/* ----------------------------------------------------------------------- ffi.c - Copyright (c) 2000, 2007 Software AG Copyright (c) 2008 Red Hat, Inc S390 Foreign Function Interface Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the ``Software''), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ----------------------------------------------------------------------- */ /*====================================================================*/ /* Includes */ /* -------- */ /*====================================================================*/ #include <ffi.h> #include <ffi_common.h> #include <stdlib.h> #include <stdio.h> /*====================== End of Includes =============================*/ /*====================================================================*/ /* Defines */ /* ------- */ /*====================================================================*/ /* Maximum number of GPRs available for argument passing. */ #define MAX_GPRARGS 5 /* Maximum number of FPRs available for argument passing. */ #ifdef __s390x__ #define MAX_FPRARGS 4 #else #define MAX_FPRARGS 2 #endif /* Round to multiple of 16. */ #define ROUND_SIZE(size) (((size) + 15) & ~15) /* If these values change, sysv.S must be adapted! */ #define FFI390_RET_VOID 0 #define FFI390_RET_STRUCT 1 #define FFI390_RET_FLOAT 2 #define FFI390_RET_DOUBLE 3 #define FFI390_RET_INT32 4 #define FFI390_RET_INT64 5 /*===================== End of Defines ===============================*/ /*====================================================================*/ /* Prototypes */ /* ---------- */ /*====================================================================*/ static void ffi_prep_args (unsigned char *, extended_cif *); void #if __GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ > 2) __attribute__ ((visibility ("hidden"))) #endif ffi_closure_helper_SYSV (ffi_closure *, unsigned long *, unsigned long long *, unsigned long *); /*====================== End of Prototypes ===========================*/ /*====================================================================*/ /* Externals */ /* --------- */ /*====================================================================*/ extern void ffi_call_SYSV(unsigned, extended_cif *, void (*)(unsigned char *, extended_cif *), unsigned, void *, void (*fn)(void)); extern void ffi_closure_SYSV(void); /*====================== End of Externals ============================*/ /*====================================================================*/ /* */ /* Name - ffi_check_struct_type. */ /* */ /* Function - Determine if a structure can be passed within a */ /* general purpose or floating point register. */ /* */ /*====================================================================*/ static int ffi_check_struct_type (ffi_type *arg) { size_t size = arg->size; /* If the struct has just one element, look at that element to find out whether to consider the struct as floating point. */ while (arg->type == FFI_TYPE_STRUCT && arg->elements[0] && !arg->elements[1]) arg = arg->elements[0]; /* Structs of size 1, 2, 4, and 8 are passed in registers, just like the corresponding int/float types. */ switch (size) { case 1: return FFI_TYPE_UINT8; case 2: return FFI_TYPE_UINT16; case 4: if (arg->type == FFI_TYPE_FLOAT) return FFI_TYPE_FLOAT; else return FFI_TYPE_UINT32; case 8: if (arg->type == FFI_TYPE_DOUBLE) return FFI_TYPE_DOUBLE; else return FFI_TYPE_UINT64; default: break; } /* Other structs are passed via a pointer to the data. */ return