/* Functions to support link list bitsets. Copyright (C) 2002, 2003, 2004, 2006 Free Software Foundation, Inc. Contributed by Michael Hayes (m.hayes@elec.canterbury.ac.nz). This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifdef HAVE_CONFIG_H # include <config.h> #endif #include "lbitset.h" #include "obstack.h" #include <stddef.h> #include <stdlib.h> #include <stdio.h> #include <string.h> /* This file implements linked-list bitsets. These bitsets can be of arbitrary length and are more efficient than arrays of bits for large sparse sets. Usually if all the bits in an element are zero we remove the element from the list. However, a side effect of the bit caching is that we do not always notice when an element becomes zero. Hence the lbitset_weed function which removes zero elements. */ /* Number of words to use for each element. The larger the value the greater the size of the cache and the shorter the time to find a given bit but the more memory wasted for sparse bitsets and the longer the time to search for set bits. The routines that dominate timing profiles are lbitset_elt_find and lbitset_elt_link, especially when accessing the bits randomly. */ #define LBITSET_ELT_WORDS 2 typedef bitset_word lbitset_word; #define LBITSET_WORD_BITS BITSET_WORD_BITS /* Number of bits stored in each element. */ #define LBITSET_ELT_BITS \ ((unsigned int) (LBITSET_ELT_WORDS * LBITSET_WORD_BITS)) /* Lbitset element. We use an array of bits for each element. These are linked together in a doubly-linked list. */ typedef struct lbitset_elt_struct { struct lbitset_elt_struct *next; /* Next element. */ struct lbitset_elt_struct *prev; /* Previous element. */ bitset_windex index; /* bitno / BITSET_WORD_BITS. */ bitset_word words[LBITSET_ELT_WORDS]; /* Bits that are set. */ } lbitset_elt; enum lbitset_find_mode { LBITSET_FIND, LBITSET_CREATE, LBITSET_SUBST }; static lbitset_elt lbitset_zero_elts[3]; /* Elements of all zero bits. */ /* Obstack to allocate bitset elements from. */ static struct obstack lbitset_obstack; static bool lbitset_obstack_init = false; static lbitset_elt *lbitset_free_list; /* Free list of bitset elements. */ extern void debug_lbitset (bitset); #define LBITSET_CURRENT1(X) \ ((lbitset_elt *) (void *) ((char *) (X) - offsetof (lbitset_elt, words))) #define LBITSET_CURRENT(X) LBITSET_CURRENT1((X)->b.cdata) #define LBITSET_HEAD(X) ((X)->l.head) #define LBITSET_TAIL(X) ((X)->l.tail) /* Allocate a lbitset element. The bits are not cleared. */ static inline lbitset_elt * lbitset_elt_alloc (void) { lbitset_elt *elt; if (lbitset_free_list != 0) { elt = lbitset_free_list; lbitset_free_list = elt->next; } else { if (!lbitset_obstack_init) { lbitset_obstack_init = true; /* Let particular systems override the size of a chunk. */ #ifndef OBSTACK_CHUNK_SIZE #define OBSTACK_CHUNK_SIZE 0 #endif /* Let them override the alloc and free routines too. */ #ifndef OBSTACK_CHUNK_ALLOC #define OBSTACK_CHUNK_ALLOC xmalloc #endif #ifndef OBSTACK_CHUNK_FREE #define OBSTACK_CHUNK_FREE free #endif #if ! defined __GNUC__ || __GNUC__ < 2 #define __alignof__(type) 0 #endif obstack_specify_allocation (&lbitset_obstack, OBSTACK_CHUNK_SIZE, __alignof__ (lbitset_elt), OBSTACK_CHUNK_ALLOC, OBSTACK_CHUNK_FREE); } /* Perhaps we should add a number of new elements to the free list. */ elt = (lbitset_elt *) obstack_alloc (&lbitset_obstack, sizeof (lbitset_elt)); } return elt; } /* Allocate a lbitset element. The bits are cleared. */ static inline lbitset_elt * lbitset_elt_calloc (void) { lbitset_elt *elt; elt = lbitset_elt_alloc (); memset (elt->words, 0, sizeof (elt->words)); return elt; } static inline void lbitset_elt_free (lbitset_elt *elt) { elt->next = lbitset_free_list; lbitset_free_list = elt; } /* Unlink element ELT from bitset BSET. */ static inline void lbitset_elt_unlink (bitset bset, lbitset_elt *elt) { lbitset_elt *next = elt->next; lbitset_elt *prev = elt->prev; if (prev) prev->next = next; if (next) next->prev = prev; if (LBITSET_HEAD (bset) == elt) LBITSET_HEAD (bset) = next; if (LBITSET_TAIL (bset) == elt) LBITSET_TAIL (bset) = prev; /* Update cache pointer. Since the first thing we try is to insert before current, make current the next entry in preference to the previous. */ if (LBITSET_CURRENT (bset) == elt) { if (next) { bset->b.cdata = next->words; bset->b.cindex = next->index; } else if (prev) { bset->b.cdata = prev->words; bset->b.cindex = prev->index; } else { bset->b.csize = 0; bset->b.cdata = 0; } } lbitset_elt_free (elt); } /* Cut the chain of bitset BSET before element ELT and free the elements. */ static inline void lbitset_prune (bitset bset, lbitset_elt *elt) { lbitset_elt *next; if (!elt) return; if (elt->prev) { LBITSET_TAIL (bset) = elt->prev; bset->b.cdata = elt->prev->words; bset->b.cindex = elt->prev->index; elt->prev->next = 0; } else { LBITSET_HEAD (bset) = 0; LBITSET_TAIL (bset) = 0; bset->b.cdata = 0; bset->b.csize = 0; } for (; elt; elt = next) { next = elt->next; lbitset_elt_free (elt); } } /* Are all bits in an element zero? */ static inline bool lbitset_elt_zero_p (lbitset_elt *elt) { int i; for (i = 0; i < LBITSET_ELT_WORDS; i++) if (elt->words[i]) return false; return true; } /* Link the bitset element into the current bitset linked list. */ static inline void lbitset_elt_link (bitset bset, lbitset_elt *elt) { bitset_windex windex = elt->index; lbitset_elt *ptr; lbitset_elt *current; if (bset->b.csize) current = LBITSET_CURRENT (bset); else current = LBITSET_HEAD (bset); /* If this is the first and only element, add it in. */ if (LBITSET_HEAD (bset) == 0) { elt->next = elt->prev = 0; LBITSET_HEAD (bset) = elt; LBITSET_TAIL (bset) = elt; } /* If this index is less than that of the current element, it goes somewhere before the current element. */ else if (windex < bset->b.cindex) { for (ptr = current; ptr->prev && ptr->prev->index > windex; ptr = ptr->prev) continue; if (ptr->prev) ptr->prev->next = elt; else LBITSET_HEAD (bset) = elt; elt->prev = ptr->prev; elt->next = ptr; ptr->prev = elt; } /* Otherwise, it must go somewhere after the current element. */ else { for (ptr = current; ptr->next && ptr->next->index < windex; ptr = ptr->next) continue; if (ptr->next) ptr->next->prev = elt; else LBITSET_TAIL (bset) = elt; elt->next = ptr->next; elt->prev = ptr; ptr->next = elt; } /* Set up so this is the first element searched. */ bset->b.cindex = windex; bset->b.csize = LBITSET_ELT_WORDS; bset->b.cdata = elt->words; } static lbitset_elt * lbitset_elt_find (bitset bset, bitset_windex windex, enum lbitset_find_mode mode) { lbitset_elt *elt; lbitset_elt *current; if (bset->b.csize) { current = LBITSET_CURRENT (bset); /* Check if element is the cached element. */ if ((windex - bset->b.cindex) < bset->b.csize) return current; } else { current = LBITSET_HEAD (bset); } if (current) { if (windex < bset->b.cindex) { for (elt = current; elt->prev && elt->index > windex; elt = elt->prev) continue; } else { for (elt = current; elt->next && (elt->index + LBITSET_ELT_WORDS - 1) < windex; elt = elt->next) continue; } /* ELT is the nearest to the one we want. If it's not the one we want, the one we want does not exist. */ if (elt && (windex - elt->index) < LBITSET_ELT_WORDS) { bset->b.cindex = elt->index; bset->b.csize = LBITSET_ELT_WORDS; bset->b.cdata = elt->words; return elt; } } switch (mode) { default: abort (); case LBITSET_FIND: return 0; case LBITSET_CREATE: windex -= windex % LBITSET_ELT_WORDS; elt = lbitset_elt_calloc (); elt->index = windex; lbitset_elt_link (bset, elt); return elt; case LBITSET_SUBST: return &lbitset_zero_elts[0]; } } /* Weed out the zero elements from the list. */ static inline void lbitset_weed (bitset bset) { lbitset_elt *elt; lbitset_elt *next; for (elt = LBITSET_HEAD (bset); elt; elt = next) { next = elt->next; if (lbitset_elt_zero_p (elt)) lbitset_elt_unlink (bset, elt); } } /* Set all bits in the bitset to zero. */ static void lbitset_zero (bitset bset) { lbitset_elt *head; head = LBITSET_HEAD (bset); if (!head) return; /* Clear a bitset by freeing the linked list at the head element. */ lbitset_prune (bset, head); } /* Is DST == SRC? */ static inline bool lbitset_equal_p (bitset dst, bitset src) { lbitset_elt *selt; lbitset_elt *delt; int j; if (src == dst) return true; lbitset_weed (src); lbitset_weed (dst); for (selt = LBITSET_HEAD (src), delt = LBITSET_HEAD (dst); selt && delt; selt = selt->next, delt = delt->next) { if (selt->index != delt->index) return false; for (j = 0; j < LBITSET_ELT_WORDS; j++) if (delt->words[j] != selt->words[j]) return false; } return !selt && !delt; } /* Copy bits from bitset SRC to bitset DST. */ static inline void lbitset_copy (bitset dst, bitset src) { lbitset_elt *elt; lbitset_elt *head; lbitset_elt *prev; lbitset_elt *tmp; if (src == dst) return; lbitset_zero (dst); head = LBITSET_HEAD (src); if (!head) return; prev = 0; for (elt = head; elt; elt = elt->next) { tmp = lbitset_elt_alloc (); tmp->index = elt->index; tmp->prev = prev; tmp->next = 0; if (prev) prev->next = tmp; else LBITSET_HEAD (dst) = tmp; prev = tmp; memcpy (tmp->words, elt->words, sizeof (elt->words)); } LBITSET_TAIL (dst) = tmp; dst->b.csize = LBITSET_ELT_WORDS; dst->b.cdata = LBITSET_HEAD (dst)->words; dst->b.cindex = LBITSET_HEAD (dst)->index; } /* Copy bits from bitset SRC to bitset DST. Return true if bitsets different. */ static inline bool lbitset_copy_cmp (bitset dst, bitset src) { if (src == dst) return