/*
* Android "Almost" C Compiler.
* This is a compiler for a small subset of the C language, intended for use
* in scripting environments where speed and memory footprint are important.
*
* This code is based upon the "unobfuscated" version of the
* Obfuscated Tiny C compiler, see the file LICENSE for details.
*
*/
#define LOG_TAG "acc"
#include <cutils/log.h>
#include <ctype.h>
#include <errno.h>
#include <limits.h>
#include <stdarg.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <cutils/hashmap.h>
#if defined(__i386__)
#include <sys/mman.h>
#endif
#if defined(__arm__)
#define DEFAULT_ARM_CODEGEN
#define PROVIDE_ARM_CODEGEN
#elif defined(__i386__)
#define DEFAULT_X86_CODEGEN
#define PROVIDE_X86_CODEGEN
#elif defined(__x86_64__)
#define DEFAULT_X64_CODEGEN
#define PROVIDE_X64_CODEGEN
#endif
#if (defined(__VFP_FP__) && !defined(__SOFTFP__))
#define ARM_USE_VFP
#endif
#include <acc/acc.h>
#define LOG_API(...) do {} while(0)
// #define LOG_API(...) fprintf (stderr, __VA_ARGS__)
#define LOG_STACK(...) do {} while(0)
// #define LOG_STACK(...) fprintf (stderr, __VA_ARGS__)
// #define PROVIDE_TRACE_CODEGEN
// Uncomment to disable ARM peephole optimizations
// #define DISABLE_ARM_PEEPHOLE
// Uncomment to save input to a text file in DEBUG_DUMP_PATTERN
// #define DEBUG_SAVE_INPUT_TO_FILE
#ifdef DEBUG_SAVE_INPUT_TO_FILE
#ifdef ARM_USE_VFP
#define DEBUG_DUMP_PATTERN "/data/misc/acc_dump/%d.c"
#else
#define DEBUG_DUMP_PATTERN "/tmp/acc_dump/%d.c"
#endif
#endif
#define assert(b) assertImpl(b, __LINE__)
namespace acc {
// Subset of STL vector.
template<class E> class Vector {
public:
Vector() {
mpBase = 0;
mUsed = 0;
mSize = 0;
}
~Vector() {
if (mpBase) {
for(size_t i = 0; i < mUsed; i++) {
mpBase[mUsed].~E();
}
free(mpBase);
}
}
inline E& operator[](size_t i) {
return mpBase[i];
}
inline E& front() {
return mpBase[0];
}
inline E& back() {
return mpBase[mUsed - 1];
}
void pop_back() {
mUsed -= 1;
mpBase[mUsed].~E();
}
void push_back(const E& item) {
* ensure(1) = item;
}
size_t size() {
return mUsed;
}
private:
E* ensure(int n) {
size_t newUsed = mUsed + n;
if (newUsed > mSize) {
size_t newSize = mSize * 2 + 10;
if (newSize < newUsed) {
newSize = newUsed;
}
mpBase = (E*) realloc(mpBase, sizeof(E) * newSize);
mSize = newSize;
}
E* result = mpBase + mUsed;
mUsed = newUsed;
return result;
}
E* mpBase;
size_t mUsed;
size_t mSize;
};
class ErrorSink {
public:
void error(const char *fmt, ...) {
va_list ap;
va_start(ap, fmt);
verror(fmt, ap);
va_end(ap);
}
virtual ~ErrorSink() {}
virtual void verror(const char* fmt, va_list ap) = 0;
};
class Compiler : public ErrorSink {
typedef int tokenid_t;
enum TypeTag {
TY_INT, // 0
TY_CHAR, // 1
TY_SHORT, // 2
TY_VOID, // 3
TY_FLOAT, // 4
TY_DOUBLE, // 5
TY_POINTER, // 6
TY_ARRAY, // 7
TY_STRUCT, // 8
TY_FUNC, // 9
TY_PARAM // 10
};
struct Type {
TypeTag tag;
tokenid_t id; // For function arguments, global vars, local vars, struct elements
tokenid_t structTag; // For structs the name of the struct
int length; // length of array, offset of struct element. -1 means struct is forward defined
int alignment; // for structs only
Type* pHead; // For a struct this is the prototype struct.
Type* pTail;
};
enum ExpressionType {
ET_RVALUE,
ET_LVALUE
};
struct ExpressionValue {
ExpressionValue() {
et = ET_RVALUE;
pType = NULL;
}
ExpressionType et;
Type* pType;
};
class ICodeBuf {
public:
virtual ~ICodeBuf() {}
virtual void init(int size) = 0;
virtual void setErrorSink(ErrorSink* pErrorSink) = 0;
virtual void o4(int n) = 0;
virtual void ob(int n) = 0;
virtual void* getBase() = 0;
virtual intptr_t getSize() = 0;
virtual intptr_t getPC() = 0;
// Call this before trying to modify code in the buffer.
virtual void flush() = 0;
};
class CodeBuf : public ICodeBuf {
char* ind; // Output code pointer
char* pProgramBase;
ErrorSink* mErrorSink;
int mSize;
bool mOverflowed;
void release() {
if (pProgramBase != 0) {
free(pProgramBase);
pProgramBase = 0;
}
}
bool check(int n) {
int newSize = ind - pProgramBase + n;
bool overflow = newSize > mSize;
if (overflow && !mOverflowed) {
mOverflowed = true;
if (mErrorSink) {
mErrorSink->error("Code too large: %d bytes", newSize);
}
}
return overflow;
}
public:
CodeBuf() {
pProgramBase = 0;
ind = 0;
mErrorSink = 0;
mSize = 0;
mOverflowed = false;
}
virtual ~CodeBuf() {
release();
}
virtual void init(int size) {
release();
mSize = size;
pProgramBase = (char*) calloc(1, size);
ind = pProgramBase;
}
virtual void setErrorSink(ErrorSink* pErrorSink) {
mErrorSink = pErrorSink;
}
virtual void o4(int n) {
if(check(4)) {
return;
}
* (int*) ind = n;
ind += 4;
}
/*
* Output a byte. Handles all values, 0..ff.
*/
virtual void ob(int n) {
if(check(1)) {
return;
}
*ind++ = n;
}
virtual void* getBase() {
return (void*) pProgramBase;
}
virtual intptr_t getSize() {
return ind - pProgramBase;
}
virtual intptr_t getPC() {
return (intptr_t) ind;
}
virtual void flush() {}
};
/**
* A code generator creates an in-memory program, generating the code on
* the fly. There is one code generator implementation for each supported
* architecture.
*
* The code generator implements the following abstract machine:
* R0 - the accumulator.
* FP - a frame pointer for accessing function arguments and local
* variables.
* SP - a stack pointer for storing intermediate results while evaluating
* expressions. The stack pointer grows downwards.
*
* The function calling convention is that all arguments are placed on the
* stack such that the first argument has the lowest address.
* After the call, the result is in R0. The caller is responsible for
* removing the arguments from the stack.
* The R0 register is not saved across function calls. The
* FP and SP registers are saved.
*/
class CodeGenerator {
public:
CodeGenerator() {
mErrorSink = 0;
pCodeBuf = 0;
pushType();
}
virtual ~CodeGenerator() {}
virtual void init(ICodeBuf* pCodeBuf) {
this->pCodeBuf = pCodeBuf;
pCodeBuf->setErrorSink(mErrorSink);
}
virtual void setErrorSink(ErrorSink* pErrorSink) {
mErrorSink = pErrorSink;
if (pCodeBuf) {
pCodeBuf->setErrorSink(mErrorSink);
}
}
/* Give the code generator some utility types so it can
* use its own types as needed for the results of some
* operations like gcmp.
*/
void setTypes(Type* pInt) {
mkpInt = pInt;
}
/* Emit a function prolog.
* pDecl is the function declaration, which gives the arguments.
* Save the old value of the FP.
* Set the new value of the FP.
* Convert from the native platform calling convention to
* our stack-based calling convention. This may require
* pushing arguments from registers to the stack.
* Allocate "N" bytes of stack space. N isn't known yet, so
* just emit the instructions for adjusting the stack, and return
* the address to patch up. The patching will be done in
* functionExit().
* returns address to patch with local variable size.
*/
virtual int functionEntry(Type* pDecl) = 0;
/* Emit a function epilog.
* Restore the old SP and FP register values.
* Return to the calling function.
* argCount - the number of arguments to the function.
* localVariableAddress - returned from functionEntry()
* localVariableSize - the size in bytes of the local variables.
*/
virtual void functionExit(Type* pDecl, int localVariableAddress,
int localVariableSize) = 0;
/* load immediate value to R0 */
virtual void li(int i) = 0;
/* Load floating point value from global address. */
virtual void loadFloat(int address, Type* pType) = 0;
/* Add the struct offset in bytes to R0, change the type to pType */
virtual void addStructOffsetR0(int offset, Type* pType) = 0;
/* Jump to a target, and return the address of the word that
* holds the target data, in case it needs to be fixed up later.
*/
virtual int gjmp(int t) = 0;
/* Test R0 and jump to a target if the test succeeds.
* l = 0: je, l == 1: jne
* Return the address of the word that holds the targed data, in
* case it needs to be fixed up later.
*/
virtual int gtst(bool l, int t) = 0;
/* Compare TOS against R0, and store the boolean result in R0.
* Pops TOS.
* op specifies the comparison.
*/
virtual void gcmp(int op) = 0;
/* Perform the arithmetic op specified by op. TOS is the
* left argument, R0 is the right argument.
* Pops TOS.
*/
virtual void genOp(int op) = 0;
/* Compare 0 against R0, and store the boolean result in R0.
* op specifies the comparison.
*/
virtual void gUnaryCmp(int op) = 0;
/* Perform the arithmetic op specified by op. 0 is the
* left argument, R0 is the right argument.
*/
virtual void genUnaryOp(int op) = 0;
/* Push R0 onto the stack. (Also known as "dup" for duplicate.)
*/
virtual void pushR0() = 0;
/* Turn R0, TOS into R0 TOS R0 */
virtual void over() = 0;
/* Pop R0 from the stack. (Also known as "drop")
*/
virtual void popR0() = 0;
/* Store R0 to the address stored in TOS.
* The TOS is popped.
*/
virtual void storeR0ToTOS() = 0;
/* Load R0 from the address stored in R0.
*/
virtual void loadR0FromR0() = 0;
/* Load the absolute address of a variable to R0.
* If ea <= LOCAL, then this is a local variable, or an
* argument, addressed relative to FP.
* else it is an absolute global address.
*
* et is ET_RVALUE for things like string constants, ET_LVALUE for
* variables.
*/
virtual void leaR0(int ea, Type* pPointerType, ExpressionType et) = 0;
/* Load the pc-relative address of a forward-referenced variable to R0.
* Return the address of the 4-byte constant so that it can be filled
* in later.
*/
virtual int leaForward(int ea, Type* pPointerType) = 0;
/**
* Convert R0 to the given type.
*/
void convertR0(Type* pType) {
convertR0Imp(pType, false);
}
void castR0(Type* pType) {
convertR0Imp(pType, true);
}
virtual void convertR0Imp(Type* pType, bool isCast) = 0;
/* Emit code to adjust the stack for a function call. Return the
* label for the address of the instruction that adjusts the
* stack size. This will be passed as argument "a" to
* endFunctionCallArguments.
*/
virtual int beginFunctionCallArguments() = 0;
/* Emit code to store R0 to the stack at byte offset l.
* Returns stack size of object (typically 4 or 8 bytes)
*/
virtual size_t storeR0ToArg(int l, Type* pArgType) = 0;
/* Patch the function call preamble.
* a is the address returned from beginFunctionCallArguments
* l is the number of bytes the arguments took on the stack.
* Typically you would also emit code to convert the argument
* list into whatever the native function calling convention is.
* On ARM for example you would pop the first 5 arguments into
* R0..R4
*/
virtual void endFunctionCallArguments(Type* pDecl, int a, int l) = 0;
/* Emit a call to an unknown function. The argument "symbol" needs to
* be stored in the location where the address should go. It forms
* a chain. The address will be patched later.
* Return the address of the word that has to be patched.
