#!/usr/bin/env perl # Ascetic x86_64 AT&T to MASM assembler translator by <appro>. # # Why AT&T to MASM and not vice versa? Several reasons. Because AT&T # format is way easier to parse. Because it's simpler to "gear" from # Unix ABI to Windows one [see cross-reference "card" at the end of # file]. Because Linux targets were available first... # # In addition the script also "distills" code suitable for GNU # assembler, so that it can be compiled with more rigid assemblers, # such as Solaris /usr/ccs/bin/as. # # This translator is not designed to convert *arbitrary* assembler # code from AT&T format to MASM one. It's designed to convert just # enough to provide for dual-ABI OpenSSL modules development... # There *are* limitations and you might have to modify your assembler # code or this script to achieve the desired result... # # Currently recognized limitations: # # - can't use multiple ops per line; # - indirect calls and jumps are not supported; # # Dual-ABI styling rules. # # 1. Adhere to Unix register and stack layout [see the end for # explanation]. # 2. Forget about "red zone," stick to more traditional blended # stack frame allocation. If volatile storage is actually required # that is. If not, just leave the stack as is. # 3. Functions tagged with ".type name,@function" get crafted with # unified Win64 prologue and epilogue automatically. If you want # to take care of ABI differences yourself, tag functions as # ".type name,@abi-omnipotent" instead. # 4. To optimize the Win64 prologue you can specify number of input # arguments as ".type name,@function,N." Keep in mind that if N is # larger than 6, then you *have to* write "abi-omnipotent" code, # because >6 cases can't be addressed with unified prologue. # 5. Name local labels as .L*, do *not* use dynamic labels such as 1: # (sorry about latter). # 6. Don't use [or hand-code with .byte] "rep ret." "ret" mnemonic is # required to identify the spots, where to inject Win64 epilogue! # But on the pros, it's then prefixed with rep automatically:-) # 7. Due to MASM limitations [and certain general counter-intuitivity # of ip-relative addressing] generation of position-independent # code is assisted by synthetic directive, .picmeup, which puts # address of the *next* instruction into target register. # # Example 1: # .picmeup %rax # lea .Label-.(%rax),%rax # Example 2: # .picmeup %rcx # .Lpic_point: # ... # lea .Label-.Lpic_point(%rcx),%rbp my $output = shift; { my ($stddev,$stdino,@junk)=stat(STDOUT); my ($outdev,$outino,@junk)=stat($output); open STDOUT,">$output" || die "can't open $output: $!" if ($stddev!=$outdev || $stdino!=$outino); } my $masmref=8 + 50727*2**-32; # 8.00.50727 shipped with VS2005 my $masm=$masmref if ($output =~ /\.asm/); if ($masm && `ml64 2>&1` =~ m/Version ([0-9]+)\.([0-9]+)(\.([0-9]+))?/) { $masm=$1 + $2*2**-16 + $4*2**-32; } my $current_segment; my $current_function; { package opcode; # pick up opcodes sub re { my $self = shift; # single instance in enough... local *line = shift; undef $ret; if ($line =~ /^([a-z][a-z0-9]*)/i) { $self->{op} = $1; $ret = $self; $line = substr($line,@+[0]); $line =~ s/^\s+//; undef $self->{sz}; if ($self->{op} =~ /^(movz)b.*/) { # movz is pain... $self->{op} = $1; $self->{sz} = "b"; } elsif ($self->{op} =~ /call/) { $self->{sz} = "" } elsif ($self->{op} =~ /([a-z]{3,})([qlwb])$/) { $self->{op} = $1; $self->{sz} = $2; } } $ret; } sub size { my $self = shift; my $sz = shift; $self->{sz} = $sz if (defined($sz) && !defined($self->{sz})); $self->{sz}; } sub out { my $self = shift; if (!