FFI_TYPE_POINTER; } /*======================== End of Routine ============================*/ /*====================================================================*/ /* */ /* Name - ffi_prep_args. */ /* */ /* Function - Prepare parameters for call to function. */ /* */ /* ffi_prep_args is called by the assembly routine once stack space */ /* has been allocated for the function's arguments. */ /* */ /*====================================================================*/ static void ffi_prep_args (unsigned char *stack, extended_cif *ecif) { /* The stack space will be filled with those areas: FPR argument register save area (highest addresses) GPR argument register save area temporary struct copies overflow argument area (lowest addresses) We set up the following pointers: p_fpr: bottom of the FPR area (growing upwards) p_gpr: bottom of the GPR area (growing upwards) p_ov: bottom of the overflow area (growing upwards) p_struct: top of the struct copy area (growing downwards) All areas are kept aligned to twice the word size. */ int gpr_off = ecif->cif->bytes; int fpr_off = gpr_off + ROUND_SIZE (MAX_GPRARGS * sizeof (long)); unsigned long long *p_fpr = (unsigned long long *)(stack + fpr_off); unsigned long *p_gpr = (unsigned long *)(stack + gpr_off); unsigned char *p_struct = (unsigned char *)p_gpr; unsigned long *p_ov = (unsigned long *)stack; int n_fpr = 0; int n_gpr = 0; int n_ov = 0; ffi_type **ptr; void **p_argv = ecif->avalue; int i; /* If we returning a structure then we set the first parameter register to the address of where we are returning this structure. */ if (ecif->cif->flags == FFI390_RET_STRUCT) p_gpr[n_gpr++] = (unsigned long) ecif->rvalue; /* Now for the arguments. */ for (ptr = ecif->cif->arg_types, i = ecif->cif->nargs; i > 0; i--, ptr++, p_argv++) { void *arg = *p_argv; int type = (*ptr)->type; #if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE /* 16-byte long double is passed like a struct. */ if (type == FFI_TYPE_LONGDOUBLE) type = FFI_TYPE_STRUCT; #endif /* Check how a structure type is passed. */ if (type == FFI_TYPE_STRUCT) { type = ffi_check_struct_type (*ptr); /* If we pass the struct via pointer, copy the data. */ if (type == FFI_TYPE_POINTER) { p_struct -= ROUND_SIZE ((*ptr)->size); memcpy (p_struct, (char *)arg, (*ptr)->size); arg = &p_struct; } } /* Now handle all primitive int/pointer/float data types. */ switch (type) { case FFI_TYPE_DOUBLE: if (n_fpr < MAX_FPRARGS) p_fpr[n_fpr++] = *(unsigned long long *) arg; else #ifdef __s390x__ p_ov[n_ov++] = *(unsigned long *) arg; #else p_ov[n_ov++] = ((unsigned long *) arg)[0], p_ov[n_ov++] = ((unsigned long *) arg)[1]; #endif break; case FFI_TYPE_FLOAT: if (n_fpr < MAX_FPRARGS) p_fpr[n_fpr++] = (long long) *(unsigned int *) arg << 32; else p_ov[n_ov++] = *(unsigned int *) arg; break; case FFI_TYPE_POINTER: if (n_gpr < MAX_GPRARGS) p_gpr[n_gpr++] = (unsigned long)*(unsigned char **) arg; else p_ov[n_ov++] = (unsigned long)*(unsigned char **) arg; break; case FFI_TYPE_UINT64: case FFI_TYPE_SINT64: #ifdef __s390x__ if (n_gpr < MAX_GPRARGS) p_gpr[n_gpr++] = *(unsigned long *) arg; else p_ov[n_ov++] = *(unsigned long *) arg; #else if (n_gpr == MAX_GPRARGS-1) n_gpr = MAX_GPRARGS; if (n_gpr < MAX_GPRARGS) p_gpr[n_gpr++] = ((unsigned long *) arg)[0], p_gpr[n_gpr++] = ((unsigned long *) arg)[1]; else p_ov[n_ov++] = ((unsigned long *) arg)[0], p_ov[n_ov++] = ((unsigned long *) arg)[1]; #endif break; case FFI_TYPE_UINT32: if (n_gpr < MAX_GPRARGS) p_gpr[n_gpr++] = *(unsigned int *) arg; else p_ov[n_ov++] = *(unsigned