*/
virtual int callForward(int symbol, Type* pFunc) = 0;
/* Call a function pointer. L is the number of bytes the arguments
* take on the stack. The address of the function is stored at
* location SP + l.
*/
virtual void callIndirect(int l, Type* pFunc) = 0;
/* Adjust SP after returning from a function call. l is the
* number of bytes of arguments stored on the stack. isIndirect
* is true if this was an indirect call. (In which case the
* address of the function is stored at location SP + l.)
*/
virtual void adjustStackAfterCall(Type* pDecl, int l, bool isIndirect) = 0;
/* Generate a symbol at the current PC. t is the head of a
* linked list of addresses to patch.
*/
virtual void gsym(int t) = 0;
/* Resolve a forward reference function at the current PC.
* t is the head of a
* linked list of addresses to patch.
* (Like gsym, but using absolute address, not PC relative address.)
*/
virtual void resolveForward(int t) = 0;
/*
* Do any cleanup work required at the end of a compile.
* For example, an instruction cache might need to be
* invalidated.
* Return non-zero if there is an error.
*/
virtual int finishCompile() = 0;
/**
* Adjust relative branches by this amount.
*/
virtual int jumpOffset() = 0;
/**
* Memory alignment (in bytes) for this type of data
*/
virtual size_t alignmentOf(Type* type) = 0;
/**
* Array element alignment (in bytes) for this type of data.
*/
virtual size_t sizeOf(Type* type) = 0;
virtual Type* getR0Type() {
return mExpressionStack.back().pType;
}
virtual ExpressionType getR0ExpressionType() {
return mExpressionStack.back().et;
}
virtual void setR0ExpressionType(ExpressionType et) {
mExpressionStack.back().et = et;
}
virtual size_t getExpressionStackDepth() {
return mExpressionStack.size();
}
virtual void forceR0RVal() {
if (getR0ExpressionType() == ET_LVALUE) {
loadR0FromR0();
}
}
protected:
/*
* Output a byte. Handles all values, 0..ff.
*/
void ob(int n) {
pCodeBuf->ob(n);
}
void o4(int data) {
pCodeBuf->o4(data);
}
intptr_t getBase() {
return (intptr_t) pCodeBuf->getBase();
}
intptr_t getPC() {
return pCodeBuf->getPC();
}
intptr_t getSize() {
return pCodeBuf->getSize();
}
void flush() {
pCodeBuf->flush();
}
void error(const char* fmt,...) {
va_list ap;
va_start(ap, fmt);
mErrorSink->verror(fmt, ap);
va_end(ap);
}
void assertImpl(bool test, int line) {
if (!test) {
error("code generator assertion failed at line %s:%d.", __FILE__, line);
LOGD("code generator assertion failed at line %s:%d.", __FILE__, line);
* (char*) 0 = 0;
}
}
void setR0Type(Type* pType) {
assert(pType != NULL);
mExpressionStack.back().pType = pType;
mExpressionStack.back().et = ET_RVALUE;
}
void setR0Type(Type* pType, ExpressionType et) {
assert(pType != NULL);
mExpressionStack.back().pType = pType;
mExpressionStack.back().et = et;
}
Type* getTOSType() {
return mExpressionStack[mExpressionStack.size()-2].pType;
}
void pushType() {
if (mExpressionStack.size()) {
mExpressionStack.push_back(mExpressionStack.back());
} else {
mExpressionStack.push_back(ExpressionValue());
}
}
void overType() {
size_t size = mExpressionStack.size();
if (size >= 2) {
mExpressionStack.push_back(mExpressionStack.back());
mExpressionStack[size-1] = mExpressionStack[size-2];
mExpressionStack[size-2] = mExpressionStack[size];
}
}
void popType() {
mExpressionStack.pop_back();
}
bool bitsSame(Type* pA, Type* pB) {
return collapseType(pA->tag) == collapseType(pB->tag);
}
TypeTag collapseType(TypeTag tag) {
static const TypeTag collapsedTag[] = {
TY_INT,
TY_INT,
TY_INT,
TY_VOID,
TY_FLOAT,
TY_DOUBLE,
TY_INT,
TY_INT,
TY_VOID,
TY_VOID,
TY_VOID
};
return collapsedTag[tag];
}
TypeTag collapseTypeR0() {
return collapseType(getR0Type()->tag);
}
static bool isFloatType(Type* pType) {
return isFloatTag(pType->tag);
}
static bool isFloatTag(TypeTag tag) {
return tag == TY_FLOAT || tag == TY_DOUBLE;
}
static bool isPointerType(Type* pType) {
return isPointerTag(pType->tag);
}
static bool isPointerTag(TypeTag tag) {
return tag == TY_POINTER || tag == TY_ARRAY;
}
Type* getPointerArithmeticResultType(Type* a, Type* b) {
TypeTag aTag = a->tag;
TypeTag bTag = b->tag;
if (aTag == TY_POINTER) {
return a;
}
if (bTag == TY_POINTER) {
return b;
}
if (aTag == TY_ARRAY) {
return a->pTail;
}
if (bTag == TY_ARRAY) {
return b->pTail;
}
return NULL;
}
Type* mkpInt;
private:
Vector<ExpressionValue> mExpressionStack;
ICodeBuf* pCodeBuf;
ErrorSink* mErrorSink;
};
#ifdef PROVIDE_ARM_CODEGEN
static size_t rotateRight(size_t n, size_t rotate) {
return (n >> rotate) | (n << (32 - rotate));
}
static size_t rotateLeft(size_t n, size_t rotate) {
return (n << rotate) | (n >> (32 - rotate));
}
static bool encode12BitImmediate(size_t immediate, size_t* pResult) {
for(size_t i = 0; i < 16; i++) {
size_t rotate = i * 2;
size_t mask = rotateRight(0xff, rotate);
if ((immediate | mask) == mask) {
size_t bits8 = rotateLeft(immediate, rotate);
// assert(bits8 <= 0xff);
*pResult = (i << 8) | bits8;
return true;
}
}
return false;
}
static size_t decode12BitImmediate(size_t immediate) {
size_t data = immediate & 0xff;
size_t rotate = 2 * ((immediate >> 8) & 0xf);
return rotateRight(data, rotate);
}
static bool isPowerOfTwo(size_t n) {
return (n != 0) & ((n & (n-1)) == 0);
}
static size_t log2(size_t n) {
int result = 0;
while (n >>= 1) {
result++;
}
return result;
}
class ARMCodeBuf : public ICodeBuf {
ICodeBuf* mpBase;
ErrorSink* mErrorSink;
class CircularQueue {
static const int SIZE = 16; // Must be power of 2
static const int MASK = SIZE-1;
unsigned int mBuf[SIZE];
int mHead;
int mCount;
public:
CircularQueue() {
mHead = 0;
mCount = 0;
}
void pushBack(unsigned int data) {
mBuf[(mHead + mCount) & MASK] = data;
mCount += 1;
}
unsigned int popFront() {
unsigned int result = mBuf[mHead];
mHead = (mHead + 1) & MASK;
mCount -= 1;
return result;
}
void popBack(int n) {
mCount -= n;
}
inline int count() {
return mCount;
}
bool empty() {
return mCount == 0;
}
bool full() {
return mCount == SIZE;
}
// The valid indexes are 1 - count() to 0
unsigned int operator[](int i) {
return mBuf[(mHead + mCount + i) & MASK];
}
};
CircularQueue mQ;
void error(const char* fmt,...) {
va_list ap;
va_start(ap, fmt);
mErrorSink->verror(fmt, ap);
va_end(ap);
}
void flush() {
while (!mQ.empty()) {
mpBase->o4(mQ.popFront());
}
mpBase->flush();
}
public:
ARMCodeBuf(ICodeBuf* pBase) {
mpBase = pBase;
}
virtual ~ARMCodeBuf() {
delete mpBase;
}
void init(int size) {
mpBase->init(size);
}
void setErrorSink(ErrorSink* pErrorSink) {
mErrorSink = pErrorSink;
mpBase->setErrorSink(pErrorSink);
}
void o4(int n) {
if (mQ.full()) {
mpBase->o4(mQ.popFront());
}
mQ.pushBack(n);
#ifndef DISABLE_ARM_PEEPHOLE
// Peephole check
bool didPeep;
do {
static const unsigned int opMask = 0x01e00000;
static const unsigned int immediateMask = 0x00000fff;
static const unsigned int BMask = 0x00400000;
didPeep = false;
if (mQ.count() >= 4) {
// Operand by a small constant
// push;mov #imm;pop;op ==> op #imm
if (mQ[-4] == 0xe92d0001 && // stmfd r13!, {r0}
(mQ[-3] & ~immediateMask) == 0xe3a00000 && // mov r0, #X
mQ[-2] == 0xe8bd0002 && // ldmea r13!, {r1}
(mQ[-1] & ~opMask) == (0xe0810000 & ~opMask)) { // OP r0, r1, r0
unsigned int movConst = mQ[-3];
unsigned int op = mQ[-1];
unsigned int combined = 0xe2000000 | (op & opMask) | (movConst & immediateMask);
// fprintf(stderr, "op %x movConst %x combined %x\n", op, movConst, combined);
if (! (combined == 0xe2800000 || combined == 0xe2400000)) { // add/sub #0
mQ.popBack(4);
mQ.pushBack(combined);
didPeep = true;
} else {
mQ.popBack(4);
didPeep = true;
}
}
}
// Load local variable
// sub r0,r11,#imm;ldr/ldrb r0,[r0] ==> ldr/ldrb r0, [r11,#-imm]
if (mQ.count() >= 2) {
if ((mQ[-2] & ~immediateMask) == 0xe24b0000) { // sub r0,r11,#imm
const unsigned int encodedImmediate = mQ[-2] & immediateMask;
const unsigned int ld = mQ[-1];
if ((ld & ~BMask) == 0xe5900000) { // ldr{b} r0, [r0]
unsigned int combined = encodedImmediate | (0xE51B0000 | (ld & BMask)); // ldr r0, [r11, #-0]
mQ.popBack(2);
mQ.pushBack(combined);
didPeep = true;
} else if (ld == 0xedd07a00) { // ldcl p10, c7, [r0, #0x000]
unsigned int decodedImmediate = decode12BitImmediate(encodedImmediate);
if (decodedImmediate <= 1020 && ((decodedImmediate & 3) == 0)) {
unsigned int combined = (decodedImmediate >> 2) | 0xed5b7a00; // ldcl p10, c7, [r11, #-0]
mQ.popBack(2);
mQ.pushBack(combined);
didPeep = true;
}
}
}
}
// Constant array lookup
if (mQ.count() >= 6 &&
mQ[-6] == 0xe92d0001 && // stmfd r13!, {r0}
(mQ[-5] & ~immediateMask)== 0xe3a00000 && // mov r0, #0x00000001
mQ[-4] == 0xe8bd0002 && // ldmea r13!, {r1}
(mQ[-3] & ~immediateMask)== 0xe3a02000 && // mov r2, #0x00000004
mQ[-2] == 0xe0000092 && // mul r0, r2, r0
mQ[-1] == 0xe0810000) { // add r0, r1, r0
unsigned int mov1 = mQ[-5];
unsigned int mov2 = mQ[-3];
unsigned int const1 = decode12BitImmediate(mov1);
unsigned int const2 = decode12BitImmediate(mov2);
unsigned int comboConst = const1 * const2;
size_t immediate = 0;
if (encode12BitImmediate(comboConst, &immediate)) {
mQ.popBack(6);
unsigned int add = immediate | 0xE2800000; // add r0, r0, #n
if (comboConst) {
mQ.pushBack(add);
}
didPeep = true;
}
}
// Pointer arithmetic with a stride that is a power of two
if (mQ.count() >= 3 &&
(mQ[-3] & ~ immediateMask) == 0xe3a02000 && // mov r2, #stride
mQ[-2] == 0xe0000092 && // mul r0, r2, r0
mQ[-1] == 0xe0810000) { // add r0, r1, r0
int stride = decode12BitImmediate(mQ[-3]);
if (isPowerOfTwo(stride)) {
mQ.popBack(3);
unsigned int add = 0xe0810000 | (log2(stride) << 7); // add r0, r1, r0, LSL #log2(stride)
mQ.pushBack(add);
didPeep = true;
}
}
} while (didPeep);
#endif
}
void ob(int n) {
error("ob() not supported.");
}
void* getBase() {
flush();
return mpBase->getBase();
}
intptr_t getSize() {
flush();
return mpBase->getSize();
}
intptr_t getPC() {
flush();
return mpBase->getPC();
}
};
class ARMCodeGenerator : public CodeGenerator {
public:
ARMCodeGenerator() {
#ifdef ARM_USE_VFP
// LOGD("Using ARM VFP hardware floating point.");
#else
// LOGD("Using ARM soft floating point.");
#endif
}
virtual ~ARMCodeGenerator() {}
/* returns address to patch with local variable size
*/
virtual int functionEntry(Type* pDecl) {
mStackUse = 0;
// sp -> arg4 arg5 ...