false; if (!LBITSET_HEAD (dst)) { lbitset_copy (dst, src); return LBITSET_HEAD (src) != 0; } if (lbitset_equal_p (dst, src)) return false; lbitset_copy (dst, src); return true; } static bitset_bindex lbitset_resize (bitset src, bitset_bindex size) { BITSET_NBITS_ (src) = size; /* Need to prune any excess bits. FIXME. */ return size; } /* Set bit BITNO in bitset DST. */ static void lbitset_set (bitset dst, bitset_bindex bitno) { bitset_windex windex = bitno / BITSET_WORD_BITS; lbitset_elt_find (dst, windex, LBITSET_CREATE); dst->b.cdata[windex - dst->b.cindex] |= (bitset_word) 1 << (bitno % BITSET_WORD_BITS); } /* Reset bit BITNO in bitset DST. */ static void lbitset_reset (bitset dst, bitset_bindex bitno) { bitset_windex windex = bitno / BITSET_WORD_BITS; if (!lbitset_elt_find (dst, windex, LBITSET_FIND)) return; dst->b.cdata[windex - dst->b.cindex] &= ~((bitset_word) 1 << (bitno % BITSET_WORD_BITS)); /* If all the data is zero, perhaps we should unlink it now... */ } /* Test bit BITNO in bitset SRC. */ static bool lbitset_test (bitset src, bitset_bindex bitno) { bitset_windex windex = bitno / BITSET_WORD_BITS; return (lbitset_elt_find (src, windex, LBITSET_FIND) && ((src->b.cdata[windex - src->b.cindex] >> (bitno % BITSET_WORD_BITS)) & 1)); } static void lbitset_free (bitset bset) { lbitset_zero (bset); } /* Find list of up to NUM bits set in BSET starting from and including *NEXT and store in array LIST. Return with actual number of bits found and with *NEXT indicating where search stopped. */ static bitset_bindex lbitset_list_reverse (bitset bset, bitset_bindex *list, bitset_bindex num, bitset_bindex *next) { bitset_bindex rbitno; bitset_bindex bitno; unsigned int bcount; bitset_bindex boffset; bitset_windex windex; bitset_bindex count; lbitset_elt *elt; bitset_word word; bitset_bindex n_bits; elt = LBITSET_TAIL (bset); if (!elt) return 0; n_bits = (elt->index + LBITSET_ELT_WORDS) * BITSET_WORD_BITS; rbitno = *next; if (rbitno >= n_bits) return 0; bitno = n_bits - (rbitno + 1); windex = bitno / BITSET_WORD_BITS; /* Skip back to starting element. */ for (; elt && elt->index > windex; elt = elt->prev) continue; if (!elt) return 0; if (windex >= elt->index + LBITSET_ELT_WORDS) { /* We are trying to start in no-mans land so start at end of current elt. */ bcount = BITSET_WORD_BITS - 1; windex = elt->index + LBITSET_ELT_WORDS - 1; } else { bcount = bitno % BITSET_WORD_BITS; } count = 0; boffset = windex * BITSET_WORD_BITS; /* If num is 1, we could speed things up with a binary search of the word of interest. */ while (elt) { bitset_word *srcp = elt->words; for (; (windex - elt->index) < LBITSET_ELT_WORDS; windex--, boffset -= BITSET_WORD_BITS, bcount = BITSET_WORD_BITS - 1) { word = srcp[windex - elt->index] << (BITSET_WORD_BITS - 1 - bcount); for (; word; bcount--) { if (word & BITSET_MSB) { list[count++] = boffset + bcount; if (count >= num) { *next = n_bits - (boffset + bcount); return count; } } word <<= 1; } } elt = elt->prev; if (elt) { windex = elt->index + LBITSET_ELT_WORDS - 1; boffset = windex * BITSET_WORD_BITS; } } *next = n_bits - (boffset + 1); return count; } /* Find