/* crypto/bn/bn.h */ /* Copyright (C) 1995-1997 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. * * Portions of the attached software ("Contribution") are developed by * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. * * The Contribution is licensed pursuant to the Eric Young open source * license provided above. * * The binary polynomial arithmetic software is originally written by * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems Laboratories. * */ #ifndef HEADER_BN_H #define HEADER_BN_H #include <openssl/e_os2.h> #ifndef OPENSSL_NO_FP_API #include <stdio.h> /* FILE */ #endif #include <openssl/ossl_typ.h> #ifdef __cplusplus extern "C" { #endif /* These preprocessor symbols control various aspects of the bignum headers and * library code. They're not defined by any "normal" configuration, as they are * intended for development and testing purposes. NB: defining all three can be * useful for debugging application code as well as openssl itself. * * BN_DEBUG - turn on various debugging alterations to the bignum code * BN_DEBUG_RAND - uses random poisoning of unused words to trip up * mismanagement of bignum internals. You must also define BN_DEBUG. */ /* #define BN_DEBUG */ /* #define BN_DEBUG_RAND */ #define BN_MUL_COMBA #define BN_SQR_COMBA #define BN_RECURSION /* This next option uses the C libraries (2 word)/(1 word) function. * If it is not defined, I use my C version (which is slower). * The reason for this flag is that when the particular C compiler * library routine is used, and the library is linked with a different * compiler, the library is missing. This mostly happens when the * library is built with gcc and then linked using normal cc. This would * be a common occurrence because gcc normally produces code that is * 2 times faster than system compilers for the big number stuff. * For machines with only one compiler (or shared libraries), this should * be on. Again this in only really a problem on machines * using "long long's", are 32bit, and are not using my assembler code. */ #if defined(OPENSSL_SYS_MSDOS) || defined(OPENSSL_SYS_WINDOWS) || \ defined(OPENSSL_SYS_WIN32) || defined(linux) # ifndef BN_DIV2W # define BN_DIV2W # endif #endif /* assuming long is 64bit - this is the DEC Alpha * unsigned long long is only 64 bits :-(, don't define * BN_LLONG for the DEC Alpha */ #ifdef SIXTY_FOUR_BIT_LONG #define BN_ULLONG unsigned long long #define BN_ULONG unsigned long #define BN_LONG long #define BN_BITS 128 #define BN_BYTES 8 #define BN_BITS2 64 #define BN_BITS4 32 #define BN_MASK (0xffffffffffffffffffffffffffffffffLL) #define BN_MASK2 (0xffffffffffffffffL) #define BN_MASK2l (0xffffffffL) #define BN_MASK2h (0xffffffff00000000L) #define BN_MASK2h1 (0xffffffff80000000L) #define BN_TBIT (0x8000000000000000L) #define BN_DEC_CONV (10000000000000000000UL) #define BN_DEC_FMT1 "%lu" #define BN_DEC_FMT2 "%019lu" #define BN_DEC_NUM 19 #endif /* This is where the long long data type is 64 bits, but long is 32. * For machines where there are 64bit registers, this is the mode to use. * IRIX, on R4000 and above should use this mode, along with the relevant * assembler code :-). Do NOT define BN_LLONG. */ #ifdef SIXTY_FOUR_BIT #undef BN_LLONG #undef BN_ULLONG #define BN_ULONG unsigned long long #define BN_LONG long long #define BN_BITS 128 #define BN_BYTES 8 #define BN_BITS2 64 #define BN_BITS4 32 #define BN_MASK2 (0xffffffffffffffffLL) #define BN_MASK2l (0xffffffffL) #define BN_MASK2h (0xffffffff00000000LL) #define BN_MASK2h1 (0xffffffff80000000LL) #define BN_TBIT (0x8000000000000000LL) #define BN_DEC_CONV (10000000000000000000ULL) #define BN_DEC_FMT1 "%llu" #define BN_DEC_FMT2 "%019llu" #define BN_DEC_NUM 19 #endif #ifdef THIRTY_TWO_BIT #ifdef BN_LLONG # if defined(OPENSSL_SYS_WIN32) && !defined(__GNUC__) # define BN_ULLONG unsigned __int64 # else # define BN_ULLONG unsigned long long # endif #endif #define BN_ULONG unsigned long #define BN_LONG long #define BN_BITS 64 #define BN_BYTES 4 #define BN_BITS2 32 #define BN_BITS4 16 #ifdef OPENSSL_SYS_WIN32 /* VC++ doesn't like the LL suffix */ #define BN_MASK (0xffffffffffffffffL) #else #define BN_MASK (0xffffffffffffffffLL) #endif #define BN_MASK2 (0xffffffffL) #define BN_MASK2l (0xffff) #define BN_MASK2h1 (0xffff8000L) #define BN_MASK2h (0xffff0000L) #define BN_TBIT (0x80000000L) #define BN_DEC_CONV (1000000000L) #define BN_DEC_FMT1 "%lu" #define BN_DEC_FMT2 "%09lu" #define BN_DEC_NUM 9 #endif #ifdef SIXTEEN_BIT #ifndef BN_DIV2W #define BN_DIV2W #endif #define BN_ULLONG unsigned long #define BN_ULONG unsigned short #define BN_LONG short #define BN_BITS 32 #define BN_BYTES 2 #define BN_BITS2 16 #define BN_BITS4 8 #define BN_MASK (0xffffffff) #define BN_MASK2 (0xffff) #define BN_MASK2l (0xff) #define BN_MASK2h1 (0xff80) #define BN_MASK2h (0xff00) #define BN_TBIT (0x8000) #define BN_DEC_CONV (100000) #define BN_DEC_FMT1 "%u" #define BN_DEC_FMT2 "%05u" #define BN_DEC_NUM 5 #endif #ifdef EIGHT_BIT #ifndef BN_DIV2W #define BN_DIV2W #endif #define BN_ULLONG unsigned short #define BN_ULONG unsigned char #define BN_LONG char #define BN_BITS 16 #define BN_BYTES 1 #define BN_BITS2 8 #define BN_BITS4 4 #define BN_MASK (0xffff) #define BN_MASK2 (0xff) #define BN_MASK2l (0xf) #define BN_MASK2h1 (0xf8) #define BN_MASK2h (0xf0) #define BN_TBIT (0x80) #define BN_DEC_CONV (100) #define BN_DEC_FMT1 "%u" #define BN_DEC_FMT2 "%02u" #define BN_DEC_NUM 2 #endif #define BN_DEFAULT_BITS 1280 #define BN_FLG_MALLOCED 0x01 #define BN_FLG_STATIC_DATA 0x02 #define BN_FLG_CONSTTIME 0x04 /* avoid leaking exponent information through timing, * BN_mod_exp_mont() will call BN_mod_exp_mont_consttime, * BN_div() will call BN_div_no_branch, * BN_mod_inverse() will call BN_mod_inverse_no_branch. */ #ifndef OPENSSL_NO_DEPRECATED #define BN_FLG_EXP_CONSTTIME BN_FLG_CONSTTIME /* deprecated name for the flag */ /* avoid leaking exponent information through timings * (BN_mod_exp_mont() will call BN_mod_exp_mont_consttime) */ #endif #ifndef OPENSSL_NO_DEPRECATED #define BN_FLG_FREE 0x8000 /* used for debuging */ #endif #define BN_set_flags(b,n) ((b)->flags|=(n)) #define BN_get_flags(b,n) ((b)->flags&(n)) /* get a clone of a BIGNUM with changed flags, for *temporary* use only * (the two BIGNUMs cannot not be used in parallel!) */ #define BN_with_flags(dest,b,n) ((dest)->d=(b)->d, \ (dest)->top=(b)->top, \ (dest)->dmax=(b)->dmax, \ (dest)->neg=(b)->neg, \ (dest)->flags=(((dest)->flags & BN_FLG_MALLOCED) \ | ((b)->flags & ~BN_FLG_MALLOCED) \ | BN_FLG_STATIC_DATA \ | (n))) /* Already declared in ossl_typ.h */ #if 0 typedef struct bignum_st BIGNUM; /* Used for temp variables (declaration hidden in bn_lcl.h) */ typedef struct bignum_ctx BN_CTX; typedef struct bn_blinding_st BN_BLINDING; typedef struct bn_mont_ctx_st BN_MONT_CTX; typedef struct bn_recp_ctx_st BN_RECP_CTX; typedef struct bn_gencb_st BN_GENCB; #endif struct bignum_st { BN_ULONG *d; /* Pointer to an array of 'BN_BITS2' bit