// Push our register-based arguments back on the stack
int regArgCount = calcRegArgCount(pDecl);
if (regArgCount > 0) {
mStackUse += regArgCount * 4;
o4(0xE92D0000 | ((1 << regArgCount) - 1)); // stmfd sp!, {}
}
// sp -> arg0 arg1 ...
o4(0xE92D4800); // stmfd sp!, {fp, lr}
mStackUse += 2 * 4;
// sp, fp -> oldfp, retadr, arg0 arg1 ....
o4(0xE1A0B00D); // mov fp, sp
LOG_STACK("functionEntry: %d\n", mStackUse);
int pc = getPC();
o4(0xE24DD000); // sub sp, sp, # <local variables>
// We don't know how many local variables we are going to use,
// but we will round the allocation up to a multiple of
// STACK_ALIGNMENT, so it won't affect the stack alignment.
return pc;
}
virtual void functionExit(Type* pDecl, int localVariableAddress, int localVariableSize) {
// Round local variable size up to a multiple of stack alignment
localVariableSize = ((localVariableSize + STACK_ALIGNMENT - 1) /
STACK_ALIGNMENT) * STACK_ALIGNMENT;
// Patch local variable allocation code:
if (localVariableSize < 0 || localVariableSize > 255) {
error("localVariables out of range: %d", localVariableSize);
}
*(char*) (localVariableAddress) = localVariableSize;
#ifdef ARM_USE_VFP
{
Type* pReturnType = pDecl->pHead;
switch(pReturnType->tag) {
case TY_FLOAT:
o4(0xEE170A90); // fmrs r0, s15
break;
case TY_DOUBLE:
o4(0xEC510B17); // fmrrd r0, r1, d7
break;
default:
break;
}
}
#endif
// sp -> locals .... fp -> oldfp, retadr, arg0, arg1, ...
o4(0xE1A0E00B); // mov lr, fp
o4(0xE59BB000); // ldr fp, [fp]
o4(0xE28ED004); // add sp, lr, #4
// sp -> retadr, arg0, ...
o4(0xE8BD4000); // ldmfd sp!, {lr}
// sp -> arg0 ....
// We store the PC into the lr so we can adjust the sp before
// returning. We need to pull off the registers we pushed
// earlier. We don't need to actually store them anywhere,
// just adjust the stack.
int regArgCount = calcRegArgCount(pDecl);
if (regArgCount) {
o4(0xE28DD000 | (regArgCount << 2)); // add sp, sp, #argCount << 2
}
o4(0xE12FFF1E); // bx lr
}
/* load immediate value */
virtual void li(int t) {
liReg(t, 0);
setR0Type(mkpInt);
}
virtual void loadFloat(int address, Type* pType) {
setR0Type(pType);
// Global, absolute address
o4(0xE59F0000); // ldr r0, .L1
o4(0xEA000000); // b .L99
o4(address); // .L1: .word ea
// .L99:
switch (pType->tag) {
case TY_FLOAT:
#ifdef ARM_USE_VFP
o4(0xEDD07A00); // flds s15, [r0]
#else
o4(0xE5900000); // ldr r0, [r0]
#endif
break;
case TY_DOUBLE:
#ifdef ARM_USE_VFP
o4(0xED907B00); // fldd d7, [r0]
#else
o4(0xE1C000D0); // ldrd r0, [r0]
#endif
break;
default:
assert(false);
break;
}
}
virtual void addStructOffsetR0(int offset, Type* pType) {
if (offset) {
size_t immediate = 0;
if (encode12BitImmediate(offset, &immediate)) {
o4(0xE2800000 | immediate); // add r0, r0, #offset
} else {
error("structure offset out of range: %d", offset);
}
}
setR0Type(pType, ET_LVALUE);
}
virtual int gjmp(int t) {
int pc = getPC();
o4(0xEA000000 | encodeAddress(t)); // b .L33
return pc;
}
/* l = 0: je, l == 1: jne */
virtual int gtst(bool l, int t) {
Type* pR0Type = getR0Type();
TypeTag tagR0 = pR0Type->tag;
switch(tagR0) {
case TY_FLOAT:
#ifdef ARM_USE_VFP
o4(0xEEF57A40); // fcmpzs s15
o4(0xEEF1FA10); // fmstat
#else
callRuntime((void*) runtime_is_non_zero_f);
o4(0xE3500000); // cmp r0,#0
#endif
break;
case TY_DOUBLE:
#ifdef ARM_USE_VFP
o4(0xEEB57B40); // fcmpzd d7
o4(0xEEF1FA10); // fmstat
#else
callRuntime((void*) runtime_is_non_zero_d);
o4(0xE3500000); // cmp r0,#0
#endif
break;
default:
o4(0xE3500000); // cmp r0,#0
break;
}
int branch = l ? 0x1A000000 : 0x0A000000; // bne : beq
int pc = getPC();
o4(branch | encodeAddress(t));
return pc;
}
virtual void gcmp(int op) {
Type* pR0Type = getR0Type();
Type* pTOSType = getTOSType();
TypeTag tagR0 = collapseType(pR0Type->tag);
TypeTag tagTOS = collapseType(pTOSType->tag);
if (tagR0 == TY_INT && tagTOS == TY_INT) {
setupIntPtrArgs();
o4(0xE1510000); // cmp r1, r1
switch(op) {
case OP_EQUALS:
o4(0x03A00001); // moveq r0,#1
o4(0x13A00000); // movne r0,#0
break;
case OP_NOT_EQUALS:
o4(0x03A00000); // moveq r0,#0
o4(0x13A00001); // movne r0,#1
break;
case OP_LESS_EQUAL:
o4(0xD3A00001); // movle r0,#1
o4(0xC3A00000); // movgt r0,#0
break;
case OP_GREATER:
o4(0xD3A00000); // movle r0,#0
o4(0xC3A00001); // movgt r0,#1
break;
case OP_GREATER_EQUAL:
o4(0xA3A00001); // movge r0,#1
o4(0xB3A00000); // movlt r0,#0
break;
case OP_LESS:
o4(0xA3A00000); // movge r0,#0
o4(0xB3A00001); // movlt r0,#1
break;
default:
error("Unknown comparison op %d", op);
break;
}
} else if (tagR0 == TY_DOUBLE || tagTOS == TY_DOUBLE) {
setupDoubleArgs();
#ifdef ARM_USE_VFP
o4(0xEEB46BC7); // fcmped d6, d7
o4(0xEEF1FA10); // fmstat
switch(op) {
case OP_EQUALS:
o4(0x03A00001); // moveq r0,#1
o4(0x13A00000); // movne r0,#0
break;
case OP_NOT_EQUALS:
o4(0x03A00000); // moveq r0,#0
o4(0x13A00001); // movne r0,#1
break;
case OP_LESS_EQUAL:
o4(0xD3A00001); // movle r0,#1
o4(0xC3A00000); // movgt r0,#0
break;
case OP_GREATER:
o4(0xD3A00000); // movle r0,#0
o4(0xC3A00001); // movgt r0,#1
break;
case OP_GREATER_EQUAL:
o4(0xA3A00001); // movge r0,#1
o4(0xB3A00000); // movlt r0,#0
break;
case OP_LESS:
o4(0xA3A00000); // movge r0,#0
o4(0xB3A00001); // movlt r0,#1
break;
default:
error("Unknown comparison op %d", op);
break;
}
#else
switch(op) {
case OP_EQUALS:
callRuntime((void*) runtime_cmp_eq_dd);
break;
case OP_NOT_EQUALS:
callRuntime((void*) runtime_cmp_ne_dd);
break;
case OP_LESS_EQUAL:
callRuntime((void*) runtime_cmp_le_dd);
break;
case OP_GREATER:
callRuntime((void*) runtime_cmp_gt_dd);
break;
case OP_GREATER_EQUAL:
callRuntime((void*) runtime_cmp_ge_dd);
break;
case OP_LESS:
callRuntime((void*) runtime_cmp_lt_dd);
break;
default:
error("Unknown comparison op %d", op);
break;
}
#endif
} else {
setupFloatArgs();
#ifdef ARM_USE_VFP
o4(0xEEB47AE7); // fcmpes s14, s15
o4(0xEEF1FA10); // fmstat
switch(op) {
case OP_EQUALS:
o4(0x03A00001); // moveq r0,#1
o4(0x13A00000); // movne r0,#0
break;
case OP_NOT_EQUALS:
o4(0x03A00000); // moveq r0,#0
o4(0x13A00001); // movne r0,#1
break;
case OP_LESS_EQUAL:
o4(0xD3A00001); // movle r0,#1
o4(0xC3A00000); // movgt r0,#0
break;
case OP_GREATER:
o4(0xD3A00000); // movle r0,#0
o4(0xC3A00001); // movgt r0,#1
break;
case OP_GREATER_EQUAL:
o4(0xA3A00001); // movge r0,#1
o4(0xB3A00000); // movlt r0,#0
break;
case OP_LESS:
o4(0xA3A00000); // movge r0,#0
o4(0xB3A00001); // movlt r0,#1
break;
default:
error("Unknown comparison op %d", op);
break;
}
#else
switch(op) {
case OP_EQUALS:
callRuntime((void*) runtime_cmp_eq_ff);
break;
case OP_NOT_EQUALS:
callRuntime((void*) runtime_cmp_ne_ff);
break;
case OP_LESS_EQUAL:
callRuntime((void*) runtime_cmp_le_ff);
break;
case OP_GREATER:
callRuntime((void*) runtime_cmp_gt_ff);
break;
case OP_GREATER_EQUAL:
callRuntime((void*) runtime_cmp_ge_ff);
break;
case OP_LESS:
callRuntime((void*) runtime_cmp_lt_ff);
break;
default:
error("Unknown comparison op %d", op);
break;
}
#endif
}
setR0Type(mkpInt);
}
virtual void genOp(int op) {
Type* pR0Type = getR0Type();
Type* pTOSType = getTOSType();
TypeTag tagR0 = pR0Type->tag;
TypeTag tagTOS = pTOSType->tag;
bool isFloatR0 = isFloatTag(tagR0);
bool isFloatTOS = isFloatTag(tagTOS);
if (!isFloatR0 && !isFloatTOS) {
setupIntPtrArgs();
bool isPtrR0 = isPointerTag(tagR0);
bool isPtrTOS = isPointerTag(tagTOS);
if (isPtrR0 || isPtrTOS) {
if (isPtrR0 && isPtrTOS) {
if (op != OP_MINUS) {
error("Unsupported pointer-pointer operation %d.", op);
}
if (! typeEqual(pR0Type, pTOSType)) {
error("Incompatible pointer types for subtraction.");
}
o4(0xE0410000); // sub r0,r1,r0
setR0Type(mkpInt);
int size = sizeOf(pR0Type->pHead);
if (size != 1) {
pushR0();
li(size);
// TODO: Optimize for power-of-two.
genOp(OP_DIV);
}
} else {
if (! (op == OP_PLUS || (op == OP_MINUS && isPtrR0))) {
error("Unsupported pointer-scalar operation %d", op);
}
Type* pPtrType = getPointerArithmeticResultType(
pR0Type, pTOSType);
int size = sizeOf(pPtrType->pHead);
if (size != 1) {
// TODO: Optimize for power-of-two.