int *) arg; break; case FFI_TYPE_INT: case FFI_TYPE_SINT32: if (n_gpr < MAX_GPRARGS) p_gpr[n_gpr++] = *(signed int *) arg; else p_ov[n_ov++] = *(signed int *) arg; break; case FFI_TYPE_UINT16: if (n_gpr < MAX_GPRARGS) p_gpr[n_gpr++] = *(unsigned short *) arg; else p_ov[n_ov++] = *(unsigned short *) arg; break; case FFI_TYPE_SINT16: if (n_gpr < MAX_GPRARGS) p_gpr[n_gpr++] = *(signed short *) arg; else p_ov[n_ov++] = *(signed short *) arg; break; case FFI_TYPE_UINT8: if (n_gpr < MAX_GPRARGS) p_gpr[n_gpr++] = *(unsigned char *) arg; else p_ov[n_ov++] = *(unsigned char *) arg; break; case FFI_TYPE_SINT8: if (n_gpr < MAX_GPRARGS) p_gpr[n_gpr++] = *(signed char *) arg; else p_ov[n_ov++] = *(signed char *) arg; break; default: FFI_ASSERT (0); break; } } } /*======================== End of Routine ============================*/ /*====================================================================*/ /* */ /* Name - ffi_prep_cif_machdep. */ /* */ /* Function - Perform machine dependent CIF processing. */ /* */ /*====================================================================*/ ffi_status ffi_prep_cif_machdep(ffi_cif *cif) { size_t struct_size = 0; int n_gpr = 0; int n_fpr = 0; int n_ov = 0; ffi_type **ptr; int i; /* Determine return value handling. */ switch (cif->rtype->type) { /* Void is easy. */ case FFI_TYPE_VOID: cif->flags = FFI390_RET_VOID; break; /* Structures are returned via a hidden pointer. */ case FFI_TYPE_STRUCT: cif->flags = FFI390_RET_STRUCT; n_gpr++; /* We need one GPR to pass the pointer. */ break; /* Floating point values are returned in fpr 0. */ case FFI_TYPE_FLOAT: cif->flags = FFI390_RET_FLOAT; break; case FFI_TYPE_DOUBLE: cif->flags = FFI390_RET_DOUBLE; break; #if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE case FFI_TYPE_LONGDOUBLE: cif->flags = FFI390_RET_STRUCT; n_gpr++; break; #endif /* Integer values are returned in gpr 2 (and gpr 3 for 64-bit values on 31-bit machines). */ case FFI_TYPE_UINT64: case FFI_TYPE_SINT64: cif->flags = FFI390_RET_INT64; break; case FFI_TYPE_POINTER: case FFI_TYPE_INT: case FFI_TYPE_UINT32: case FFI_TYPE_SINT32: case FFI_TYPE_UINT16: case FFI_TYPE_SINT16: case FFI_TYPE_UINT8: case FFI_TYPE_SINT8: /* These are to be extended to word size. */ #ifdef __s390x__ cif->flags = FFI390_RET_INT64; #else cif->flags = FFI390_RET_INT32; #endif break; default: FFI_ASSERT (0); break; } /* Now for the arguments. */ for (ptr = cif->arg_types, i = cif->nargs; i > 0; i--, ptr++) { int type = (*ptr)->type; #if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE /* 16-byte long double is passed like a struct. */ if (type == FFI_TYPE_LONGDOUBLE) type = FFI_TYPE_STRUCT; #endif /* Check how a structure type is passed. */ if (type == FFI_TYPE_STRUCT) { type = ffi_check_struct_type (*ptr); /* If we pass the struct via pointer, we must reserve space to copy its data for proper call-by-value semantics. */ if (type == FFI_TYPE_POINTER) struct_size += ROUND_SIZE ((*ptr)->size); } /* Now handle all primitive int/float data types. */ switch (type) { /* The first MAX_FPRARGS floating point arguments go in FPRs, the rest overflow to the stack. */ case FFI_TYPE_DOUBLE: if (n_fpr < MAX_FPRARGS) n_fpr++; else n_ov += sizeof (double) / sizeof (long); break; case FFI_TYPE_FLOAT: if (n_fpr < MAX_FPRARGS) n_fpr++; else n_ov++; break; /* On 31-bit machines, 64-bit integers are passed in GPR pairs, if one is still available, or else on the stack. If only one register is free, skip the register (it won't be used for any subsequent