list of up to NUM bits set in BSET starting from and including *NEXT and store in array LIST. Return with actual number of bits found and with *NEXT indicating where search stopped. */ static bitset_bindex lbitset_list (bitset bset, bitset_bindex *list, bitset_bindex num, bitset_bindex *next) { bitset_bindex bitno; bitset_windex windex; bitset_bindex count; lbitset_elt *elt; lbitset_elt *head; bitset_word word; head = LBITSET_HEAD (bset); if (!head) return 0; bitno = *next; count = 0; if (!bitno) { /* This is the most common case. */ /* Start with the first element. */ elt = head; windex = elt->index; bitno = windex * BITSET_WORD_BITS; } else { windex = bitno / BITSET_WORD_BITS; /* Skip to starting element. */ for (elt = head; elt && (elt->index + LBITSET_ELT_WORDS - 1) < windex; elt = elt->next) continue; if (!elt) return 0; if (windex < elt->index) { windex = elt->index; bitno = windex * BITSET_WORD_BITS; } else { bitset_word *srcp = elt->words; /* We are starting within an element. */ for (; (windex - elt->index) < LBITSET_ELT_WORDS; windex++) { word = srcp[windex - elt->index] >> (bitno % BITSET_WORD_BITS); for (; word; bitno++) { if (word & 1) { list[count++] = bitno; if (count >= num) { *next = bitno + 1; return count; } } word >>= 1; } bitno = (windex + 1) * BITSET_WORD_BITS; } elt = elt->next; if (elt) { windex = elt->index; bitno = windex * BITSET_WORD_BITS; } } } /* If num is 1, we could speed things up with a binary search of the word of interest. */ while (elt) { int i; bitset_word *srcp = elt->words; if ((count + LBITSET_ELT_BITS) < num) { /* The coast is clear, plant boot! */ #if LBITSET_ELT_WORDS == 2 word = srcp[0]; if (word) { if (!(word & 0xffff)) { word >>= 16; bitno += 16; } if (!(word & 0xff)) { word >>= 8; bitno += 8; } for (; word; bitno++) { if (word & 1) list[count++] = bitno; word >>= 1; } } windex++; bitno = windex * BITSET_WORD_BITS; word = srcp[1]; if (word) { if (!(word & 0xffff)) { word >>= 16; bitno += 16; } for (; word; bitno++) { if (word & 1) list[count++] = bitno; word >>= 1; } } windex++; bitno = windex * BITSET_WORD_BITS; #else for (i = 0; i < LBITSET_ELT_WORDS; i++) { word = srcp[i]; if (word) { if (!(word & 0xffff)) { word >>= 16; bitno += 16; } if (!(word & 0xff)) { word >>= 8; bitno += 8; } for (; word; bitno++) { if (word & 1) list[count++] = bitno; word >>= 1; } } windex++; bitno = windex * BITSET_WORD_BITS; } #endif } else { /* Tread more carefully since we need to check if array overflows. */ for (i = 0; i < LBITSET_ELT_WORDS; i++) { for (word = srcp[i]; word; bitno++) { if (word & 1) { list[count++] = bitno; if (count >= num) { *next = bitno + 1; return count; } } word >>= 1; } windex++; bitno = windex * BITSET_WORD_BITS; } } elt = elt->next; if (elt) { windex = elt->index; bitno = windex * BITSET_WORD_BITS; } } *next = bitno; return count; } static bool lbitset_empty_p (bitset dst) { lbitset_elt *elt; lbitset_elt *next; for (elt = LBITSET_HEAD (dst); elt; elt = next) { next = elt->next; if (!lbitset_elt_zero_p (elt)) return 0; /* Weed as we go. */ lbitset_elt_unlink (dst, elt); } return 1; } /* Ensure that any unused bits within the last