$masm) { if ($self->{op} eq "movz") { # movz is pain... sprintf "%s%s%s",$self->{op},$self->{sz},shift; } elsif ($self->{op} =~ /^set/) { "$self->{op}"; } elsif ($self->{op} eq "ret") { ".byte 0xf3,0xc3"; } else { "$self->{op}$self->{sz}"; } } else { $self->{op} =~ s/^movz/movzx/; if ($self->{op} eq "ret") { $self->{op} = ""; if ($current_function->{abi} eq "svr4") { $self->{op} = "mov rdi,QWORD PTR 8[rsp]\t;WIN64 epilogue\n\t". "mov rsi,QWORD PTR 16[rsp]\n\t"; } $self->{op} .= "DB\t0F3h,0C3h\t\t;repret"; } $self->{op}; } } } { package const; # pick up constants, which start with $ sub re { my $self = shift; # single instance in enough... local *line = shift; undef $ret; if ($line =~ /^\$([^,]+)/) { $self->{value} = $1; $ret = $self; $line = substr($line,@+[0]); $line =~ s/^\s+//; } $ret; } sub out { my $self = shift; if (!$masm) { # Solaris /usr/ccs/bin/as can't handle multiplications # in $self->{value} $self->{value} =~ s/(?<![0-9a-f])(0[x0-9a-f]+)/oct($1)/egi; $self->{value} =~ s/([0-9]+\s*[\*\/\%]\s*[0-9]+)/eval($1)/eg; sprintf "\$%s",$self->{value}; } else { $self->{value} =~ s/0x([0-9a-f]+)/0$1h/ig; sprintf "%s",$self->{value}; } } } { package ea; # pick up effective addresses: expr(%reg,%reg,scale) sub re { my $self = shift; # single instance in enough... local *line = shift; undef $ret; if ($line =~ /^([^\(,]*)\(([%\w,]+)\)/) { $self->{label} = $1; ($self->{base},$self->{index},$self->{scale})=split(/,/,$2); $self->{scale} = 1 if (!defined($self->{scale})); $ret = $self; $line = substr($line,@+[0]); $line =~ s/^\s+//; $self->{base} =~ s/^%//; $self->{index} =~ s/^%// if (defined($self->{index})); } $ret; } sub size {} sub out { my $self = shift; my $sz = shift; # Silently convert all EAs to 64-bit. This is required for # elder GNU assembler and results in more compact code, # *but* most importantly AES module depends on this feature! $self->{index} =~ s/^[er](.?[0-9xpi])[d]?$/r\1/; $self->{base} =~ s/^[er](.?[0-9xpi])[d]?$/r\1/; if (!$masm) { # Solaris /usr/ccs/bin/as can't handle multiplications # in $self->{label} use integer; $self->{label} =~ s/(?<![0-9a-f])(0[x0-9a-f]+)/oct($1)/egi; $self->{label} =~ s/([0-9]+\s*[\*\/\%]\s*[0-9]+)/eval($1)/eg; $self->{label} =~ s/([0-9]+)/$1<<32>>32/eg; if (defined($self->{index})) { sprintf "%s(%%%s,%%%s,%d)", $self->{label},$self->{base}, $self->{index},$self->{scale}; } else { sprintf "%s(%%%s)", $self->{label},$self->{base}; } } else { %szmap = ( b=>"BYTE", w=>"WORD", l=>"DWORD", q=>"QWORD" ); $self->{label} =~ s/\./\$/g; $self->{label} =~ s/0x([0-9a-f]+)/0$1h/ig; $self->{label} = "($self->{label})" if ($self->{label} =~ /[\*\+\-\/]/); if (defined($self->{index})) { sprintf "%s PTR %s[%s*%d+%s]",$szmap{$sz}, $self->{label}, $self->{index},$self->{scale}, $self->{base}; } elsif ($self->{base} eq "rip") { sprintf "%s PTR %s",$szmap{$sz},$self->{label}; } else { sprintf "%s PTR %s[%s]",$szmap{$sz}, $self->{label},$self->{base}; } } } } { package register; # pick up registers, which start with %. sub re { my $class = shift; # muliple instances... my $self = {}; local *line = shift; undef $ret; if ($line =~ /^%(\w+)/) { bless $self,$class; $self->{value} = $1; $ret = $self; $line = substr($line,@+[0]); $line =~ s/^\s+//; } $ret; } sub size { my $self = shift; undef $ret; if ($self->{value} =~ /^r[\d]+b$/i) { $ret="b"; } elsif ($self->{value} =~ /^r[\d]+w$/i) { $ret="w"; } elsif ($self->{value} =~ /^r[\d]+d$/i) { $ret="l"; } elsif ($self->{value} =~ /^r[\w]+$/i) { $ret="q"; } elsif ($self->{value} =~ /^[a-d][hl]$/i){ $ret="b"; } elsif ($self->{value} =~ /^[\w]{2}l$/i) { $ret="b"; } elsif ($self->{value} =~ /^[\w]{2}$/i) { $ret="w"; } elsif ($self->{value} =~ /^e[a-z]{2}$/i){ $ret="l"; } $ret; } sub out { my $self = shift; sprintf $masm?"