liReg(size, 2);
if (isPtrR0) {
o4(0x0E0010192); // mul r1,r2,r1
} else {
o4(0x0E0000092); // mul r0,r2,r0
}
}
switch(op) {
case OP_PLUS:
o4(0xE0810000); // add r0,r1,r0
break;
case OP_MINUS:
o4(0xE0410000); // sub r0,r1,r0
break;
}
setR0Type(pPtrType);
}
} else {
switch(op) {
case OP_MUL:
o4(0x0E0000091); // mul r0,r1,r0
break;
case OP_DIV:
callRuntime((void*) runtime_DIV);
break;
case OP_MOD:
callRuntime((void*) runtime_MOD);
break;
case OP_PLUS:
o4(0xE0810000); // add r0,r1,r0
break;
case OP_MINUS:
o4(0xE0410000); // sub r0,r1,r0
break;
case OP_SHIFT_LEFT:
o4(0xE1A00011); // lsl r0,r1,r0
break;
case OP_SHIFT_RIGHT:
o4(0xE1A00051); // asr r0,r1,r0
break;
case OP_BIT_AND:
o4(0xE0010000); // and r0,r1,r0
break;
case OP_BIT_XOR:
o4(0xE0210000); // eor r0,r1,r0
break;
case OP_BIT_OR:
o4(0xE1810000); // orr r0,r1,r0
break;
case OP_BIT_NOT:
o4(0xE1E00000); // mvn r0, r0
break;
default:
error("Unimplemented op %d\n", op);
break;
}
}
} else {
Type* pResultType = tagR0 > tagTOS ? pR0Type : pTOSType;
if (pResultType->tag == TY_DOUBLE) {
setupDoubleArgs();
switch(op) {
case OP_MUL:
#ifdef ARM_USE_VFP
o4(0xEE267B07); // fmuld d7, d6, d7
#else
callRuntime((void*) runtime_op_mul_dd);
#endif
break;
case OP_DIV:
#ifdef ARM_USE_VFP
o4(0xEE867B07); // fdivd d7, d6, d7
#else
callRuntime((void*) runtime_op_div_dd);
#endif
break;
case OP_PLUS:
#ifdef ARM_USE_VFP
o4(0xEE367B07); // faddd d7, d6, d7
#else
callRuntime((void*) runtime_op_add_dd);
#endif
break;
case OP_MINUS:
#ifdef ARM_USE_VFP
o4(0xEE367B47); // fsubd d7, d6, d7
#else
callRuntime((void*) runtime_op_sub_dd);
#endif
break;
default:
error("Unsupported binary floating operation %d\n", op);
break;
}
} else {
setupFloatArgs();
switch(op) {
case OP_MUL:
#ifdef ARM_USE_VFP
o4(0xEE677A27); // fmuls s15, s14, s15
#else
callRuntime((void*) runtime_op_mul_ff);
#endif
break;
case OP_DIV:
#ifdef ARM_USE_VFP
o4(0xEEC77A27); // fdivs s15, s14, s15
#else
callRuntime((void*) runtime_op_div_ff);
#endif
break;
case OP_PLUS:
#ifdef ARM_USE_VFP
o4(0xEE777A27); // fadds s15, s14, s15
#else
callRuntime((void*) runtime_op_add_ff);
#endif
break;
case OP_MINUS:
#ifdef ARM_USE_VFP
o4(0xEE777A67); // fsubs s15, s14, s15
#else
callRuntime((void*) runtime_op_sub_ff);
#endif
break;
default:
error("Unsupported binary floating operation %d\n", op);
break;
}
}
setR0Type(pResultType);
}
}
virtual void gUnaryCmp(int op) {
if (op != OP_LOGICAL_NOT) {
error("Unknown unary cmp %d", op);
} else {
Type* pR0Type = getR0Type();
TypeTag tag = collapseType(pR0Type->tag);
switch(tag) {
case TY_INT:
o4(0xE3A01000); // mov r1, #0
o4(0xE1510000); // cmp r1, r0
o4(0x03A00001); // moveq r0,#1
o4(0x13A00000); // movne r0,#0
break;
case TY_FLOAT:
#ifdef ARM_USE_VFP
o4(0xEEF57A40); // fcmpzs s15
o4(0xEEF1FA10); // fmstat
o4(0x03A00001); // moveq r0,#1
o4(0x13A00000); // movne r0,#0
#else
callRuntime((void*) runtime_is_zero_f);
#endif
break;
case TY_DOUBLE:
#ifdef ARM_USE_VFP
o4(0xEEB57B40); // fcmpzd d7
o4(0xEEF1FA10); // fmstat
o4(0x03A00001); // moveq r0,#1
o4(0x13A00000); // movne r0,#0
#else
callRuntime((void*) runtime_is_zero_d);
#endif
break;
default:
error("gUnaryCmp unsupported type");
break;
}
}
setR0Type(mkpInt);
}
virtual void genUnaryOp(int op) {
Type* pR0Type = getR0Type();
TypeTag tag = collapseType(pR0Type->tag);
switch(tag) {
case TY_INT:
switch(op) {
case OP_MINUS:
o4(0xE3A01000); // mov r1, #0
o4(0xE0410000); // sub r0,r1,r0
break;
case OP_BIT_NOT:
o4(0xE1E00000); // mvn r0, r0
break;
default:
error("Unknown unary op %d\n", op);
break;
}
break;
case TY_FLOAT:
case TY_DOUBLE:
switch (op) {
case OP_MINUS:
if (tag == TY_FLOAT) {
#ifdef ARM_USE_VFP
o4(0xEEF17A67); // fnegs s15, s15
#else
callRuntime((void*) runtime_op_neg_f);
#endif
} else {
#ifdef ARM_USE_VFP
o4(0xEEB17B47); // fnegd d7, d7
#else
callRuntime((void*) runtime_op_neg_d);
#endif
}
break;
case OP_BIT_NOT:
error("Can't apply '~' operator to a float or double.");
break;
default:
error("Unknown unary op %d\n", op);
break;
}
break;
default:
error("genUnaryOp unsupported type");
break;
}
}
virtual void pushR0() {
Type* pR0Type = getR0Type();
TypeTag r0ct = collapseType(pR0Type->tag);
#ifdef ARM_USE_VFP
switch (r0ct ) {
case TY_FLOAT:
o4(0xED6D7A01); // fstmfds sp!,{s15}
mStackUse += 4;
break;
case TY_DOUBLE:
o4(0xED2D7B02); // fstmfdd sp!,{d7}
mStackUse += 8;
break;
default:
o4(0xE92D0001); // stmfd sp!,{r0}
mStackUse += 4;
}
#else
if (r0ct != TY_DOUBLE) {
o4(0xE92D0001); // stmfd sp!,{r0}
mStackUse += 4;
} else {
o4(0xE92D0003); // stmfd sp!,{r0,r1}
mStackUse += 8;
}
#endif
pushType();
LOG_STACK("pushR0: %d\n", mStackUse);
}
virtual void over() {
// We know it's only used for int-ptr ops (++/--)
Type* pR0Type = getR0Type();
TypeTag r0ct = collapseType(pR0Type->tag);
Type* pTOSType = getTOSType();
TypeTag tosct = collapseType(pTOSType->tag);
assert (r0ct == TY_INT && tosct == TY_INT);
o4(0xE8BD0002); // ldmfd sp!,{r1}
o4(0xE92D0001); // stmfd sp!,{r0}
o4(0xE92D0002); // stmfd sp!,{r1}
overType();
mStackUse += 4;
}
virtual void popR0() {
Type* pTOSType = getTOSType();
TypeTag tosct = collapseType(pTOSType->tag);
#ifdef ARM_USE_VFP
if (tosct == TY_FLOAT || tosct == TY_DOUBLE) {
error("Unsupported popR0 float/double");
}
#endif
switch (tosct){
case TY_INT:
case TY_FLOAT:
o4(0xE8BD0001); // ldmfd sp!,{r0}
mStackUse -= 4;
break;
case TY_DOUBLE:
o4(0xE8BD0003); // ldmfd sp!,{r0, r1} // Restore R0
mStackUse -= 8;
break;
default:
error("Can't pop this type.");
break;
}
popType();
LOG_STACK("popR0: %d\n", mStackUse);
}
virtual void storeR0ToTOS() {
Type* pPointerType = getTOSType();
assert(pPointerType->tag == TY_POINTER);
Type* pDestType = pPointerType->pHead;
convertR0(pDestType);
o4(0xE8BD0004); // ldmfd sp!,{r2}
popType();
mStackUse -= 4;
switch (pDestType->tag) {
case TY_POINTER:
case TY_INT:
o4(0xE5820000); // str r0, [r2]
break;
case TY_FLOAT:
#ifdef ARM_USE_VFP
o4(0xEDC27A00); // fsts s15, [r2, #0]
#else
o4(0xE5820000); // str r0, [r2]
#endif
break;
case TY_SHORT:
o4(0xE1C200B0); // strh r0, [r2]
break;
case TY_CHAR:
o4(0xE5C20000); // strb r0, [r2]
break;
case TY_DOUBLE:
#ifdef ARM_USE_VFP
o4(0xED827B00); // fstd d7, [r2, #0]
#else
o4(0xE1C200F0); // strd r0, [r2]
#endif
break;
case TY_STRUCT:
{
int size = sizeOf(pDestType);
if (size > 0) {
liReg(size, 1);
callRuntime((void*) runtime_structCopy);
}
}
break;
default:
error("storeR0ToTOS: unimplemented type %d",
pDestType->tag);
break;
}
}
virtual void loadR0FromR0() {
Type* pPointerType = getR0Type();
assert(pPointerType->tag == TY_POINTER);
Type* pNewType = pPointerType->pHead;
TypeTag tag = pNewType->tag;
switch (tag) {
case TY_POINTER:
case TY_INT:
o4(0xE5900000); // ldr r0, [r0]
break;
case TY_FLOAT:
#ifdef ARM_USE_VFP
o4(0xEDD07A00); // flds s15, [r0, #0]
#else
o4(0xE5900000); // ldr r0, [r0]
#endif
break;
case TY_SHORT:
o4(0xE1D000F0); // ldrsh r0, [r0]
break;
case TY_CHAR:
o4(0xE5D00000); // ldrb r0, [r0]
break;
case TY_DOUBLE:
#ifdef ARM_USE_VFP
o4(0xED907B00); // fldd d7, [r0, #0]
#else
o4(0xE1C000D0); // ldrd r0, [r0]
#endif
break;
case TY_ARRAY:
pNewType = pNewType->pTail;
break;
case TY_STRUCT:
break;
default:
error("loadR0FromR0: unimplemented type %d", tag);
break;
}
setR0Type(pNewType);
}
virtual void leaR0(int ea, Type* pPointerType, ExpressionType et) {
if (ea > -LOCAL && ea < LOCAL) {
// Local, fp relative
size_t immediate = 0;
bool inRange = false;
if (ea < 0) {
inRange = encode12BitImmediate(-ea, &immediate);
o4(0xE24B0000 | immediate); // sub r0, fp, #ea
} else {
inRange = encode12BitImmediate(ea, &immediate);
o4(0xE28B0000 | immediate); // add r0, fp, #ea
}
if (! inRange) {
error("Offset out of range: %08x", ea);
}
} else {
// Global, absolute.