element are clear. */ static inline void lbitset_unused_clear (bitset dst) { unsigned int last_bit; bitset_bindex n_bits; n_bits = BITSET_SIZE_ (dst); last_bit = n_bits % LBITSET_ELT_BITS; if (last_bit) { lbitset_elt *elt; bitset_windex windex; bitset_word *srcp; elt = LBITSET_TAIL (dst); srcp = elt->words; windex = n_bits / BITSET_WORD_BITS; srcp[windex - elt->index] &= ((bitset_word) 1 << last_bit) - 1; windex++; for (; (windex - elt->index) < LBITSET_ELT_WORDS; windex++) srcp[windex - elt->index] = 0; } } static void lbitset_ones (bitset dst) { bitset_windex i; bitset_windex windex; lbitset_elt *elt; /* This is a decidedly unfriendly operation for a linked list bitset! It makes a sparse bitset become dense. An alternative is to have a flag that indicates that the bitset stores the complement of what it indicates. */ windex = (BITSET_SIZE_ (dst) + BITSET_WORD_BITS - 1) / BITSET_WORD_BITS; for (i = 0; i < windex; i += LBITSET_ELT_WORDS) { /* Create new elements if they cannot be found. */ elt = lbitset_elt_find (dst, i, LBITSET_CREATE); memset (elt->words, -1, sizeof (elt->words)); } lbitset_unused_clear (dst); } static void lbitset_not (bitset dst, bitset src) { lbitset_elt *elt; lbitset_elt *selt; lbitset_elt *delt; bitset_windex i; unsigned int j; bitset_windex windex; /* This is another unfriendly operation for a linked list bitset! */ elt = LBITSET_TAIL (dst); windex = (BITSET_SIZE_ (dst) + BITSET_WORD_BITS - 1) / BITSET_WORD_BITS; for (i = 0; i < windex; i += LBITSET_ELT_WORDS) { /* Create new elements for dst if they cannot be found or substitute zero elements if src elements not found. */ selt = lbitset_elt_find (src, i, LBITSET_SUBST); delt = lbitset_elt_find (dst, i, LBITSET_CREATE); for (j = 0; j < LBITSET_ELT_WORDS; j++) delt->words[j] = ~selt->words[j]; } lbitset_unused_clear (dst); lbitset_weed (dst); return; } /* Is DST == DST | SRC? */ static bool lbitset_subset_p (bitset dst, bitset src) { lbitset_elt *selt; lbitset_elt *delt; unsigned int j; for (selt = LBITSET_HEAD (src), delt = LBITSET_HEAD (dst); selt || delt; selt = selt->next, delt = delt->next) { if (!selt) selt = &lbitset_zero_elts[0]; else if (!delt) delt = &lbitset_zero_elts[0]; else if (selt->index != delt->index) { if (selt->index < delt->index) { lbitset_zero_elts[2].next = delt; delt = &lbitset_zero_elts[2]; } else { lbitset_zero_elts[1].next = selt; selt = &lbitset_zero_elts[1]; } } for (j = 0; j < LBITSET_ELT_WORDS; j++) if (delt->words[j] != (selt->words[j] | delt->words[j])) return false; } return true; } /* Is DST & SRC == 0? */ static bool lbitset_disjoint_p (bitset dst, bitset src) { lbitset_elt *selt; lbitset_elt *delt; unsigned int j; for (selt = LBITSET_HEAD (src), delt = LBITSET_HEAD (dst); selt && delt; selt = selt->next, delt = delt->next) { if (selt->index != delt->index) { if (selt->index < delt->index) { lbitset_zero_elts[2].next = delt; delt = &lbitset_zero_elts[2]; } else { lbitset_zero_elts[1].next = selt; selt = &lbitset_zero_elts[1]; } /* Since the elements are different, there is no intersection of these elements. */ continue; } for (j = 0; j < LBITSET_ELT_WORDS; j++) if (selt->words[j] & delt->words[j]) return false; } return true; } static bool lbitset_op3_cmp (bitset dst, bitset src1, bitset src2, enum bitset_ops op) { lbitset_elt *selt1 = LBITSET_HEAD (src1); lbitset_elt *selt2 = LBITSET_HEAD (src2); lbitset_elt *delt = LBITSET_HEAD (dst); bitset_windex windex1; bitset_windex windex2; bitset_windex windex; lbitset_elt *stmp1; lbitset_elt *stmp2; lbitset_elt *dtmp; bitset_word *srcp1; bitset_word *srcp2; bitset_word *dstp; bool changed = false; unsigned int i; LBITSET_HEAD (dst) = 0; dst->b.csize = 0; windex1 = (selt1) ? selt1->index : BITSET_WINDEX_MAX; windex2 = (selt2) ? selt2->index : BITSET_WINDEX_MAX; while (selt1 || selt2) { /* Figure out whether we need to substitute zero elements for missing links. */ if (windex1 == windex2) { windex = windex1; stmp1 = selt1; stmp2 = selt2; selt1 = selt1->next; windex1 = (selt1) ? selt1->index : BITSET_WINDEX_MAX; selt2 = selt2->next; windex2 = (selt2) ? selt2->index : BITSET_WINDEX_MAX; } else if (windex1 < windex2) { windex = windex1; stmp1 = selt1; stmp2 = &lbitset_zero_elts[0]; selt1 = selt1->next; windex1 = (selt1) ? selt1->index : BITSET_WINDEX_MAX; } else { windex = windex2; stmp1 = &lbitset_zero_elts[0]; stmp2 = selt2; selt2 = selt2->next; windex2 = (selt2) ? selt2->index : BITSET_WINDEX_MAX; } /* Find the appropriate element from DST. Begin by discarding elements that we've skipped. */ while (delt && delt->index < windex) { changed = true; dtmp = delt; delt = delt->next; lbitset_elt_free (dtmp); } if (delt && delt->index == windex) { dtmp = delt; delt = delt->next; } else dtmp = lbitset_elt_calloc (); /* Do the operation, and if any bits are set, link it into the linked list. */ srcp1 = stmp1->words; srcp2 = stmp2->words; dstp = dtmp->words; switch (op) { default: abort (); case BITSET_OP_OR: for (i = 0; i < LBITSET_ELT_WORDS; i++, dstp++) { bitset_word tmp = *srcp1++ | *srcp2++; if (*dstp != tmp) { changed = true; *dstp = tmp; } } break; case BITSET_OP_AND: for (i = 0; i < LBITSET_ELT_WORDS; i++, dstp++) { bitset_word tmp = *srcp1++ & *srcp2++; if (*dstp != tmp) { changed = true; *dstp = tmp; } } break; case BITSET_OP_XOR: for (i = 0; i < LBITSET_ELT_WORDS; i++, dstp++) { bitset_word tmp = *srcp1++ ^ *srcp2++; if (*dstp != tmp) { changed = true; *dstp = tmp; } } break; case BITSET_OP_ANDN: for (i = 0; i < LBITSET_ELT_WORDS; i++, dstp++) { bitset_word tmp = *srcp1++ & ~(*srcp2++); if (*dstp != tmp) { changed = true; *dstp = tmp; } } break; } if (!lbitset_elt_zero_p (dtmp)) { dtmp->index = windex; /* Perhaps this could be optimised... */ lbitset_elt_link (dst, dtmp); } else { lbitset_elt_free (dtmp); } } /* If we have elements of DST left over, free them all. */ if (delt) { changed = true; lbitset_prune (dst, delt); } return changed; } static bool lbitset_and_cmp (bitset dst, bitset src1, bitset src2) { lbitset_elt *selt1 = LBITSET_HEAD (src1); lbitset_elt *selt2 = LBITSET_HEAD (src2); bool changed; if (!selt2) { lbitset_weed (dst); changed = !LBITSET_HEAD (dst); lbitset_zero (dst); return changed; } else if (!selt1) { lbitset_weed (dst); changed = !LBITSET_HEAD (dst); lbitset_zero (dst); return