chunks. */ int top; /* Index of last used d +1. */ /* The next are internal book keeping for bn_expand. */ int dmax; /* Size of the d array. */ int neg; /* one if the number is negative */ int flags; }; /* Used for montgomery multiplication */ struct bn_mont_ctx_st { int ri; /* number of bits in R */ BIGNUM RR; /* used to convert to montgomery form */ BIGNUM N; /* The modulus */ BIGNUM Ni; /* R*(1/R mod N) - N*Ni = 1 * (Ni is only stored for bignum algorithm) */ #if 0 /* OpenSSL 0.9.9 preview: */ BN_ULONG n0[2];/* least significant word(s) of Ni */ #else BN_ULONG n0; /* least significant word of Ni */ #endif int flags; }; /* Used for reciprocal division/mod functions * It cannot be shared between threads */ struct bn_recp_ctx_st { BIGNUM N; /* the divisor */ BIGNUM Nr; /* the reciprocal */ int num_bits; int shift; int flags; }; /* Used for slow "generation" functions. */ struct bn_gencb_st { unsigned int ver; /* To handle binary (in)compatibility */ void *arg; /* callback-specific data */ union { /* if(ver==1) - handles old style callbacks */ void (*cb_1)(int, int, void *); /* if(ver==2) - new callback style */ int (*cb_2)(int, int, BN_GENCB *); } cb; }; /* Wrapper function to make using BN_GENCB easier, */ int BN_GENCB_call(BN_GENCB *cb, int a, int b); /* Macro to populate a BN_GENCB structure with an "old"-style callback */ #define BN_GENCB_set_old(gencb, callback, cb_arg) { \ BN_GENCB *tmp_gencb = (gencb); \ tmp_gencb->ver = 1; \ tmp_gencb->arg = (cb_arg); \ tmp_gencb->cb.cb_1 = (callback); } /* Macro to populate a BN_GENCB structure with a "new"-style callback */ #define BN_GENCB_set(gencb, callback, cb_arg) { \ BN_GENCB *tmp_gencb = (gencb); \ tmp_gencb->ver = 2; \ tmp_gencb->arg = (cb_arg); \ tmp_gencb->cb.cb_2 = (callback); } #define BN_prime_checks 0 /* default: select number of iterations based on the size of the number */ /* number of Miller-Rabin iterations for an error rate of less than 2^-80 * for random 'b'-bit input, b >= 100 (taken from table 4.4 in the Handbook * of Applied Cryptography [Menezes, van Oorschot, Vanstone; CRC Press 1996]; * original paper: Damgaard, Landrock, Pomerance: Average case error estimates * for the strong probable prime test. -- Math. Comp. 61 (1993) 177-194) */ #define BN_prime_checks_for_size(b) ((b) >= 1300 ? 2 : \ (b) >= 850 ? 3 : \ (b) >= 650 ? 4 : \ (b) >= 550 ? 5 : \ (b) >= 450 ? 6 : \ (b) >= 400 ? 7 : \ (b) >= 350 ? 8 : \ (b) >= 300 ? 9 : \ (b) >= 250 ? 12 : \ (b) >= 200 ? 15 : \ (b) >= 150 ? 18 : \ /* b >= 100 */ 27) #define BN_num_bytes(a) ((BN_num_bits(a)+7)/8) /* Note that BN_abs_is_word didn't work reliably for w == 0 until 0.9.8 */ #define BN_abs_is_word(a,w) ((((a)->top == 1) && ((a)->d[0] == (BN_ULONG)(w))) || \ (((w) == 0) && ((a)->top == 0))) #define BN_is_zero(a) ((a)->top == 0) #define BN_is_one(a) (BN_abs_is_word((a),1) && !(a)->neg) #define BN_is_word(a,w) (BN_abs_is_word((a),(w)) && (!(w) || !(a)->neg)) #define BN_is_odd(a) (((a)->top > 0) && ((a)->d[0] & 1)) #define BN_one(a) (BN_set_word((a),1)) #define BN_zero_ex(a) \ do { \ BIGNUM *_tmp_bn = (a); \ _tmp_bn->top = 0; \ _tmp_bn->neg = 0; \ } while(0) #ifdef OPENSSL_NO_DEPRECATED #define BN_zero(a) BN_zero_ex(a) #else #define BN_zero(a) (BN_set_word((a),0)) #endif const BIGNUM *BN_value_one(void); char * BN_options(void); BN_CTX *BN_CTX_new(void); #ifndef OPENSSL_NO_DEPRECATED void BN_CTX_init(BN_CTX *c); #endif void BN_CTX_free(BN_CTX *c); void BN_CTX_start(BN_CTX *ctx); BIGNUM *BN_CTX_get(BN_CTX *ctx); void BN_CTX_end(BN_CTX *ctx); int BN_rand(BIGNUM *rnd, int bits, int top,int bottom); int BN_pseudo_rand(BIGNUM *rnd, int bits, int top,int bottom); int BN_rand_range(BIGNUM *rnd, const BIGNUM *range); int BN_pseudo_rand_range(BIGNUM *rnd, const BIGNUM *range); int BN_num_bits(const BIGNUM *a); int BN_num_bits_word(BN_ULONG); BIGNUM *BN_new(void); void BN_init(BIGNUM *); void BN_clear_free(BIGNUM *a); BIGNUM *BN_copy(BIGNUM *a, const BIGNUM *b); void BN_swap(BIGNUM *a, BIGNUM *b); BIGNUM *BN_bin2bn(const unsigned char *s,int len,BIGNUM *ret); int BN_bn2bin(const BIGNUM *a, unsigned char *to); BIGNUM *BN_mpi2bn(const unsigned char *s,int len,BIGNUM *ret); int BN_bn2mpi(const BIGNUM *a, unsigned char *to); int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); int BN_usub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); int BN_uadd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); int BN_sqr(BIGNUM *r, const BIGNUM *a,BN_CTX *ctx); /** BN_set_negative sets sign of a BIGNUM * \param b pointer to the BIGNUM object * \param n 0 if the BIGNUM b should be positive and a value != 0 otherwise */ void BN_set_negative(BIGNUM *b, int n); /** BN_is_negative returns 1 if the BIGNUM is negative * \param a pointer to the BIGNUM object * \return 1 if a < 0 and 0 otherwise */ #define BN_is_negative(a) ((a)->neg != 0) int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx); #define BN_mod(rem,m,d,ctx) BN_div(NULL,(rem),(m),(d),(ctx)) int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx); int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, BN_CTX *ctx); int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m); int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, BN_CTX *ctx); int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m); int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, BN_CTX *ctx); int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m); int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m, BN_CTX *ctx); int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m); BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w); BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w); int BN_mul_word(BIGNUM *a, BN_ULONG w); int BN_add_word(BIGNUM *a, BN_ULONG w); int BN_sub_word(BIGNUM *a, BN_ULONG w); int BN_set_word(BIGNUM *a, BN_ULONG w); BN_ULONG BN_get_word(const BIGNUM *a); int BN_cmp(const BIGNUM *a, const BIGNUM *b); void BN_free(BIGNUM *a); int BN_is_bit_set(const BIGNUM *a, int n); int BN_lshift(BIGNUM *r, const BIGNUM *a, int n); int BN_lshift1(BIGNUM *r, const BIGNUM *a); int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,BN_CTX *ctx); int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m,BN_CTX *ctx); int BN_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx); int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont); int BN_mod_exp_mont_word(BIGNUM *r, BN_ULONG a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx); int BN_mod_exp2_mont(BIGNUM *r, const BIGNUM *a1, const BIGNUM *p1, const BIGNUM *a2, const BIGNUM *p2,const BIGNUM *m, BN_CTX *ctx,BN_MONT_CTX *m_ctx); int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m,BN_CTX *ctx); int BN_mask_bits(BIGNUM *a,int n); #ifndef OPENSSL_NO_FP_API int BN_print_fp(FILE *fp, const BIGNUM *a); #endif #ifdef HEADER_BIO_H int BN_print(BIO *fp, const BIGNUM *a); #else int BN_print(void *fp, const BIGNUM *a); #endif int BN_reciprocal(BIGNUM *r, const BIGNUM *m, int