// Copyright 2008 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "compilation-cache.h" #include "serialize.h" namespace v8 { namespace internal { // The number of sub caches covering the different types to cache. static const int kSubCacheCount = 4; // The number of generations for each sub cache. // The number of ScriptGenerations is carefully chosen based on histograms. // See issue 458: http://code.google.com/p/v8/issues/detail?id=458 static const int kScriptGenerations = 5; static const int kEvalGlobalGenerations = 2; static const int kEvalContextualGenerations = 2; static const int kRegExpGenerations = 2; // Initial size of each compilation cache table allocated. static const int kInitialCacheSize = 64; // The compilation cache consists of several generational sub-caches which uses // this class as a base class. A sub-cache contains a compilation cache tables // for each generation of the sub-cache. Since the same source code string has // different compiled code for scripts and evals, we use separate sub-caches // for different compilation modes, to avoid retrieving the wrong result. class CompilationSubCache { public: explicit CompilationSubCache(int generations): generations_(generations) { tables_ = NewArray<Object*>(generations); } ~CompilationSubCache() { DeleteArray(tables_); } // Get the compilation cache tables for a specific generation. Handle<CompilationCacheTable> GetTable(int generation); // Age the sub-cache by evicting the oldest generation and creating a new // young generation. void Age(); // GC support. void Iterate(ObjectVisitor* v); // Clear this sub-cache evicting all its content. void Clear(); // Number of generations in this sub-cache. inline int generations() { return generations_; } private: int generations_; // Number of generations. Object** tables_; // Compilation cache tables - one for each generation. DISALLOW_IMPLICIT_CONSTRUCTORS(CompilationSubCache); }; // Sub-cache for scripts. class CompilationCacheScript : public CompilationSubCache { public: explicit CompilationCacheScript(int generations) : CompilationSubCache(generations) { } Handle<JSFunction> Lookup(Handle<String> source, Handle<Object> name, int line_offset, int column_offset); void Put(Handle<String> source, Handle<JSFunction> boilerplate); private: bool HasOrigin(Handle<JSFunction> boilerplate, Handle<Object> name, int line_offset, int column_offset); DISALLOW_IMPLICIT_CONSTRUCTORS(CompilationCacheScript); }; // Sub-cache for eval scripts. class CompilationCacheEval: public CompilationSubCache { public: explicit CompilationCacheEval(int generations) : CompilationSubCache(generations) { } Handle<JSFunction> Lookup(Handle<String> source, Handle<Context> context); void Put(Handle<String> source, Handle<Context> context, Handle<JSFunction> boilerplate); DISALLOW_IMPLICIT_CONSTRUCTORS(CompilationCacheEval); }; // Sub-cache for regular expressions. class CompilationCacheRegExp: public CompilationSubCache { public: explicit CompilationCacheRegExp(int generations) : CompilationSubCache(generations) { } Handle<FixedArray> Lookup(Handle<String> source, JSRegExp::Flags flags); void Put(Handle<String> source, JSRegExp::Flags flags, Handle<FixedArray> data); DISALLOW_IMPLICIT_CONSTRUCTORS(CompilationCacheRegExp); }; // Statically allocate all the sub-caches. static CompilationCacheScript script(kScriptGenerations); static CompilationCacheEval eval_global(kEvalGlobalGenerations); static CompilationCacheEval eval_contextual(kEvalContextualGenerations); static CompilationCacheRegExp reg_exp(kRegExpGenerations); static CompilationSubCache* subcaches[kSubCacheCount] = {&script, &eval_global, &eval_contextual, ®_exp}; // Current enable state of the compilation cache. static bool enabled = true; static inline bool IsEnabled() { return FLAG_compilation_cache && enabled; } static Handle<CompilationCacheTable> AllocateTable(int size) { CALL_HEAP_FUNCTION(CompilationCacheTable::Allocate(size), CompilationCacheTable); } Handle<CompilationCacheTable> CompilationSubCache::GetTable(int generation) { ASSERT(generation < generations_); Handle<CompilationCacheTable> result; if (tables_[generation]->IsUndefined()) { result = AllocateTable(kInitialCacheSize); tables_[generation] = *result; } else { CompilationCacheTable* table = CompilationCacheTable::cast(tables_[generation]); result = Handle<CompilationCacheTable>(table); } return result; } void CompilationSubCache::Age() { // Age the generations implicitly killing off the oldest. for (int i = generations_ - 1; i > 0; i--) { tables_[i] = tables_[i - 1]; } // Set the first generation as unborn. tables_[0] = Heap::undefined_value(); } void CompilationSubCache::Iterate(ObjectVisitor* v) { v->VisitPointers(&tables_[0], &tables_[generations_]); } void CompilationSubCache::Clear() { for (int i = 0; i < generations_; i++) { tables_[i] = Heap::undefined_value(); } } // We only re-use a cached function for some script source code if the // script originates from the same place. This is to avoid issues // when reporting errors, etc. bool CompilationCacheScript::HasOrigin(Handle<JSFunction> boilerplate, Handle<Object> name, int line_offset, int column_offset) { Handle<Script> script = Handle<Script>(Script::cast(boilerplate->shared()->script())); // If the script name isn't set, the boilerplate script should have // an undefined name to have the same origin. if (name.is_null()) { return script->name()->IsUndefined(); } // Do the fast bailout checks first. if (line_offset != script->line_offset()->value()) return false; if (column_offset != script->column_offset()->value()) return false; // Check that both names are strings. If not, no match. if (!name->IsString() || !script->name()->IsString()) return false; // Compare the two name strings for equality. return String::cast(*name)->Equals(String::cast(script->name())); } // TODO(245): Need to allow identical code from different contexts to // be cached in the same script generation. Currently the first use // will be cached, but subsequent code from different source / line // won't. Handle<JSFunction> CompilationCacheScript::Lookup(Handle<String> source, Handle<Object> name, int line_offset, int column_offset) { Object* result = NULL; int generation; // Probe the script generation tables. Make sure not to leak handles // into the caller's handle scope. { HandleScope scope; for (generation = 0; generation < generations(); generation++) { Handle<CompilationCacheTable> table = GetTable(generation); Handle<Object> probe(table->Lookup(*source)); if (probe->IsJSFunction()) { Handle<JSFunction> boilerplate = Handle<JSFunction>::cast(probe); // Break when we've found a suitable boilerplate function that // matches the origin. if (HasOrigin(boilerplate, name, line_offset, column_offset)) { result = *boilerplate; break; } } } } static void* script_histogram = StatsTable::CreateHistogram( "V8.ScriptCache", 0, kScriptGenerations, kScriptGenerations + 1); if (script_histogram != NULL) { // The level NUMBER_OF_SCRIPT_GENERATIONS is equivalent to a cache miss. StatsTable::AddHistogramSample(script_histogram, generation); } // Once outside the manacles of the handle scope, we need to recheck // to see if we actually found a cached script. If so, we return a // handle created in the caller's handle scope. if (result != NULL) { Handle<JSFunction> boilerplate(JSFunction::cast(result)); ASSERT(HasOrigin(boilerplate, name, line_offset, column_offset)); // If the script was found in a later generation, we promote it to // the first generation to let it survive longer in the cache. if (generation != 0) Put(source, boilerplate); Counters::compilation_cache_hits.Increment(); return boilerplate; } else { Counters::compilation_cache_misses.Increment(); return Handle<JSFunction>::null(); } } void CompilationCacheScript::Put(Handle<String> source, Handle<JSFunction> boilerplate) { HandleScope scope; ASSERT(boilerplate->IsBoilerplate()); Handle<CompilationCacheTable> table = GetTable(0); CALL_HEAP_FUNCTION_VOID(table->Put(*source, *boilerplate)); } Handle<JSFunction> CompilationCacheEval::Lookup(Handle<String> source, Handle<Context> context) { // Make sure