%s":"%%%s",$self->{value}; } } { package label; # pick up labels, which end with : sub re { my $self = shift; # single instance is enough... local *line = shift; undef $ret; if ($line =~ /(^[\.\w]+\:)/) { $self->{value} = $1; $ret = $self; $line = substr($line,@+[0]); $line =~ s/^\s+//; $self->{value} =~ s/\.L/\$L/ if ($masm); } $ret; } sub out { my $self = shift; if (!$masm) { $self->{value}; } elsif ($self->{value} ne "$current_function->{name}:") { $self->{value}; } elsif ($current_function->{abi} eq "svr4") { my $func = "$current_function->{name} PROC\n". " mov QWORD PTR 8[rsp],rdi\t;WIN64 prologue\n". " mov QWORD PTR 16[rsp],rsi\n"; my $narg = $current_function->{narg}; $narg=6 if (!defined($narg)); $func .= " mov rdi,rcx\n" if ($narg>0); $func .= " mov rsi,rdx\n" if ($narg>1); $func .= " mov rdx,r8\n" if ($narg>2); $func .= " mov rcx,r9\n" if ($narg>3); $func .= " mov r8,QWORD PTR 40[rsp]\n" if ($narg>4); $func .= " mov r9,QWORD PTR 48[rsp]\n" if ($narg>5); $func .= "\n"; } else { "$current_function->{name} PROC"; } } } { package expr; # pick up expressioins sub re { my $self = shift; # single instance is enough... local *line = shift; undef $ret; if ($line =~ /(^[^,]+)/) { $self->{value} = $1; $ret = $self; $line = substr($line,@+[0]); $line =~ s/^\s+//; $self->{value} =~ s/\.L/\$L/g if ($masm); } $ret; } sub out { my $self = shift; $self->{value}; } } { package directive; # pick up directives, which start with . sub re { my $self = shift; # single instance is enough... local *line = shift; undef $ret; my $dir; my %opcode = # lea 2f-1f(%rip),%dst; 1: nop; 2: ( "%rax"=>0x01058d48, "%rcx"=>0x010d8d48, "%rdx"=>0x01158d48, "%rbx"=>0x011d8d48, "%rsp"=>0x01258d48, "%rbp"=>0x012d8d48, "%rsi"=>0x01358d48, "%rdi"=>0x013d8d48, "%r8" =>0x01058d4c, "%r9" =>0x010d8d4c, "%r10"=>0x01158d4c, "%r11"=>0x011d8d4c, "%r12"=>0x01258d4c, "%r13"=>0x012d8d4c, "%r14"=>0x01358d4c, "%r15"=>0x013d8d4c ); if ($line =~ /^\s*(\.\w+)/) { if (!$masm) { $self->{value} = $1; $line =~ s/\@abi\-omnipotent/\@function/; $line =~ s/\@function.*/\@function/; if ($line =~ /\.picmeup\s+(%r[\w]+)/i) { $self->{value} = sprintf "\t.long\t0x%x,0x90000000",$opcode{$1}; } elsif ($line =~ /\.asciz\s+"(.*)"$/) { $self->{value} = ".byte\t".join(",",unpack("C*",$1),0); } elsif ($line =~ /\.extern/) { $self->{value} = ""; # swallow extern } else { $self->{value} = $line; } $line = ""; return $self; } $dir = $1; $ret = $self; undef $self->{value}; $line = substr($line,@+[0]); $line =~ s/^\s+//; SWITCH: for ($dir) { /\.(text)/ && do { my $v=undef; $v="$current_segment\tENDS\n" if ($current_segment); $current_segment = "_$1\$"; $current_segment =~ tr/[a-z]/[A-Z]/; $v.="$current_segment\tSEGMENT "; $v.=$masm>=$masmref ? "ALIGN(64)" : "PAGE"; $v.=" 'CODE'"; $self->{value} = $v; last; }; /\.extern/ && do { $self->{value} = "EXTRN\t".$line.":BYTE"; last; }; /\.globl/ && do { $self->{value} = "PUBLIC\t".$line; last; }; /\.type/ && do { ($sym,$type,$narg) = split(',',$line); if ($type eq "\@function") { undef $current_function; $current_function->{name} = $sym; $current_function->{abi} = "svr4"; $current_function->{narg} = $narg; } elsif ($type eq "\@abi-omnipotent") { undef $current_function; $current_function->{name} = $sym; } last; }; /\.size/ && do { if (defined($current_function)) { $self->{value}="$current_function->{name}\tENDP"; undef $current_function; } last; }; /\.align/ && do { $self->{value} = "ALIGN\t".$line; last; }; /\.(byte|value|long|quad)/ && do { my @arr = split(',',$line); my $sz = substr($1,0,1); my $last = pop(@arr); my $conv = sub { my $var=shift; if ($var=~s/0x([0-9a-f]+)/0$1h/i) { $var; } else { sprintf"0%Xh",$var; } }; $sz =~ tr/bvlq/BWDQ/; $self->{value} = "\tD$sz\t"; for (@arr) { $self->{value} .= &$conv($_).","; } $self->{value} .