len, BN_CTX *ctx); int BN_rshift(BIGNUM *r, const BIGNUM *a, int n); int BN_rshift1(BIGNUM *r, const BIGNUM *a); void BN_clear(BIGNUM *a); BIGNUM *BN_dup(const BIGNUM *a); int BN_ucmp(const BIGNUM *a, const BIGNUM *b); int BN_set_bit(BIGNUM *a, int n); int BN_clear_bit(BIGNUM *a, int n); char * BN_bn2hex(const BIGNUM *a); char * BN_bn2dec(const BIGNUM *a); int BN_hex2bn(BIGNUM **a, const char *str); int BN_dec2bn(BIGNUM **a, const char *str); int BN_gcd(BIGNUM *r,const BIGNUM *a,const BIGNUM *b,BN_CTX *ctx); int BN_kronecker(const BIGNUM *a,const BIGNUM *b,BN_CTX *ctx); /* returns -2 for error */ BIGNUM *BN_mod_inverse(BIGNUM *ret, const BIGNUM *a, const BIGNUM *n,BN_CTX *ctx); BIGNUM *BN_mod_sqrt(BIGNUM *ret, const BIGNUM *a, const BIGNUM *n,BN_CTX *ctx); /* Deprecated versions */ #ifndef OPENSSL_NO_DEPRECATED BIGNUM *BN_generate_prime(BIGNUM *ret,int bits,int safe, const BIGNUM *add, const BIGNUM *rem, void (*callback)(int,int,void *),void *cb_arg); int BN_is_prime(const BIGNUM *p,int nchecks, void (*callback)(int,int,void *), BN_CTX *ctx,void *cb_arg); int BN_is_prime_fasttest(const BIGNUM *p,int nchecks, void (*callback)(int,int,void *),BN_CTX *ctx,void *cb_arg, int do_trial_division); #endif /* !defined(OPENSSL_NO_DEPRECATED) */ /* Newer versions */ int BN_generate_prime_ex(BIGNUM *ret,int bits,int safe, const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb); int BN_is_prime_ex(const BIGNUM *p,int nchecks, BN_CTX *ctx, BN_GENCB *cb); int BN_is_prime_fasttest_ex(const BIGNUM *p,int nchecks, BN_CTX *ctx, int do_trial_division, BN_GENCB *cb); int BN_X931_generate_Xpq(BIGNUM *Xp, BIGNUM *Xq, int nbits, BN_CTX *ctx); int BN_X931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, const BIGNUM *Xp, const BIGNUM *Xp1, const BIGNUM *Xp2, const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb); int BN_X931_generate_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, BIGNUM *Xp1, BIGNUM *Xp2, const BIGNUM *Xp, const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb); BN_MONT_CTX *BN_MONT_CTX_new(void ); void BN_MONT_CTX_init(BN_MONT_CTX *ctx); int BN_mod_mul_montgomery(BIGNUM *r,const BIGNUM *a,const BIGNUM *b, BN_MONT_CTX *mont, BN_CTX *ctx); #define BN_to_montgomery(r,a,mont,ctx) BN_mod_mul_montgomery(\ (r),(a),&((mont)->RR),(mont),(ctx)) int BN_from_montgomery(BIGNUM *r,const BIGNUM *a, BN_MONT_CTX *mont, BN_CTX *ctx); void BN_MONT_CTX_free(BN_MONT_CTX *mont); int BN_MONT_CTX_set(BN_MONT_CTX *mont,const BIGNUM *mod,BN_CTX *ctx); BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to,BN_MONT_CTX *from); BN_MONT_CTX *BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, int lock, const BIGNUM *mod, BN_CTX *ctx); /* BN_BLINDING flags */ #define BN_BLINDING_NO_UPDATE 0x00000001 #define BN_BLINDING_NO_RECREATE 0x00000002 BN_BLINDING *BN_BLINDING_new(const BIGNUM *A, const BIGNUM *Ai, /* const */ BIGNUM *mod); void BN_BLINDING_free(BN_BLINDING *b); int BN_BLINDING_update(BN_BLINDING *b,BN_CTX *ctx); int BN_BLINDING_convert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx); int BN_BLINDING_invert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx); int BN_BLINDING_convert_ex(BIGNUM *n, BIGNUM *r, BN_BLINDING *b, BN_CTX *); int BN_BLINDING_invert_ex(BIGNUM *n, const BIGNUM *r, BN_BLINDING *b, BN_CTX *); unsigned long BN_BLINDING_get_thread_id(const BN_BLINDING *); void BN_BLINDING_set_thread_id(BN_BLINDING *, unsigned long); unsigned long BN_BLINDING_get_flags(const BN_BLINDING *); void BN_BLINDING_set_flags(BN_BLINDING *, unsigned long); BN_BLINDING *BN_BLINDING_create_param(BN_BLINDING *b, const BIGNUM *e, /* const */ BIGNUM *m, BN_CTX *ctx, int (*bn_mod_exp)(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx), BN_MONT_CTX *m_ctx); #ifndef OPENSSL_NO_DEPRECATED void BN_set_params(int mul,int high,int low,int mont); int BN_get_params(int which); /* 0, mul, 1 high, 2 low, 3 mont */ #endif void BN_RECP_CTX_init(BN_RECP_CTX *recp); BN_RECP_CTX *BN_RECP_CTX_new(void); void BN_RECP_CTX_free(BN_RECP_CTX *recp); int BN_RECP_CTX_set(BN_RECP_CTX *recp,const BIGNUM *rdiv,BN_CTX *ctx); int BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y, BN_RECP_CTX *recp,BN_CTX *ctx); int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx); int BN_div_recp(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, BN_RECP_CTX *recp, BN_CTX *ctx); /* Functions for arithmetic over binary polynomials represented by BIGNUMs. * * The BIGNUM::neg property of BIGNUMs representing binary polynomials is * ignored. * * Note that input arguments are not const so that their bit arrays can * be expanded to the appropriate size if needed. */ int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); /*r = a + b*/ #define BN_GF2m_sub(r, a, b) BN_GF2m_add(r, a, b) int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p); /*r=a mod p*/ int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx); /* r = (a * b) mod p */ int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); /* r = (a * a) mod p */ int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx); /* r = (1 / b) mod p */ int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx); /* r = (a / b) mod p */ int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx); /* r = (a ^ b) mod p */ int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); /* r = sqrt(a) mod p */ int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); /* r^2 + r = a mod p */ #define BN_GF2m_cmp(a, b) BN_ucmp((a), (b)) /* Some functions allow for representation of the irreducible polynomials * as an unsigned int[], say p. The irreducible f(t) is then of the form: * t^p[0] + t^p[1] + ... + t^p[k] * where m = p[0] > p[1] > ... > p[k] = 0. */ int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[]); /* r = a mod p */ int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsigned int p[], BN_CTX *ctx); /* r = (a * b) mod p */ int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_CTX *ctx); /* r = (a * a) mod p */ int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *b, const unsigned int p[], BN_CTX *ctx); /* r = (1 / b) mod p */ int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsigned int p[], BN_CTX *ctx); /* r = (a / b) mod p */ int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsigned int p[], BN_CTX *ctx); /* r = (a ^ b) mod p */ int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_CTX *ctx); /* r = sqrt(a) mod p */ int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_CTX *ctx); /* r^2 + r = a mod p */ int BN_GF2m_poly2arr(const BIGNUM *a, unsigned int p[], int max); int BN_GF2m_arr2poly(const unsigned int p[], BIGNUM *a); /* faster mod functions for the 'NIST primes' * 0 <= a < p^2 */ int BN_nist_mod_192(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); int BN_nist_mod_224(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); int BN_nist_mod_256(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); int BN_nist_mod_384(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); int BN_nist_mod_521(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); const BIGNUM *BN_get0_nist_prime_192(void); const BIGNUM *BN_get0_nist_prime_224(void); const BIGNUM *BN_get0_nist_prime_256(void); const BIGNUM *BN_get0_nist_prime_384(void); const BIGNUM *BN_get0_nist_prime_521(void); /* library internal functions */ #define bn_expand(a,bits) ((((((bits+BN_BITS2-1))/BN_BITS2)) <= (a)->dmax)?