argument either). */ #ifndef __s390x__ case FFI_TYPE_UINT64: case FFI_TYPE_SINT64: if (n_gpr == MAX_GPRARGS-1) n_gpr = MAX_GPRARGS; if (n_gpr < MAX_GPRARGS) n_gpr += 2; else n_ov += 2; break; #endif /* Everything else is passed in GPRs (until MAX_GPRARGS have been used) or overflows to the stack. */ default: if (n_gpr < MAX_GPRARGS) n_gpr++; else n_ov++; break; } } /* Total stack space as required for overflow arguments and temporary structure copies. */ cif->bytes = ROUND_SIZE (n_ov * sizeof (long)) + struct_size; return FFI_OK; } /*======================== End of Routine ============================*/ /*====================================================================*/ /* */ /* Name - ffi_call. */ /* */ /* Function - Call the FFI routine. */ /* */ /*====================================================================*/ void ffi_call(ffi_cif *cif, void (*fn)(void), void *rvalue, void **avalue) { int ret_type = cif->flags; extended_cif ecif; ecif.cif = cif; ecif.avalue = avalue; ecif.rvalue = rvalue; /* If we don't have a return value, we need to fake one. */ if (rvalue == NULL) { if (ret_type == FFI390_RET_STRUCT) ecif.rvalue = alloca (cif->rtype->size); else ret_type = FFI390_RET_VOID; } switch (cif->abi) { case FFI_SYSV: ffi_call_SYSV (cif->bytes, &ecif, ffi_prep_args, ret_type, ecif.rvalue, fn); break; default: FFI_ASSERT (0); break; } } /*======================== End of Routine ============================*/ /*====================================================================*/ /* */ /* Name - ffi_closure_helper_SYSV. */ /* */ /* Function - Call a FFI closure target function. */ /* */ /*====================================================================*/ void ffi_closure_helper_SYSV (ffi_closure *closure, unsigned long *p_gpr, unsigned long long *p_fpr, unsigned long *p_ov) { unsigned long long ret_buffer; void *rvalue = &ret_buffer; void **avalue; void **p_arg; int n_gpr = 0; int n_fpr = 0; int n_ov = 0; ffi_type **ptr; int i; /* Allocate buffer for argument list pointers. */ p_arg = avalue = alloca (closure->cif->nargs * sizeof (void *)); /* If we returning a structure, pass the structure address directly to the target function. Otherwise, have the target function store the return value to the GPR save area. */ if (closure->cif->flags == FFI390_RET_STRUCT) rvalue = (void *) p_gpr[n_gpr++]; /* Now for the arguments. */ for (ptr = closure->cif->arg_types, i = closure->cif->nargs; i > 0; i--, p_arg++, ptr++) { int deref_struct_pointer = 0; int type = (*ptr)->type; #if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE /* 16-byte long double is passed like a struct. */ if (type == FFI_TYPE_LONGDOUBLE) type = FFI_TYPE_STRUCT; #endif /* Check how a structure type is passed. */ if (type == FFI_TYPE_STRUCT) { type = ffi_check_struct_type (*ptr); /* If we pass the struct via pointer, remember to retrieve the pointer later. */ if (type == FFI_TYPE_POINTER) deref_struct_pointer = 1; } /* Pointers are passed like UINTs of the same size. */ if (type == FFI_TYPE_POINTER) #ifdef __s390x__ type = FFI_TYPE_UINT64; #else type = FFI_TYPE_UINT32; #endif /* Now handle all primitive int/float data types. */ switch (type) { case FFI_TYPE_DOUBLE: if (n_fpr < MAX_FPRARGS) *p_arg = &p_fpr[n_fpr++]; else *p_arg = &p_ov[n_ov], n_ov += sizeof (double) / sizeof (long); break; case FFI_TYPE_FLOAT: if (n_fpr < MAX_FPRARGS) *p_arg = &p_fpr[n_fpr++]; else *p_arg = (char *)&p_ov[n_ov++] + sizeof (long) - 4; break; case FFI_TYPE_UINT64: case FFI_TYPE_SINT64: #ifdef __s390x__ if (n_gpr < MAX_GPRARGS) *p_arg = &p_gpr[n_gpr++]; else *p_arg = &p_ov[n_ov++]; #else if (n_gpr == MAX_GPRARGS-1) n_gpr = MAX_GPRARGS; if (n_gpr < MAX_GPRARGS) *p_arg = &p_gpr[n_gpr], n_gpr += 2; else *p_arg = &p_ov[n_ov], n_ov += 2; #endif break; case FFI_TYPE_INT: case FFI_TYPE_UINT32: case FFI_TYPE_SINT32: if (n_gpr < MAX_GPRARGS) *p_arg = (char *)&p_gpr[n_gpr++] + sizeof (long) - 4; else *p_arg = (char *)&p_ov[n_ov++] + sizeof (long) - 4; break; case FFI_TYPE_UINT16: case FFI_TYPE_SINT16: if (n_gpr < MAX_GPRARGS) *p_arg = (char *)&p_gpr[n_gpr++] + sizeof (long) - 2; else *p_arg = (char *)&p_ov[n_ov++] + sizeof (long) - 2; break; case FFI_TYPE_UINT8: case FFI_TYPE_SINT8: if (n_gpr < MAX_GPRARGS) *p_arg = (char *)&p_gpr[n_gpr++] + sizeof (long) - 1; else *p_arg = (char *)&p_ov[n_ov++] + sizeof (long) - 1; break; default: FFI_ASSERT (0); break; } /* If this is a struct passed via pointer, we need to actually retrieve that pointer. */ if (deref_struct_pointer) *p_arg = *(void **)*p_arg; } /* Call the target function. */ (closure->fun) (closure->cif, rvalue, avalue, closure->user_data); /* Convert the return value. */ switch (closure->cif->rtype->type) { /* Void is easy, and so is struct. */ case FFI_TYPE_VOID: case FFI_TYPE_STRUCT: #if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE case FFI_TYPE_LONGDOUBLE: #endif break; /* Floating point values are returned in fpr 0. */ case FFI_TYPE_FLOAT: p_fpr[0] = (long long) *(unsigned int *) rvalue << 32; break; case FFI_TYPE_DOUBLE: p_fpr[0] = *(unsigned long long *) rvalue; break; /* Integer values are returned in gpr 2 (and gpr 3 for 64-bit values on 31-bit machines). */ case FFI_TYPE_UINT64: case FFI_TYPE_SINT64: #ifdef __s390x__ p_gpr[0] = *(unsigned long *) rvalue; #else p_gpr[0] = ((unsigned long *) rvalue)[0], p_gpr[1] = ((unsigned long *) rvalue)[1]; #endif break; case FFI_TYPE_POINTER: case FFI_TYPE_UINT32: case FFI_TYPE_UINT16: case FFI_TYPE_UINT8: p_gpr[0] = *(unsigned long *) rvalue; break; case FFI_TYPE_INT: case FFI_TYPE_SINT32: case FFI_TYPE_SINT16: case FFI_TYPE_SINT8: p_gpr[0] = *(signed long *) rvalue; break; default: FFI_ASSERT (0); break; } } /*======================== End of Routine ============================*/ /*====================================================================*/ /* */ /* Name - ffi_prep_closure_loc. */ /* */ /* Function - Prepare a FFI closure. */ /* */ /*====================================================================*/ ffi_status ffi_prep_closure_loc (ffi_closure *closure, ffi_cif *cif, void (*fun) (ffi_cif *, void *, void **, void *), void *user_data, void *codeloc) { FFI_ASSERT (cif->abi == FFI_SYSV); #ifndef __s390x__ *(short *)&closure->tramp [0] = 0x0d10; /* basr %r1,0 */ *(short *)&closure->tramp [2] = 0x9801; /* lm %r0,%r1,6(%r1) */ *(short *)&closure->tramp [4] = 0x1006; *(short *)&closure->tramp [6] = 0x07f1; /* br %r1 */ *(long *)&closure->tramp [8] = (long)codeloc; *(long *)&closure->tramp[12] = (long)&ffi_closure_SYSV; #else *(short *)&closure->tramp [0] = 0x0d10; /* basr %r1,0 */ *(short *)&closure->tramp [2] = 0xeb01; /* lmg %r0,%r1,14(%r1) */ *(short *)&closure->tramp [4] = 0x100e; *(short *)&closure->tramp [6] = 0x0004; *(short *)&closure->tramp [8] = 0x07f1; /* br %r1 */ *(long *)&closure->tramp[16] = (long)codeloc; *(long *)&closure->tramp[24] = (long)&ffi_closure_SYSV; #endif closure->cif = cif; closure->user_data = user_data; closure->fun = fun; return FFI_OK; } /*======================== End of Routine ============================*/