= &$conv($last); last; }; /\.picmeup/ && do { $self->{value} = sprintf"\tDD\t 0%Xh,090000000h",$opcode{$line}; last; }; /\.asciz/ && do { if ($line =~ /^"(.*)"$/) { my @str=unpack("C*",$1); push @str,0; while ($#str>15) { $self->{value}.="DB\t" .join(",",@str[0..15])."\n"; foreach (0..15) { shift @str; } } $self->{value}.="DB\t" .join(",",@str) if (@str); } last; }; } $line = ""; } $ret; } sub out { my $self = shift; $self->{value}; } } while($line=<>) { chomp($line); $line =~ s|[#!].*$||; # get rid of asm-style comments... $line =~ s|/\*.*\*/||; # ... and C-style comments... $line =~ s|^\s+||; # ... and skip white spaces in beginning undef $label; undef $opcode; undef $dst; undef $src; undef $sz; if ($label=label->re(\$line)) { print $label->out(); } if (directive->re(\$line)) { printf "%s",directive->out(); } elsif ($opcode=opcode->re(\$line)) { ARGUMENT: { if ($src=register->re(\$line)) { opcode->size($src->size()); } elsif ($src=const->re(\$line)) { } elsif ($src=ea->re(\$line)) { } elsif ($src=expr->re(\$line)) { } last ARGUMENT if ($line !~ /^,/); $line = substr($line,1); $line =~ s/^\s+//; if ($dst=register->re(\$line)) { opcode->size($dst->size()); } elsif ($dst=const->re(\$line)) { } elsif ($dst=ea->re(\$line)) { } } # ARGUMENT: $sz=opcode->size(); if (defined($dst)) { if (!$masm) { printf "\t%s\t%s,%s", $opcode->out($dst->size()), $src->out($sz),$dst->out($sz); } else { printf "\t%s\t%s,%s", $opcode->out(), $dst->out($sz),$src->out($sz); } } elsif (defined($src)) { printf "\t%s\t%s",$opcode->out(),$src->out($sz); } else { printf "\t%s",$opcode->out(); } } print $line,"\n"; } print "\n$current_segment\tENDS\nEND\n" if ($masm); close STDOUT; ################################################# # Cross-reference x86_64 ABI "card" # # Unix Win64 # %rax * * # %rbx - - # %rcx #4 #1 # %rdx #3 #2 # %rsi #2 - # %rdi #1 - # %rbp - - # %rsp - - # %r8 #5 #3 # %r9 #6 #4 # %r10 * * # %r11 * * # %r12 - - # %r13 - - # %r14 - - # %r15 - - # # (*) volatile register # (-) preserved by callee # (#) Nth argument, volatile # # In Unix terms top of stack is argument transfer area for arguments # which could not be accomodated in registers. Or in other words 7th # [integer] argument resides at 8(%rsp) upon function entry point. # 128 bytes above %rsp constitute a "red zone" which is not touched # by signal handlers and can be used as temporal storage without # allocating a frame. # # In Win64 terms N*8 bytes on top of stack is argument transfer area, # which belongs to/can be overwritten by callee. N is the number of # arguments passed to callee, *but* not less than 4! This means that # upon function entry point 5th argument resides at 40(%rsp), as well # as that 32 bytes from 8(%rsp) can always be used as temporal # storage [without allocating a frame]. One can actually argue that # one can assume a "red zone" above stack pointer under Win64 as well. # Point is that at apparently no occasion Windows kernel would alter # the area above user stack pointer in true asynchronous manner... # # All the above means that if assembler programmer adheres to Unix # register and stack layout, but disregards the "red zone" existense, # it's possible to use following prologue and epilogue to "gear" from # Unix to Win64 ABI in leaf functions with not more than 6 arguments. # # omnipotent_function: # ifdef WIN64 # movq %rdi,8(%rsp) # movq %rsi,16(%rsp) # movq %rcx,%rdi ; if 1st argument is actually present # movq %rdx,%rsi ; if 2nd argument is actually ... # movq %r8,%rdx ; if 3rd argument is ... # movq %r9,%rcx ; if 4th argument ... # movq 40(%rsp),%r8 ; if 5th ... # movq 48(%rsp),%r9 ; if 6th ... # endif # ... # ifdef WIN64 # movq 8(%rsp),%rdi # movq 16(%rsp),%rsi # endif # ret