o4(0xE59F0000); // ldr r0, .L1
o4(0xEA000000); // b .L99
o4(ea); // .L1: .word 0
// .L99:
}
setR0Type(pPointerType, et);
}
virtual int leaForward(int ea, Type* pPointerType) {
setR0Type(pPointerType);
int result = ea;
int pc = getPC();
int offset = 0;
if (ea) {
offset = (pc - ea - 8) >> 2;
if ((offset & 0xffff) != offset) {
error("function forward reference out of bounds");
}
} else {
offset = 0;
}
o4(0xE59F0000 | offset); // ldr r0, .L1
if (ea == 0) {
o4(0xEA000000); // b .L99
result = getPC();
o4(ea); // .L1: .word 0
// .L99:
}
return result;
}
virtual void convertR0Imp(Type* pType, bool isCast){
Type* pR0Type = getR0Type();
if (isPointerType(pType) && isPointerType(pR0Type)) {
Type* pA = pR0Type;
Type* pB = pType;
// Array decays to pointer
if (pA->tag == TY_ARRAY && pB->tag == TY_POINTER) {
pA = pA->pTail;
}
if (! (typeEqual(pA, pB)
|| pB->pHead->tag == TY_VOID
|| (pA->tag == TY_POINTER && pB->tag == TY_POINTER && isCast)
)) {
error("Incompatible pointer or array types");
}
} else if (bitsSame(pType, pR0Type)) {
// do nothing special
} else {
TypeTag r0Tag = collapseType(pR0Type->tag);
TypeTag destTag = collapseType(pType->tag);
if (r0Tag == TY_INT) {
if (destTag == TY_FLOAT) {
#ifdef ARM_USE_VFP
o4(0xEE070A90); // fmsr s15, r0
o4(0xEEF87AE7); // fsitos s15, s15
#else
callRuntime((void*) runtime_int_to_float);
#endif
} else {
assert(destTag == TY_DOUBLE);
#ifdef ARM_USE_VFP
o4(0xEE070A90); // fmsr s15, r0
o4(0xEEB87BE7); // fsitod d7, s15
#else
callRuntime((void*) runtime_int_to_double);
#endif
}
} else if (r0Tag == TY_FLOAT) {
if (destTag == TY_INT) {
#ifdef ARM_USE_VFP
o4(0xEEFD7AE7); // ftosizs s15, s15
o4(0xEE170A90); // fmrs r0, s15
#else
callRuntime((void*) runtime_float_to_int);
#endif
} else {
assert(destTag == TY_DOUBLE);
#ifdef ARM_USE_VFP
o4(0xEEB77AE7); // fcvtds d7, s15
#else
callRuntime((void*) runtime_float_to_double);
#endif
}
} else {
if (r0Tag == TY_DOUBLE) {
if (destTag == TY_INT) {
#ifdef ARM_USE_VFP
o4(0xEEFD7BC7); // ftosizd s15, d7
o4(0xEE170A90); // fmrs r0, s15
#else
callRuntime((void*) runtime_double_to_int);
#endif
} else {
if(destTag == TY_FLOAT) {
#ifdef ARM_USE_VFP
o4(0xEEF77BC7); // fcvtsd s15, d7
#else
callRuntime((void*) runtime_double_to_float);
#endif
} else {
incompatibleTypes(pR0Type, pType);
}
}
} else {
incompatibleTypes(pR0Type, pType);
}
}
}
setR0Type(pType);
}
virtual int beginFunctionCallArguments() {
int pc = getPC();
o4(0xE24DDF00); // Placeholder sub sp, sp, #0
return pc;
}
virtual size_t storeR0ToArg(int l, Type* pArgType) {
convertR0(pArgType);
Type* pR0Type = getR0Type();
TypeTag r0ct = collapseType(pR0Type->tag);
#ifdef ARM_USE_VFP
switch(r0ct) {
case TY_INT:
if (l < 0 || l > 4096-4) {
error("l out of range for stack offset: 0x%08x", l);
}
o4(0xE58D0000 | l); // str r0, [sp, #l]
return 4;
case TY_FLOAT:
if (l < 0 || l > 1020 || (l & 3)) {
error("l out of range for stack offset: 0x%08x", l);
}
o4(0xEDCD7A00 | (l >> 2)); // fsts s15, [sp, #l]
return 4;
case TY_DOUBLE: {
// Align to 8 byte boundary
int l2 = (l + 7) & ~7;
if (l2 < 0 || l2 > 1020 || (l2 & 3)) {
error("l out of range for stack offset: 0x%08x", l);
}
o4(0xED8D7B00 | (l2 >> 2)); // fstd d7, [sp, #l2]
return (l2 - l) + 8;
}
default:
assert(false);
return 0;
}
#else
switch(r0ct) {
case TY_INT:
case TY_FLOAT:
if (l < 0 || l > 4096-4) {
error("l out of range for stack offset: 0x%08x", l);
}
o4(0xE58D0000 + l); // str r0, [sp, #l]
return 4;
case TY_DOUBLE: {
// Align to 8 byte boundary
int l2 = (l + 7) & ~7;
if (l2 < 0 || l2 > 4096-8) {
error("l out of range for stack offset: 0x%08x", l);
}
o4(0xE58D0000 + l2); // str r0, [sp, #l]
o4(0xE58D1000 + l2 + 4); // str r1, [sp, #l+4]
return (l2 - l) + 8;
}
default:
assert(false);
return 0;
}
#endif
}
virtual void endFunctionCallArguments(Type* pDecl, int a, int l) {
int argumentStackUse = l;
// Have to calculate register arg count from actual stack size,
// in order to properly handle ... functions.
int regArgCount = l >> 2;
if (regArgCount > 4) {
regArgCount = 4;
}
if (regArgCount > 0) {
argumentStackUse -= regArgCount * 4;
o4(0xE8BD0000 | ((1 << regArgCount) - 1)); // ldmfd sp!,{}
}
mStackUse += argumentStackUse;
// Align stack.
int missalignment = mStackUse - ((mStackUse / STACK_ALIGNMENT)
* STACK_ALIGNMENT);
mStackAlignmentAdjustment = 0;
if (missalignment > 0) {
mStackAlignmentAdjustment = STACK_ALIGNMENT - missalignment;
}
l += mStackAlignmentAdjustment;
if (l < 0 || l > 0x3FC) {
error("L out of range for stack adjustment: 0x%08x", l);
}
flush();
* (int*) a = 0xE24DDF00 | (l >> 2); // sub sp, sp, #0 << 2
mStackUse += mStackAlignmentAdjustment;
LOG_STACK("endFunctionCallArguments mStackUse: %d, mStackAlignmentAdjustment %d\n",
mStackUse, mStackAlignmentAdjustment);
}
virtual int callForward(int symbol, Type* pFunc) {
setR0Type(pFunc->pHead);
// Forward calls are always short (local)
int pc = getPC();
o4(0xEB000000 | encodeAddress(symbol));
return pc;
}
virtual void callIndirect(int l, Type* pFunc) {
assert(pFunc->tag == TY_FUNC);
popType(); // Get rid of indirect fn pointer type
int argCount = l >> 2;
int poppedArgs = argCount > 4 ? 4 : argCount;
int adjustedL = l - (poppedArgs << 2) + mStackAlignmentAdjustment;
if (adjustedL < 0 || adjustedL > 4096-4) {
error("l out of range for stack offset: 0x%08x", l);
}
o4(0xE59DC000 | (0xfff & adjustedL)); // ldr r12, [sp,#adjustedL]
o4(0xE12FFF3C); // blx r12
Type* pReturnType = pFunc->pHead;
setR0Type(pReturnType);
#ifdef ARM_USE_VFP
switch(pReturnType->tag) {
case TY_FLOAT:
o4(0xEE070A90); // fmsr s15, r0
break;
case TY_DOUBLE:
o4(0xEC410B17); // fmdrr d7, r0, r1
break;
default:
break;
}
#endif
}
virtual void adjustStackAfterCall(Type* pDecl, int l, bool isIndirect) {
int argCount = l >> 2;
// Have to calculate register arg count from actual stack size,
// in order to properly handle ... functions.
int regArgCount = l >> 2;
if (regArgCount > 4) {
regArgCount = 4;
}
int stackArgs = argCount - regArgCount;
int stackUse = stackArgs + (isIndirect ? 1 : 0)
+ (mStackAlignmentAdjustment >> 2);
if (stackUse) {
if (stackUse < 0 || stackUse > 255) {
error("L out of range for stack adjustment: 0x%08x", l);
}
o4(0xE28DDF00 | stackUse); // add sp, sp, #stackUse << 2
mStackUse -= stackUse * 4;
LOG_STACK("adjustStackAfterCall: %d\n", mStackUse);
}
}
virtual int jumpOffset() {
return 8;
}
/* output a symbol and patch all calls to it */
virtual void gsym(int t) {
int n;
int base = getBase();
int pc = getPC();
while (t) {
int data = * (int*) t;
int decodedOffset = ((BRANCH_REL_ADDRESS_MASK & data) << 2);
if (decodedOffset == 0) {
n = 0;
} else {
n = base + decodedOffset; /* next value */
}
*(int *) t = (data & ~BRANCH_REL_ADDRESS_MASK)
| encodeRelAddress(pc - t - 8);
t = n;
}
}
/* output a symbol and patch all calls to it */
virtual void resolveForward(int t) {
if (t) {
int pc = getPC();
*(int *) t = pc;
}
}
virtual int finishCompile() {
#if defined(__arm__)
const long base = long(getBase());
const long curr = long(getPC());
int err = cacheflush(base, curr, 0);
return err;
#else
return 0;
#endif
}
/**
* alignment (in bytes) for this type of data
*/
virtual size_t alignmentOf(Type* pType){
switch(pType->tag) {
case TY_CHAR:
return 1;
case TY_SHORT:
return 2;
case TY_DOUBLE:
return 8;
case TY_ARRAY:
return alignmentOf(pType->pHead);
case TY_STRUCT:
return pType->pHead->alignment & 0x7fffffff;
case TY_FUNC:
error("alignment of func not supported");
return 1;
default:
return 4;
}
}
/**
* Array element alignment (in bytes) for this type of data.
*/
virtual size_t sizeOf(Type* pType){
switch(pType->tag) {
case TY_INT:
return 4;
case TY_SHORT:
return 2;
case TY_CHAR:
return 1;
case TY_FLOAT:
return 4;
case TY_DOUBLE:
return 8;
case TY_POINTER:
return 4;
case TY_ARRAY:
return pType->length * sizeOf(pType->pHead);
case TY_STRUCT:
return pType->pHead->length;
default:
error("Unsupported type %d", pType->tag);
return 0;
}
}
private:
static const int BRANCH_REL_ADDRESS_MASK = 0x00ffffff;
/** Encode a relative address that might also be
* a label.
*/
int encodeAddress(int value) {
int base = getBase();
if (value >= base && value <= getPC() ) {
// This is a label, encode it relative to the base.
value = value - base;
}
return encodeRelAddress(value);
}
int encodeRelAddress(int value) {
return BRANCH_REL_ADDRESS_MASK & (value >> 2);
}
int calcRegArgCount(Type* pDecl) {
int reg = 0;
Type* pArgs = pDecl->pTail;
while (pArgs && reg < 4) {
Type* pArg = pArgs->pHead;
if ( pArg->tag == TY_DOUBLE) {
int evenReg = (reg + 1) & ~1;
if (evenReg >= 4) {
break;
}
reg = evenReg + 2;
} else {
reg++;
}
pArgs = pArgs->pTail;
}
return reg;
}
void setupIntPtrArgs() {
o4(0xE8BD0002); // ldmfd sp!,{r1}
mStackUse -= 4;
popType();
}
/* Pop TOS to R1 (use s14 if VFP)
* Make sure both R0 and TOS are floats. (Could be ints)
* We know that at least one of R0 and TOS is already a float
*/
void setupFloatArgs() {
Type* pR0Type = getR0Type();
Type* pTOSType = getTOSType();
TypeTag tagR0 = collapseType(pR0Type->tag);
TypeTag tagTOS = collapseType(pTOSType->tag);
if (tagR0 != TY_FLOAT) {
assert(tagR0 == TY_INT);
#ifdef ARM_USE_VFP
o4(0xEE070A90); // fmsr s15, r0
o4(0xEEF87AE7); // fsitos s15, s15
#else
callRuntime((void*) runtime_int_to_float);
#endif
}
if (tagTOS != TY_FLOAT) {
assert(tagTOS == TY_INT);
assert(tagR0 == TY_FLOAT);
#ifdef ARM_USE_VFP
o4(0xECBD7A01); // fldmfds sp!, {s14}
o4(0xEEB87AC7); // fsitos s14, s14
#else
o4(0xE92D0001); // stmfd sp!,{r0} // push R0
o4(0xE59D0004); // ldr r0, [sp, #4]
callRuntime((void*) runtime_int_to_float);
o4(0xE1A01000); // mov r1, r0
o4(0xE8BD0001); // ldmfd sp!,{r0} // pop R0
o4(0xE28DD004); // add sp, sp, #4 // Pop sp
#endif
} else {
// Pop TOS
#ifdef ARM_USE_VFP
o4(0xECBD7A01); // fldmfds sp!, {s14}
#else
o4(0xE8BD0002); // ldmfd sp!,{r1}
#endif
}
mStackUse -= 4;
popType();
}
/* Pop TOS into R2..R3 (use D6 if VFP)
* Make sure both R0 and TOS are doubles. Could be floats or ints.
