits != 1) { builder.AddCharacter('.'); builder.AddString(decimal_rep + 1); int rep_length = StrLength(decimal_rep); builder.AddPadding('0', significant_digits - rep_length); } builder.AddCharacter('e'); builder.AddCharacter(negative_exponent ? '-' : '+'); builder.AddFormatted("%d", exponent); return builder.Finalize(); } char* DoubleToExponentialCString(double value, int f) { // f might be -1 to signal that f was undefined in JavaScript. ASSERT(f >= -1 && f <= 20); bool negative = false; if (value < 0) { value = -value; negative = true; } // Find a sufficiently precise decimal representation of n. int decimal_point; int sign; char* decimal_rep = NULL; if (f == -1) { decimal_rep = dtoa(value, 0, 0, &decimal_point, &sign, NULL); f = StrLength(decimal_rep) - 1; } else { decimal_rep = dtoa(value, 2, f + 1, &decimal_point, &sign, NULL); } int decimal_rep_length = StrLength(decimal_rep); ASSERT(decimal_rep_length > 0); ASSERT(decimal_rep_length <= f + 1); USE(decimal_rep_length); int exponent = decimal_point - 1; char* result = CreateExponentialRepresentation(decimal_rep, exponent, negative, f+1); freedtoa(decimal_rep); return result; } char* DoubleToPrecisionCString(double value, int p) { ASSERT(p >= 1 && p <= 21); bool negative = false; if (value < 0) { value = -value; negative = true; } // Find a sufficiently precise decimal representation of n. int decimal_point; int sign; char* decimal_rep = dtoa(value, 2, p, &decimal_point, &sign, NULL); int decimal_rep_length = StrLength(decimal_rep); ASSERT(decimal_rep_length <= p); int exponent = decimal_point - 1; char* result = NULL; if (exponent < -6 || exponent >= p) { result = CreateExponentialRepresentation(decimal_rep, exponent, negative, p); } else { // Use fixed notation. // // Leave room in the result for appending a minus, a period and in // the case where decimal_point is not positive for a zero in // front of the period. unsigned result_size = (decimal_point <= 0) ? -decimal_point + p + 3 : p + 2; StringBuilder builder(result_size + 1); if (negative) builder.AddCharacter('-'); if (decimal_point <= 0) { builder.AddString("0."); builder.AddPadding('0', -decimal_point); builder.AddString(decimal_rep); builder.AddPadding('0', p - decimal_rep_length); } else { const int m = Min(decimal_rep_length, decimal_point); builder.AddSubstring(decimal_rep, m); builder.AddPadding('0', decimal_point - decimal_rep_length); if (decimal_point < p) { builder.AddCharacter('.'); const int extra = negative ? 2 : 1; if (decimal_rep_length > decimal_point) { const int len = StrLength(decimal_rep + decimal_point); const int n = Min(len, p - (builder.position() - extra)); builder.AddSubstring(decimal_rep + decimal_point, n); } builder.AddPadding('0', extra + (p - builder.position())); } } result = builder.Finalize(); } freedtoa(decimal_rep); return result; } char* DoubleToRadixCString(double value, int radix) { ASSERT(radix >= 2 && radix <= 36); // Character array used for conversion. static const char chars[] = "0123456789abcdefghijklmnopqrstuvwxyz"; // Buffer for the integer part of the result. 1024 chars is enough // for max integer value in radix 2. We need room for a sign too. static const int kBufferSize = 1100; char integer_buffer[kBufferSize]; integer_buffer[kBufferSize - 1] = '\0'; // Buffer for the decimal part of the result. We only generate up // to kBufferSize - 1 chars for the decimal part. char decimal_buffer[kBufferSize]; decimal_buffer[kBufferSize - 1] = '\0'; // Make sure the value is positive. bool is_negative = value < 0.0; if (is_negative) value = -value; // Get the integer part and the decimal part. double integer_part = floor(value); double decimal_part = value - integer_part; // Convert the integer part starting from the back. Always generate // at least one digit. int integer_pos = kBufferSize - 2; do { integer_buffer[integer_pos--] = chars[static_cast<int>(modulo(integer_part, radix))]; integer_part /= radix; } while (integer_part >= 1.0); // Sanity check. ASSERT(integer_pos > 0); // Add sign if needed. if (is_negative) integer_buffer[integer_pos--] = '-'; // Convert the decimal part. Repeatedly multiply by the radix to // generate the next char. Never generate more than kBufferSize - 1 // chars. // // TODO(1093998): We will often generate a full decimal_buffer of // chars because hitting zero will often not happen. The right // solution would be to continue until the string representation can // be read back and yield the original value. To implement this // efficiently, we probably have to modify dtoa. int decimal_pos = 0; while ((decimal_part > 0.0) && (decimal_pos < kBufferSize - 1)) { decimal_part *= radix; decimal_buffer[decimal_pos++] = chars[static_cast<int>(floor(decimal_part))]; decimal_part -= floor(decimal_part); } decimal_buffer[decimal_pos] = '\0'; // Compute the result size. int integer_part_size = kBufferSize - 2 - integer_pos; // Make room for zero termination. unsigned result_size = integer_part_size + decimal_pos; // If the number has a decimal part, leave room for the period. if (decimal_pos > 0) result_size++; // Allocate result and fill in the parts. StringBuilder builder(result_size + 1); builder.AddSubstring(integer_buffer + integer_pos + 1, integer_part_size); if (decimal_pos > 0) builder.AddCharacter('.'); builder.AddSubstring(decimal_buffer, decimal_pos); return builder.Finalize(); } } } // namespace v8::internal