\ (a):bn_expand2((a),(bits+BN_BITS2-1)/BN_BITS2)) #define bn_wexpand(a,words) (((words) <= (a)->dmax)?(a):bn_expand2((a),(words))) BIGNUM *bn_expand2(BIGNUM *a, int words); #ifndef OPENSSL_NO_DEPRECATED BIGNUM *bn_dup_expand(const BIGNUM *a, int words); /* unused */ #endif /* Bignum consistency macros * There is one "API" macro, bn_fix_top(), for stripping leading zeroes from * bignum data after direct manipulations on the data. There is also an * "internal" macro, bn_check_top(), for verifying that there are no leading * zeroes. Unfortunately, some auditing is required due to the fact that * bn_fix_top() has become an overabused duct-tape because bignum data is * occasionally passed around in an inconsistent state. So the following * changes have been made to sort this out; * - bn_fix_top()s implementation has been moved to bn_correct_top() * - if BN_DEBUG isn't defined, bn_fix_top() maps to bn_correct_top(), and * bn_check_top() is as before. * - if BN_DEBUG *is* defined; * - bn_check_top() tries to pollute unused words even if the bignum 'top' is * consistent. (ed: only if BN_DEBUG_RAND is defined) * - bn_fix_top() maps to bn_check_top() rather than "fixing" anything. * The idea is to have debug builds flag up inconsistent bignums when they * occur. If that occurs in a bn_fix_top(), we examine the code in question; if * the use of bn_fix_top() was appropriate (ie. it follows directly after code * that manipulates the bignum) it is converted to bn_correct_top(), and if it * was not appropriate, we convert it permanently to bn_check_top() and track * down the cause of the bug. Eventually, no internal code should be using the * bn_fix_top() macro. External applications and libraries should try this with * their own code too, both in terms of building against the openssl headers * with BN_DEBUG defined *and* linking with a version of OpenSSL built with it * defined. This not only improves external code, it provides more test * coverage for openssl's own code. */ #ifdef BN_DEBUG /* We only need assert() when debugging */ #include <assert.h> #ifdef BN_DEBUG_RAND /* To avoid "make update" cvs wars due to BN_DEBUG, use some tricks */ #ifndef RAND_pseudo_bytes int RAND_pseudo_bytes(unsigned char *buf,int num); #define BN_DEBUG_TRIX #endif #define bn_pollute(a) \ do { \ const BIGNUM *_bnum1 = (a); \ if(_bnum1->top < _bnum1->dmax) { \ unsigned char _tmp_char; \ /* We cast away const without the compiler knowing, any \ * *genuinely* constant variables that aren't mutable \ * wouldn't be constructed with top!