* We know that at least one of R0 and TOS are already a double.
*/
void setupDoubleArgs() {
Type* pR0Type = getR0Type();
Type* pTOSType = getTOSType();
TypeTag tagR0 = collapseType(pR0Type->tag);
TypeTag tagTOS = collapseType(pTOSType->tag);
if (tagR0 != TY_DOUBLE) {
if (tagR0 == TY_INT) {
#ifdef ARM_USE_VFP
o4(0xEE070A90); // fmsr s15, r0
o4(0xEEB87BE7); // fsitod d7, s15
#else
callRuntime((void*) runtime_int_to_double);
#endif
} else {
assert(tagR0 == TY_FLOAT);
#ifdef ARM_USE_VFP
o4(0xEEB77AE7); // fcvtds d7, s15
#else
callRuntime((void*) runtime_float_to_double);
#endif
}
}
if (tagTOS != TY_DOUBLE) {
#ifdef ARM_USE_VFP
if (tagTOS == TY_INT) {
o4(0xECFD6A01); // fldmfds sp!,{s13}
o4(0xEEB86BE6); // fsitod d6, s13
} else {
assert(tagTOS == TY_FLOAT);
o4(0xECFD6A01); // fldmfds sp!,{s13}
o4(0xEEB76AE6); // fcvtds d6, s13
}
#else
o4(0xE92D0003); // stmfd sp!,{r0,r1} // push r0,r1
o4(0xE59D0008); // ldr r0, [sp, #8]
if (tagTOS == TY_INT) {
callRuntime((void*) runtime_int_to_double);
} else {
assert(tagTOS == TY_FLOAT);
callRuntime((void*) runtime_float_to_double);
}
o4(0xE1A02000); // mov r2, r0
o4(0xE1A03001); // mov r3, r1
o4(0xE8BD0003); // ldmfd sp!,{r0, r1} // Restore R0
o4(0xE28DD004); // add sp, sp, #4 // Pop sp
#endif
mStackUse -= 4;
} else {
#ifdef ARM_USE_VFP
o4(0xECBD6B02); // fldmfdd sp!, {d6}
#else
o4(0xE8BD000C); // ldmfd sp!,{r2,r3}
#endif
mStackUse -= 8;
}
popType();
}
void liReg(int t, int reg) {
assert(reg >= 0 && reg < 16);
int rN = (reg & 0xf) << 12;
size_t encodedImmediate;
if (encode12BitImmediate(t, &encodedImmediate)) {
o4(0xE3A00000 | encodedImmediate | rN); // mov rN, #0
} else if (encode12BitImmediate(-(t+1), &encodedImmediate)) {
// mvn means move constant ^ ~0
o4(0xE3E00000 | encodedImmediate | rN); // mvn rN, #0
} else {
o4(0xE51F0000 | rN); // ldr rN, .L3
o4(0xEA000000); // b .L99
o4(t); // .L3: .word 0
// .L99:
}
}
void incompatibleTypes(Type* pR0Type, Type* pType) {
error("Incompatible types old: %d new: %d", pR0Type->tag, pType->tag);
}
void callRuntime(void* fn) {
o4(0xE59FC000); // ldr r12, .L1
o4(0xEA000000); // b .L99
o4((int) fn); //.L1: .word fn
o4(0xE12FFF3C); //.L99: blx r12
}
// Integer math:
static int runtime_DIV(int b, int a) {
return a / b;
}
static int runtime_MOD(int b, int a) {
return a % b;
}
static void runtime_structCopy(void* src, size_t size, void* dest) {
memcpy(dest, src, size);
}
#ifndef ARM_USE_VFP
// Comparison to zero
static int runtime_is_non_zero_f(float a) {
return a != 0;
}
static int runtime_is_non_zero_d(double a) {
return a != 0;
}
// Comparison to zero
static int runtime_is_zero_f(float a) {
return a == 0;
}
static int runtime_is_zero_d(double a) {
return a == 0;
}
// Type conversion
static int runtime_float_to_int(float a) {
return (int) a;
}
static double runtime_float_to_double(float a) {
return (double) a;
}
static int runtime_double_to_int(double a) {
return (int) a;
}
static float runtime_double_to_float(double a) {
return (float) a;
}
static float runtime_int_to_float(int a) {
return (float) a;
}
static double runtime_int_to_double(int a) {
return (double) a;
}
// Comparisons float
static int runtime_cmp_eq_ff(float b, float a) {
return a == b;
}
static int runtime_cmp_ne_ff(float b, float a) {
return a != b;
}
static int runtime_cmp_lt_ff(float b, float a) {
return a < b;
}
static int runtime_cmp_le_ff(float b, float a) {
return a <= b;
}
static int runtime_cmp_ge_ff(float b, float a) {
return a >= b;
}
static int runtime_cmp_gt_ff(float b, float a) {
return a > b;
}
// Comparisons double
static int runtime_cmp_eq_dd(double b, double a) {
return a == b;
}
static int runtime_cmp_ne_dd(double b, double a) {
return a != b;
}
static int runtime_cmp_lt_dd(double b, double a) {
return a < b;
}
static int runtime_cmp_le_dd(double b, double a) {
return a <= b;
}
static int runtime_cmp_ge_dd(double b, double a) {
return a >= b;
}
static int runtime_cmp_gt_dd(double b, double a) {
return a > b;
}
// Math float
static float runtime_op_add_ff(float b, float a) {
return a + b;
}
static float runtime_op_sub_ff(float b, float a) {
return a - b;
}
static float runtime_op_mul_ff(float b, float a) {
return a * b;
}
static float runtime_op_div_ff(float b, float a) {
return a / b;
}
static float runtime_op_neg_f(float a) {
return -a;
}
// Math double
static double runtime_op_add_dd(double b, double a) {
return a + b;
}
static double runtime_op_sub_dd(double b, double a) {
return a - b;
}
static double runtime_op_mul_dd(double b, double a) {
return a * b;
}
static double runtime_op_div_dd(double b, double a) {
return a / b;
}
static double runtime_op_neg_d(double a) {
return -a;
}
#endif
static const int STACK_ALIGNMENT = 8;
int mStackUse;
// This variable holds the amount we adjusted the stack in the most
// recent endFunctionCallArguments call. It's examined by the
// following adjustStackAfterCall call.
int mStackAlignmentAdjustment;
};
#endif // PROVIDE_ARM_CODEGEN
#ifdef PROVIDE_X86_CODEGEN
class X86CodeGenerator : public CodeGenerator {
public:
X86CodeGenerator() {}
virtual ~X86CodeGenerator() {}
/* returns address to patch with local variable size
*/
virtual int functionEntry(Type* pDecl) {
o(0xe58955); /* push %ebp, mov %esp, %ebp */
return oad(0xec81, 0); /* sub $xxx, %esp */
}
virtual void functionExit(Type* pDecl, int localVariableAddress, int localVariableSize) {
o(0xc3c9); /* leave, ret */
*(int *) localVariableAddress = localVariableSize; /* save local variables */
}
/* load immediate value */
virtual void li(int i) {
oad(0xb8, i); /* mov $xx, %eax */
setR0Type(mkpInt);
}
virtual void loadFloat(int address, Type* pType) {
setR0Type(pType);
switch (pType->tag) {
case TY_FLOAT:
oad(0x05D9, address); // flds
break;
case TY_DOUBLE:
oad(0x05DD, address); // fldl
break;
default:
assert(false);
break;
}
}
virtual void addStructOffsetR0(int offset, Type* pType) {
if (offset) {
oad(0x05, offset); // addl offset, %eax
}
setR0Type(pType, ET_LVALUE);
}
virtual int gjmp(int t) {
return psym(0xe9, t);
}
/* l = 0: je, l == 1: jne */
virtual int gtst(bool l, int t) {
Type* pR0Type = getR0Type();
TypeTag tagR0 = pR0Type->tag;
bool isFloatR0 = isFloatTag(tagR0);
if (isFloatR0) {
o(0xeed9); // fldz
o(0xe9da); // fucompp
o(0xe0df); // fnstsw %ax
o(0x9e); // sahf
} else {
o(0xc085); // test %eax, %eax
}
// Use two output statements to generate one instruction.
o(0x0f); // je/jne xxx
return psym(0x84 + l, t);
}
virtual void gcmp(int op) {
Type* pR0Type = getR0Type();
Type* pTOSType = getTOSType();
TypeTag tagR0 = pR0Type->tag;
TypeTag tagTOS = pTOSType->tag;
bool isFloatR0 = isFloatTag(tagR0);
bool isFloatTOS = isFloatTag(tagTOS);
if (!isFloatR0 && !isFloatTOS) {
int t = decodeOp(op);
o(0x59); /* pop %ecx */
o(0xc139); /* cmp %eax,%ecx */
li(0);
o(0x0f); /* setxx %al */
o(t + 0x90);
o(0xc0);
popType();
} else {
setupFloatOperands();
switch (op) {
case OP_EQUALS:
o(0xe9da); // fucompp
o(0xe0df); // fnstsw %ax
o(0x9e); // sahf
o(0xc0940f); // sete %al
o(0xc29b0f); // setnp %dl
o(0xd021); // andl %edx, %eax
break;
case OP_NOT_EQUALS:
o(0xe9da); // fucompp
o(0xe0df); // fnstsw %ax
o(0x9e); // sahf
o(0xc0950f); // setne %al
o(0xc29a0f); // setp %dl
o(0xd009); // orl %edx, %eax
break;
case OP_GREATER_EQUAL:
o(0xe9da); // fucompp
o(0xe0df); // fnstsw %ax
o(0x05c4f6); // testb $5, %ah
o(0xc0940f); // sete %al
break;
case OP_LESS:
o(0xc9d9); // fxch %st(1)
o(0xe9da); // fucompp
o(0xe0df); // fnstsw %ax
o(0x9e); // sahf
o(0xc0970f); // seta %al
break;
case OP_LESS_EQUAL:
o(0xc9d9); // fxch %st(1)
o(0xe9da); // fucompp
o(0xe0df); // fnstsw %ax
o(0x9e); // sahf
o(0xc0930f); // setea %al
break;
case OP_GREATER:
o(0xe9da); // fucompp
o(0xe0df); // fnstsw %ax
o(0x45c4f6); // testb $69, %ah
o(0xc0940f); // sete %al
break;
default:
error("Unknown comparison op");
}
o(0xc0b60f); // movzbl %al, %eax
}
setR0Type(mkpInt);
}
virtual void genOp(int op) {
Type* pR0Type = getR0Type();
Type* pTOSType = getTOSType();
TypeTag tagR0 = pR0Type->tag;
TypeTag tagTOS = pTOSType->tag;
bool isFloatR0 = isFloatTag(tagR0);
bool isFloatTOS = isFloatTag(tagTOS);
if (!isFloatR0 && !isFloatTOS) {
bool isPtrR0 = isPointerTag(tagR0);
bool isPtrTOS = isPointerTag(tagTOS);
if (isPtrR0 || isPtrTOS) {
if (isPtrR0 && isPtrTOS) {
if (op != OP_MINUS) {
error("Unsupported pointer-pointer operation %d.", op);
}
if (! typeEqual(pR0Type, pTOSType)) {
error("Incompatible pointer types for subtraction.");
}
o(0x59); /* pop %ecx */
o(decodeOp(op));
popType();
setR0Type(mkpInt);
int size = sizeOf(pR0Type->pHead);
if (size != 1) {
pushR0();
li(size);
// TODO: Optimize for power-of-two.