not to leak the table into the surrounding handle // scope. Otherwise, we risk keeping old tables around even after // having cleared the cache. Object* result = NULL; int generation; { HandleScope scope; for (generation = 0; generation < generations(); generation++) { Handle<CompilationCacheTable> table = GetTable(generation); result = table->LookupEval(*source, *context); if (result->IsJSFunction()) { break; } } } if (result->IsJSFunction()) { Handle<JSFunction> boilerplate(JSFunction::cast(result)); if (generation != 0) { Put(source, context, boilerplate); } Counters::compilation_cache_hits.Increment(); return boilerplate; } else { Counters::compilation_cache_misses.Increment(); return Handle<JSFunction>::null(); } } void CompilationCacheEval::Put(Handle<String> source, Handle<Context> context, Handle<JSFunction> boilerplate) { HandleScope scope; ASSERT(boilerplate->IsBoilerplate()); Handle<CompilationCacheTable> table = GetTable(0); CALL_HEAP_FUNCTION_VOID(table->PutEval(*source, *context, *boilerplate)); } Handle<FixedArray> CompilationCacheRegExp::Lookup(Handle<String> source, JSRegExp::Flags flags) { // Make sure not to leak the table into the surrounding handle // scope. Otherwise, we risk keeping old tables around even after // having cleared the cache. Object* result = NULL; int generation; { HandleScope scope; for (generation = 0; generation < generations(); generation++) { Handle<CompilationCacheTable> table = GetTable(generation); result = table->LookupRegExp(*source, flags); if (result->IsFixedArray()) { break; } } } if (result->IsFixedArray()) { Handle<FixedArray> data(FixedArray::cast(result)); if (generation != 0) { Put(source, flags, data); } Counters::compilation_cache_hits.Increment(); return data; } else { Counters::compilation_cache_misses.Increment(); return Handle<FixedArray>::null(); } } void CompilationCacheRegExp::Put(Handle<String> source, JSRegExp::Flags flags, Handle<FixedArray> data) { HandleScope scope; Handle<CompilationCacheTable> table = GetTable(0); CALL_HEAP_FUNCTION_VOID(table->PutRegExp(*source, flags, *data)); } Handle<JSFunction> CompilationCache::LookupScript(Handle<String> source, Handle<Object> name, int line_offset, int column_offset) { if (!IsEnabled()) { return Handle<JSFunction>::null(); } return script.Lookup(source, name, line_offset, column_offset); } Handle<JSFunction> CompilationCache::LookupEval(Handle<String> source, Handle<Context> context, bool is_global) { if (!IsEnabled()) { return Handle<JSFunction>::null(); } Handle<JSFunction> result; if (is_global) { result = eval_global.Lookup(source, context); } else { result = eval_contextual.Lookup(source, context); } return result; } Handle<FixedArray> CompilationCache::LookupRegExp(Handle<String> source, JSRegExp::Flags flags) { if (!IsEnabled()) { return Handle<FixedArray>::null(); } return reg_exp.Lookup(source, flags); } void CompilationCache::PutScript(Handle<String> source, Handle<JSFunction> boilerplate) { if (!IsEnabled()) { return; } ASSERT(boilerplate->IsBoilerplate()); script.Put(source, boilerplate); } void CompilationCache::PutEval(Handle<String> source, Handle<Context> context, bool is_global, Handle<JSFunction> boilerplate) { if (!IsEnabled()) { return; } HandleScope scope; ASSERT(boilerplate->IsBoilerplate()); if (is_global) { eval_global.Put(source, context, boilerplate); } else { eval_contextual.Put(source, context, boilerplate); } } void CompilationCache::PutRegExp(Handle<String> source, JSRegExp::Flags flags, Handle<FixedArray> data) { if (!IsEnabled()) { return; } reg_exp.Put(source, flags, data); } void CompilationCache::Clear() { for (int i = 0; i < kSubCacheCount; i++) { subcaches[i]->Clear(); } } void CompilationCache::Iterate(ObjectVisitor* v) { for (int i = 0; i < kSubCacheCount; i++) { subcaches[i]->Iterate(v); } } void CompilationCache::MarkCompactPrologue() { for (int i = 0; i < kSubCacheCount; i++) { subcaches[i]->Age(); } } void CompilationCache::Enable() { enabled = true; } void CompilationCache::Disable() { enabled = false; Clear(); } } } // namespace v8::internal