=dmax. */ \ BN_ULONG *_not_const; \ memcpy(&_not_const, &_bnum1->d, sizeof(BN_ULONG*)); \ RAND_pseudo_bytes(&_tmp_char, 1); \ memset((unsigned char *)(_not_const + _bnum1->top), _tmp_char, \ (_bnum1->dmax - _bnum1->top) * sizeof(BN_ULONG)); \ } \ } while(0) #ifdef BN_DEBUG_TRIX #undef RAND_pseudo_bytes #endif #else #define bn_pollute(a) #endif #define bn_check_top(a) \ do { \ const BIGNUM *_bnum2 = (a); \ if (_bnum2 != NULL) { \ assert((_bnum2->top == 0) || \ (_bnum2->d[_bnum2->top - 1] != 0)); \ bn_pollute(_bnum2); \ } \ } while(0) #define bn_fix_top(a) bn_check_top(a) #else /* !BN_DEBUG */ #define bn_pollute(a) #define bn_check_top(a) #define bn_fix_top(a) bn_correct_top(a) #endif #define bn_correct_top(a) \ { \ BN_ULONG *ftl; \ if ((a)->top > 0) \ { \ for (ftl= &((a)->d[(a)->top-1]); (a)->top > 0; (a)->top--) \ if (*(ftl--)) break; \ } \ bn_pollute(a); \ } BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w); BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w); void bn_sqr_words(BN_ULONG *rp, const BN_ULONG *ap, int num); BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d); BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,int num); BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,int num); /* Primes from RFC 2409 */ BIGNUM *get_rfc2409_prime_768(BIGNUM *bn); BIGNUM *get_rfc2409_prime_1024(BIGNUM *bn); /* Primes from RFC 3526 */ BIGNUM *get_rfc3526_prime_1536(BIGNUM *bn); BIGNUM *get_rfc3526_prime_2048(BIGNUM *bn); BIGNUM *get_rfc3526_prime_3072(BIGNUM *bn); BIGNUM *get_rfc3526_prime_4096(BIGNUM *bn); BIGNUM *get_rfc3526_prime_6144(BIGNUM *bn); BIGNUM *get_rfc3526_prime_8192(BIGNUM *bn); int BN_bntest_rand(BIGNUM *rnd, int bits, int top,int bottom); /* BEGIN ERROR CODES */ /* The following lines are auto generated by the script mkerr.pl. Any changes * made after this point may be overwritten when the script is next run. */ void ERR_load_BN_strings(void); /* Error codes for the BN functions. */ /* Function codes. */ #define BN_F_BNRAND 127 #define BN_F_BN_BLINDING_CONVERT_EX 100 #define BN_F_BN_BLINDING_CREATE_PARAM 128 #define BN_F_BN_BLINDING_INVERT_EX 101 #define BN_F_BN_BLINDING_NEW 102 #define BN_F_BN_BLINDING_UPDATE 103 #define BN_F_BN_BN2DEC 104 #define BN_F_BN_BN2HEX 105 #define BN_F_BN_CTX_GET 116 #define BN_F_BN_CTX_NEW 106 #define BN_F_BN_CTX_START 129 #define BN_F_BN_DIV 107 #define BN_F_BN_DIV_NO_BRANCH 138 #define BN_F_BN_DIV_RECP 130 #define BN_F_BN_EXP 123 #define BN_F_BN_EXPAND2 108 #define BN_F_BN_EXPAND_INTERNAL 120 #define BN_F_BN_GF2M_MOD 131 #define BN_F_BN_GF2M_MOD_EXP 132 #define BN_F_BN_GF2M_MOD_MUL 133 #define BN_F_BN_GF2M_MOD_SOLVE_QUAD 134 #define BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR 135 #define BN_F_BN_GF2M_MOD_SQR 136 #define BN_F_BN_GF2M_MOD_SQRT 137 #define BN_F_BN_MOD_EXP2_MONT 118 #define BN_F_BN_MOD_EXP_MONT 109 #define BN_F_BN_MOD_EXP_MONT_CONSTTIME 124 #define BN_F_BN_MOD_EXP_MONT_WORD 117 #define BN_F_BN_MOD_EXP_RECP 125 #define BN_F_BN_MOD_EXP_SIMPLE 126 #define BN_F_BN_MOD_INVERSE 110 #define BN_F_BN_MOD_INVERSE_NO_BRANCH 139 #define BN_F_BN_MOD_LSHIFT_QUICK 119 #define BN_F_BN_MOD_MUL_RECIPROCAL 111 #define BN_F_BN_MOD_SQRT 121 #define BN_F_BN_MPI2BN 112 #define BN_F_BN_NEW 113 #define BN_F_BN_RAND 114 #define BN_F_BN_RAND_RANGE 122 #define BN_F_BN_USUB 115 /* Reason codes. */ #define BN_R_ARG2_LT_ARG3 100 #define BN_R_BAD_RECIPROCAL 101 #define BN_R_BIGNUM_TOO_LONG 114 #define BN_R_CALLED_WITH_EVEN_MODULUS 102 #define BN_R_DIV_BY_ZERO 103 #define BN_R_ENCODING_ERROR 104 #define BN_R_EXPAND_ON_STATIC_BIGNUM_DATA 105 #define BN_R_INPUT_NOT_REDUCED 110 #define BN_R_INVALID_LENGTH 106 #define BN_R_INVALID_RANGE 115 #define BN_R_NOT_A_SQUARE 111 #define BN_R_NOT_INITIALIZED 107 #define BN_R_NO_INVERSE 108 #define BN_R_NO_SOLUTION 116 #define BN_R_P_IS_NOT_PRIME 112 #define BN_R_TOO_MANY_ITERATIONS 113 #define BN_R_TOO_MANY_TEMPORARY_VARIABLES 109 #ifdef __cplusplus } #endif #endif