genOp(OP_DIV);
}
} else {
if (! (op == OP_PLUS || (op == OP_MINUS && isPtrR0))) {
error("Unsupported pointer-scalar operation %d", op);
}
Type* pPtrType = getPointerArithmeticResultType(
pR0Type, pTOSType);
o(0x59); /* pop %ecx */
int size = sizeOf(pPtrType->pHead);
if (size != 1) {
// TODO: Optimize for power-of-two.
if (isPtrR0) {
oad(0xC969, size); // imull $size, %ecx
} else {
oad(0xC069, size); // mul $size, %eax
}
}
o(decodeOp(op));
popType();
setR0Type(pPtrType);
}
} else {
o(0x59); /* pop %ecx */
o(decodeOp(op));
if (op == OP_MOD)
o(0x92); /* xchg %edx, %eax */
popType();
}
} else {
Type* pResultType = tagR0 > tagTOS ? pR0Type : pTOSType;
setupFloatOperands();
// Both float. x87 R0 == left hand, x87 R1 == right hand
switch (op) {
case OP_MUL:
o(0xc9de); // fmulp
break;
case OP_DIV:
o(0xf1de); // fdivp
break;
case OP_PLUS:
o(0xc1de); // faddp
break;
case OP_MINUS:
o(0xe1de); // fsubp
break;
default:
error("Unsupported binary floating operation.");
break;
}
setR0Type(pResultType);
}
}
virtual void gUnaryCmp(int op) {
if (op != OP_LOGICAL_NOT) {
error("Unknown unary cmp %d", op);
} else {
Type* pR0Type = getR0Type();
TypeTag tag = collapseType(pR0Type->tag);
switch(tag) {
case TY_INT: {
oad(0xb9, 0); /* movl $0, %ecx */
int t = decodeOp(op);
o(0xc139); /* cmp %eax,%ecx */
li(0);
o(0x0f); /* setxx %al */
o(t + 0x90);
o(0xc0);
}
break;
case TY_FLOAT:
case TY_DOUBLE:
o(0xeed9); // fldz
o(0xe9da); // fucompp
o(0xe0df); // fnstsw %ax
o(0x9e); // sahf
o(0xc0950f); // setne %al
o(0xc29a0f); // setp %dl
o(0xd009); // orl %edx, %eax
o(0xc0b60f); // movzbl %al, %eax
o(0x01f083); // xorl $1, %eax
break;
default:
error("gUnaryCmp unsupported type");
break;
}
}
setR0Type(mkpInt);
}
virtual void genUnaryOp(int op) {
Type* pR0Type = getR0Type();
TypeTag tag = collapseType(pR0Type->tag);
switch(tag) {
case TY_INT:
oad(0xb9, 0); /* movl $0, %ecx */
o(decodeOp(op));
break;
case TY_FLOAT:
case TY_DOUBLE:
switch (op) {
case OP_MINUS:
o(0xe0d9); // fchs
break;
case OP_BIT_NOT:
error("Can't apply '~' operator to a float or double.");
break;
default:
error("Unknown unary op %d\n", op);
break;
}
break;
default:
error("genUnaryOp unsupported type");
break;
}
}
virtual void pushR0() {
Type* pR0Type = getR0Type();
TypeTag r0ct = collapseType(pR0Type->tag);
switch(r0ct) {
case TY_INT:
o(0x50); /* push %eax */
break;
case TY_FLOAT:
o(0x50); /* push %eax */
o(0x241cd9); // fstps 0(%esp)
break;
case TY_DOUBLE:
o(0x50); /* push %eax */
o(0x50); /* push %eax */
o(0x241cdd); // fstpl 0(%esp)
break;
default:
error("pushR0 unsupported type %d", r0ct);
break;
}
pushType();
}
virtual void over() {
// We know it's only used for int-ptr ops (++/--)
Type* pR0Type = getR0Type();
TypeTag r0ct = collapseType(pR0Type->tag);
Type* pTOSType = getTOSType();
TypeTag tosct = collapseType(pTOSType->tag);
assert (r0ct == TY_INT && tosct == TY_INT);
o(0x59); /* pop %ecx */
o(0x50); /* push %eax */
o(0x51); /* push %ecx */
overType();
}
virtual void popR0() {
Type* pR0Type = getR0Type();
TypeTag r0ct = collapseType(pR0Type->tag);
switch(r0ct) {
case TY_INT:
o(0x58); /* popl %eax */
break;
case TY_FLOAT:
o(0x2404d9); // flds (%esp)
o(0x58); /* popl %eax */
break;
case TY_DOUBLE:
o(0x2404dd); // fldl (%esp)
o(0x58); /* popl %eax */
o(0x58); /* popl %eax */
break;
default:
error("popR0 unsupported type %d", r0ct);
break;
}
popType();
}
virtual void storeR0ToTOS() {
Type* pPointerType = getTOSType();
assert(pPointerType->tag == TY_POINTER);
Type* pTargetType = pPointerType->pHead;
convertR0(pTargetType);
o(0x59); /* pop %ecx */
popType();
switch (pTargetType->tag) {
case TY_POINTER:
case TY_INT:
o(0x0189); /* movl %eax/%al, (%ecx) */
break;
case TY_SHORT:
o(0x018966); /* movw %ax, (%ecx) */
break;
case TY_CHAR:
o(0x0188); /* movl %eax/%al, (%ecx) */
break;
case TY_FLOAT:
o(0x19d9); /* fstps (%ecx) */
break;
case TY_DOUBLE:
o(0x19dd); /* fstpl (%ecx) */
break;
case TY_STRUCT:
{
// TODO: use alignment information to use movsw/movsl instead of movsb
int size = sizeOf(pTargetType);
if (size > 0) {
o(0x9c); // pushf
o(0x57); // pushl %edi
o(0x56); // pushl %esi
o(0xcf89); // movl %ecx, %edi
o(0xc689); // movl %eax, %esi
oad(0xb9, size); // mov #size, %ecx
o(0xfc); // cld
o(0xf3); // rep
o(0xa4); // movsb
o(0x5e); // popl %esi
o(0x5f); // popl %edi
o(0x9d); // popf
}
}
break;
default:
error("storeR0ToTOS: unsupported type %d",
pTargetType->tag);
break;
}
}
virtual void loadR0FromR0() {
Type* pPointerType = getR0Type();
assert(pPointerType->tag == TY_POINTER);
Type* pNewType = pPointerType->pHead;
TypeTag tag = pNewType->tag;
switch (tag) {
case TY_POINTER:
case TY_INT:
o2(0x008b); /* mov (%eax), %eax */
break;
case TY_SHORT:
o(0xbf0f); /* movswl (%eax), %eax */
ob(0);
break;
case TY_CHAR:
o(0xbe0f); /* movsbl (%eax), %eax */
ob(0); /* add zero in code */
break;
case TY_FLOAT:
o2(0x00d9); // flds (%eax)
break;
case TY_DOUBLE:
o2(0x00dd); // fldl (%eax)
break;
case TY_ARRAY:
pNewType = pNewType->pTail;
break;
case TY_STRUCT:
break;
default:
error("loadR0FromR0: unsupported type %d", tag);
break;
}
setR0Type(pNewType);
}
virtual void leaR0(int ea, Type* pPointerType, ExpressionType et) {
gmov(10, ea); /* leal EA, %eax */
setR0Type(pPointerType, et);
}
virtual int leaForward(int ea, Type* pPointerType) {
oad(0xb8, ea); /* mov $xx, %eax */
setR0Type(pPointerType);
return getPC() - 4;
}
virtual void convertR0Imp(Type* pType, bool isCast){
Type* pR0Type = getR0Type();
if (pR0Type == NULL) {
assert(false);
setR0Type(pType);
return;
}
if (isPointerType(pType) && isPointerType(pR0Type)) {
Type* pA = pR0Type;
Type* pB = pType;
// Array decays to pointer
if (pA->tag == TY_ARRAY && pB->tag == TY_POINTER) {
pA = pA->pTail;
}
if (! (typeEqual(pA, pB)
|| pB->pHead->tag == TY_VOID
|| (pA->tag == TY_POINTER && pB->tag == TY_POINTER && isCast)
)) {
error("Incompatible pointer or array types");
}
} else if (bitsSame(pType, pR0Type)) {
// do nothing special
} else if (isFloatType(pType) && isFloatType(pR0Type)) {
// do nothing special, both held in same register on x87.
} else {
TypeTag r0Tag = collapseType(pR0Type->tag);
TypeTag destTag = collapseType(pType->tag);
if (r0Tag == TY_INT && isFloatTag(destTag)) {
// Convert R0 from int to float
o(0x50); // push %eax
o(0x2404DB); // fildl 0(%esp)
o(0x58); // pop %eax
} else if (isFloatTag(r0Tag) && destTag == TY_INT) {
// Convert R0 from float to int. Complicated because
// need to save and restore the rounding mode.
o(0x50); // push %eax
o(0x50); // push %eax
o(0x02247cD9); // fnstcw 2(%esp)
o(0x2444b70f); // movzwl 2(%esp), %eax
o(0x02);
o(0x0cb4); // movb $12, %ah
o(0x24048966); // movw %ax, 0(%esp)
o(0x242cd9); // fldcw 0(%esp)
o(0x04245cdb); // fistpl 4(%esp)
o(0x02246cd9); // fldcw 2(%esp)
o(0x58); // pop %eax
o(0x58); // pop %eax
} else {
error("Incompatible types old: %d new: %d",
pR0Type->tag, pType->tag);
}
}
setR0Type(pType);
}
virtual int beginFunctionCallArguments() {
return oad(0xec81, 0); /* sub $xxx, %esp */
}
virtual size_t storeR0ToArg(int l, Type* pArgType) {
convertR0(pArgType);
Type* pR0Type = getR0Type();
TypeTag r0ct = collapseType(pR0Type->tag);
switch(r0ct) {
case TY_INT:
oad(0x248489, l); /* movl %eax, xxx(%esp) */
return 4;
case TY_FLOAT:
oad(0x249CD9, l); /* fstps xxx(%esp) */
return 4;
case TY_DOUBLE:
oad(0x249CDD, l); /* fstpl xxx(%esp) */
return 8;
default:
assert(false);
return 0;
}
}
virtual void endFunctionCallArguments(Type* pDecl, int a, int l) {
* (int*) a = l;
}
virtual int callForward(int symbol, Type* pFunc) {
assert(pFunc->tag == TY_FUNC);
setR0Type(pFunc->pHead);
return psym(0xe8, symbol); /* call xxx */
}
virtual void callIndirect(int l, Type* pFunc) {
assert(pFunc->tag == TY_FUNC);
popType(); // Get rid of indirect fn pointer type
setR0Type(pFunc->pHead);
oad(0x2494ff, l); /* call *xxx(%esp) */
}
virtual void adjustStackAfterCall(Type* pDecl, int l, bool isIndirect) {
assert(pDecl->tag == TY_FUNC);
if (isIndirect) {
l += 4;
}
if (l > 0) {
oad(0xc481, l); /* add $xxx, %esp */
}
}
virtual int jumpOffset() {
return 5;
}
/* output a symbol and patch all calls to it */
virtual void gsym(int t) {
int n;
int pc = getPC();
while (t) {
n = *(int *) t; /* next value */
*(int *) t = pc - t - 4;
t = n;
}
}
/* output a symbol and patch all calls to it, using absolute address */
virtual void resolveForward(int t) {
int n;
int pc = getPC();
while (t) {
n = *(int *) t; /* next value */
*(int *) t = pc;
t = n;
}
}
virtual int finishCompile() {
size_t pagesize = 4096;
size_t base = (size_t) getBase() & ~ (pagesize - 1);
size_t top = ((size_t) getPC() + pagesize - 1) & ~ (pagesize - 1);
int err = mprotect((void*) base, top - base, PROT_READ | PROT_WRITE | PROT_EXEC);
if (err) {
error("mprotect() failed: %d", errno);
}
return err;
}
/**
* Alignment (in bytes) for this type of data
*/
virtual size_t alignmentOf(Type* pType){
switch (pType->tag) {
case TY_CHAR:
return 1;
case TY_SHORT:
return 2;
case TY_ARRAY:
return alignmentOf(pType->pHead);
case TY_STRUCT:
return pType->pHead->alignment & 0x7fffffff;
case TY_FUNC:
error("alignment of func not supported");
return 1;
default:
return 4;
}
}
/**
* Array element alignment (in bytes) for this type of data.