changed; } return lbitset_op3_cmp (dst, src1, src2, BITSET_OP_AND); } static void lbitset_and (bitset dst, bitset src1, bitset src2) { lbitset_and_cmp (dst, src1, src2); } static bool lbitset_andn_cmp (bitset dst, bitset src1, bitset src2) { lbitset_elt *selt1 = LBITSET_HEAD (src1); lbitset_elt *selt2 = LBITSET_HEAD (src2); bool changed; if (!selt2) { return lbitset_copy_cmp (dst, src1); } else if (!selt1) { lbitset_weed (dst); changed = !LBITSET_HEAD (dst); lbitset_zero (dst); return changed; } return lbitset_op3_cmp (dst, src1, src2, BITSET_OP_ANDN); } static void lbitset_andn (bitset dst, bitset src1, bitset src2) { lbitset_andn_cmp (dst, src1, src2); } static bool lbitset_or_cmp (bitset dst, bitset src1, bitset src2) { lbitset_elt *selt1 = LBITSET_HEAD (src1); lbitset_elt *selt2 = LBITSET_HEAD (src2); if (!selt2) { return lbitset_copy_cmp (dst, src1); } else if (!selt1) { return lbitset_copy_cmp (dst, src2); } return lbitset_op3_cmp (dst, src1, src2, BITSET_OP_OR); } static void lbitset_or (bitset dst, bitset src1, bitset src2) { lbitset_or_cmp (dst, src1, src2); } static bool lbitset_xor_cmp (bitset dst, bitset src1, bitset src2) { lbitset_elt *selt1 = LBITSET_HEAD (src1); lbitset_elt *selt2 = LBITSET_HEAD (src2); if (!selt2) { return lbitset_copy_cmp (dst, src1); } else if (!selt1) { return lbitset_copy_cmp (dst, src2); } return lbitset_op3_cmp (dst, src1, src2, BITSET_OP_XOR); } static void lbitset_xor (bitset dst, bitset src1, bitset src2) { lbitset_xor_cmp (dst, src1, src2); } /* Vector of operations for linked-list bitsets. */ struct bitset_vtable lbitset_vtable = { lbitset_set, lbitset_reset, bitset_toggle_, lbitset_test, lbitset_resize, bitset_size_, bitset_count_, lbitset_empty_p, lbitset_ones, lbitset_zero, lbitset_copy, lbitset_disjoint_p, lbitset_equal_p, lbitset_not, lbitset_subset_p, lbitset_and, lbitset_and_cmp, lbitset_andn, lbitset_andn_cmp, lbitset_or, lbitset_or_cmp, lbitset_xor, lbitset_xor_cmp, bitset_and_or_, bitset_and_or_cmp_, bitset_andn_or_, bitset_andn_or_cmp_, bitset_or_and_, bitset_or_and_cmp_, lbitset_list, lbitset_list_reverse, lbitset_free, BITSET_LIST }; /* Return size of initial structure. */ size_t lbitset_bytes (bitset_bindex n_bits ATTRIBUTE_UNUSED) { return sizeof (struct lbitset_struct); } /* Initialize a bitset. */ bitset lbitset_init (bitset bset, bitset_bindex n_bits ATTRIBUTE_UNUSED) { BITSET_NBITS_ (bset) = n_bits; bset->b.vtable = &lbitset_vtable; return bset; } void lbitset_release_memory (void) { lbitset_free_list = 0; if (lbitset_obstack_init) { lbitset_obstack_init = false; obstack_free (&lbitset_obstack, NULL); } } /* Function to be called from debugger to debug lbitset. */ void debug_lbitset (bitset bset) { lbitset_elt *elt; unsigned int i; if (!bset) return; for (elt = LBITSET_HEAD (bset); elt; elt = elt->next) { fprintf (stderr, "Elt %lu\n", (unsigned long int) elt->index); for (i = 0; i < LBITSET_ELT_WORDS; i++) { unsigned int j; bitset_word word; word = elt->words[i]; fprintf (stderr, " Word %u:", i); for (j = 0; j < LBITSET_WORD_BITS; j++) if ((word & ((bitset_word) 1 << j))) fprintf (stderr, " %u", j); fprintf (stderr, "\n"); } } }