*/
virtual size_t sizeOf(Type* pType){
switch(pType->tag) {
case TY_INT:
return 4;
case TY_SHORT:
return 2;
case TY_CHAR:
return 1;
case TY_FLOAT:
return 4;
case TY_DOUBLE:
return 8;
case TY_POINTER:
return 4;
case TY_ARRAY:
return pType->length * sizeOf(pType->pHead);
case TY_STRUCT:
return pType->pHead->length;
default:
error("Unsupported type %d", pType->tag);
return 0;
}
}
private:
/** Output 1 to 4 bytes.
*
*/
void o(int n) {
/* cannot use unsigned, so we must do a hack */
while (n && n != -1) {
ob(n & 0xff);
n = n >> 8;
}
}
/* Output exactly 2 bytes
*/
void o2(int n) {
ob(n & 0xff);
ob(0xff & (n >> 8));
}
/* psym is used to put an instruction with a data field which is a
reference to a symbol. It is in fact the same as oad ! */
int psym(int n, int t) {
return oad(n, t);
}
/* instruction + address */
int oad(int n, int t) {
o(n);
int result = getPC();
o4(t);
return result;
}
static const int operatorHelper[];
int decodeOp(int op) {
if (op < 0 || op > OP_COUNT) {
error("Out-of-range operator: %d\n", op);
op = 0;
}
return operatorHelper[op];
}
void gmov(int l, int t) {
o(l + 0x83);
oad((t > -LOCAL && t < LOCAL) << 7 | 5, t);
}
void setupFloatOperands() {
Type* pR0Type = getR0Type();
Type* pTOSType = getTOSType();
TypeTag tagR0 = pR0Type->tag;
TypeTag tagTOS = pTOSType->tag;
bool isFloatR0 = isFloatTag(tagR0);
bool isFloatTOS = isFloatTag(tagTOS);
if (! isFloatR0) {
// Convert R0 from int to float
o(0x50); // push %eax
o(0x2404DB); // fildl 0(%esp)
o(0x58); // pop %eax
}
if (! isFloatTOS){
o(0x2404DB); // fildl 0(%esp);
o(0x58); // pop %eax
} else {
if (tagTOS == TY_FLOAT) {
o(0x2404d9); // flds (%esp)
o(0x58); // pop %eax
} else {
o(0x2404dd); // fldl (%esp)
o(0x58); // pop %eax
o(0x58); // pop %eax
}
}
popType();
}
};
#endif // PROVIDE_X86_CODEGEN
#ifdef PROVIDE_TRACE_CODEGEN
class TraceCodeGenerator : public CodeGenerator {
private:
CodeGenerator* mpBase;
public:
TraceCodeGenerator(CodeGenerator* pBase) {
mpBase = pBase;
}
virtual ~TraceCodeGenerator() {
delete mpBase;
}
virtual void init(ICodeBuf* pCodeBuf) {
mpBase->init(pCodeBuf);
}
void setErrorSink(ErrorSink* pErrorSink) {
mpBase->setErrorSink(pErrorSink);
}
/* returns address to patch with local variable size
*/
virtual int functionEntry(Type* pDecl) {
int result = mpBase->functionEntry(pDecl);
fprintf(stderr, "functionEntry(pDecl) -> %d\n", result);
return result;
}
virtual void functionExit(Type* pDecl, int localVariableAddress, int localVariableSize) {
fprintf(stderr, "functionExit(pDecl, %d, %d)\n",
localVariableAddress, localVariableSize);
mpBase->functionExit(pDecl, localVariableAddress, localVariableSize);
}
/* load immediate value */
virtual void li(int t) {
fprintf(stderr, "li(%d)\n", t);
mpBase->li(t);
}
virtual void loadFloat(int address, Type* pType) {
fprintf(stderr, "loadFloat(%d, type=%d)\n", address, pType->tag);
mpBase->loadFloat(address, pType);
}
virtual void addStructOffsetR0(int offset, Type* pType) {
fprintf(stderr, "addStructOffsetR0(%d, type=%d)\n", offset, pType->tag);
mpBase->addStructOffsetR0(offset, pType);
}
virtual int gjmp(int t) {
int result = mpBase->gjmp(t);
fprintf(stderr, "gjmp(%d) = %d\n", t, result);
return result;
}
/* l = 0: je, l == 1: jne */
virtual int gtst(bool l, int t) {
int result = mpBase->gtst(l, t);
fprintf(stderr, "gtst(%d,%d) = %d\n", l, t, result);
return result;
}
virtual void gcmp(int op) {
fprintf(stderr, "gcmp(%d)\n", op);
mpBase->gcmp(op);
}
virtual void genOp(int op) {
fprintf(stderr, "genOp(%d)\n", op);
mpBase->genOp(op);
}
virtual void gUnaryCmp(int op) {
fprintf(stderr, "gUnaryCmp(%d)\n", op);
mpBase->gUnaryCmp(op);
}
virtual void genUnaryOp(int op) {
fprintf(stderr, "genUnaryOp(%d)\n", op);
mpBase->genUnaryOp(op);
}
virtual void pushR0() {
fprintf(stderr, "pushR0()\n");
mpBase->pushR0();
}
virtual void over() {
fprintf(stderr, "over()\n");
mpBase->over();
}
virtual void popR0() {
fprintf(stderr, "popR0()\n");
mpBase->popR0();
}
virtual void storeR0ToTOS() {
fprintf(stderr, "storeR0ToTOS()\n");
mpBase->storeR0ToTOS();
}
virtual void loadR0FromR0() {
fprintf(stderr, "loadR0FromR0()\n");
mpBase->loadR0FromR0();
}
virtual void leaR0(int ea, Type* pPointerType, ExpressionType et) {
fprintf(stderr, "leaR0(%d, %d, %d)\n", ea,
pPointerType->pHead->tag, et);
mpBase->leaR0(ea, pPointerType, et);
}
virtual int leaForward(int ea, Type* pPointerType) {
fprintf(stderr, "leaForward(%d)\n", ea);
return mpBase->leaForward(ea, pPointerType);
}
virtual void convertR0Imp(Type* pType, bool isCast){
fprintf(stderr, "convertR0(pType tag=%d, %d)\n", pType->tag, isCast);
mpBase->convertR0Imp(pType, isCast);
}
virtual int beginFunctionCallArguments() {
int result = mpBase->beginFunctionCallArguments();
fprintf(stderr, "beginFunctionCallArguments() = %d\n", result);
return result;
}
virtual size_t storeR0ToArg(int l, Type* pArgType) {
fprintf(stderr, "storeR0ToArg(%d, pArgType=%d)\n", l,
pArgType->tag);
return mpBase->storeR0ToArg(l, pArgType);
}
virtual void endFunctionCallArguments(Type* pDecl, int a, int l) {
fprintf(stderr, "endFunctionCallArguments(%d, %d)\n", a, l);
mpBase->endFunctionCallArguments(pDecl, a, l);
}
virtual int callForward(int symbol, Type* pFunc) {
int result = mpBase->callForward(symbol, pFunc);
fprintf(stderr, "callForward(%d) = %d\n", symbol, result);
return result;
}
virtual void callIndirect(int l, Type* pFunc) {
fprintf(stderr, "callIndirect(%d returntype = %d)\n", l,
pFunc->pHead->tag);
mpBase->callIndirect(l, pFunc);
}
virtual void adjustStackAfterCall(Type* pDecl, int l, bool isIndirect) {
fprintf(stderr, "adjustStackAfterCall(pType, %d, %d)\n", l, isIndirect);
mpBase->adjustStackAfterCall(pDecl, l, isIndirect);
}
virtual int jumpOffset() {
return mpBase->jumpOffset();
}
/* output a symbol and patch all calls to it */
virtual void gsym(int t) {
fprintf(stderr, "gsym(%d)\n", t);
mpBase->gsym(t);
}
virtual void resolveForward(int t) {
mpBase->resolveForward(t);
}
virtual int finishCompile() {
int result = mpBase->finishCompile();
fprintf(stderr, "finishCompile() = %d\n", result);
return result;
}
/**
* Alignment (in bytes) for this type of data
*/
virtual size_t alignmentOf(Type* pType){
return mpBase->alignmentOf(pType);
}
/**
* Array element alignment (in bytes) for this type of data.
*/
virtual size_t sizeOf(Type* pType){
return mpBase->sizeOf(pType);
}
virtual Type* getR0Type() {
return mpBase->getR0Type();
}
virtual ExpressionType getR0ExpressionType() {
return mpBase->getR0ExpressionType();
}
virtual void setR0ExpressionType(ExpressionType et) {
mpBase->setR0ExpressionType(et);
}
virtual size_t getExpressionStackDepth() {
return mpBase->getExpressionStackDepth();
}
virtual void forceR0RVal() {
return mpBase->forceR0RVal();
}
};
#endif // PROVIDE_TRACE_CODEGEN
class Arena {
public:
// Used to record a given allocation amount.
// Used:
// Mark mark = arena.mark();
// ... lots of arena.allocate()
// arena.free(mark);
struct Mark {
size_t chunk;
size_t offset;
};
Arena() {
mCurrentChunk = 0;
Chunk start(CHUNK_SIZE);
mData.push_back(start);
}
~Arena() {
for(size_t i = 0; i < mData.size(); i++) {
mData[i].free();
}
}
// Alloc using the standard alignment size safe for any variable
void* alloc(size_t size) {
return alloc(size, 8);
}
Mark mark(){
Mark result;
result.chunk = mCurrentChunk;
result.offset = mData[mCurrentChunk].mOffset;
return result;
}
void freeToMark(const Mark& mark) {
mCurrentChunk = mark.chunk;
mData[mCurrentChunk].mOffset = mark.offset;
}
private:
// Allocate memory aligned to a given size
// and a given power-of-two-sized alignment (e.g. 1,2,4,8,...)
// Memory is not zero filled.
void* alloc(size_t size, size_t alignment) {
while (size > mData[mCurrentChunk].remainingCapacity(alignment)) {
if (mCurrentChunk + 1 < mData.size()) {
mCurrentChunk++;
} else {
size_t allocSize = CHUNK_SIZE;
if (allocSize < size + alignment - 1) {
allocSize = size + alignment - 1;
}
Chunk chunk(allocSize);
mData.push_back(chunk);
mCurrentChunk++;
}
}
return mData[mCurrentChunk].allocate(size, alignment);
}
static const size_t CHUNK_SIZE = 128*1024;
// Note: this class does not deallocate its
// memory when it's destroyed. It depends upon
// its parent to deallocate the memory.
struct Chunk {
Chunk() {
mpData = 0;
mSize = 0;
mOffset = 0;
}
Chunk(size_t size) {
mSize = size;
mpData = (char*) malloc(size);
mOffset = 0;
}
~Chunk() {
// Doesn't deallocate memory.
}
void* allocate(size_t size, size_t alignment) {
size_t alignedOffset = aligned(mOffset, alignment);
void* result = mpData + alignedOffset;
mOffset = alignedOffset + size;
return result;
}
void free() {
if (mpData) {
::free(mpData);
mpData = 0;
}
}
size_t remainingCapacity(size_t alignment) {
return aligned(mSize, alignment) - aligned(mOffset, alignment);
}
// Assume alignment is a power of two
inline size_t aligned(size_t v, size_t alignment) {
size_t mask = alignment-1;
return (v + mask) & ~mask;
}
char* mpData;
size_t mSize;
size_t mOffset;
};
size_t mCurrentChunk;
Vector<Chunk> mData;
};
struct VariableInfo;
struct Token {
int hash;
size_t length;
char* pText;
tokenid_t id;
// Current values for the token
char* mpMacroDefinition;
VariableInfo* mpVariableInfo;
VariableInfo* mpStructInfo;
};
class TokenTable {
public:
// Don't use 0..0xff, allows characters and operators to be tokens too.
static const int TOKEN_BASE = 0x100;
TokenTable() {
mpMap = hashmapCreate(128, hashFn, equalsFn);
}
~TokenTable() {
hashmapFree(mpMap);
}
void setArena(Arena* pArena) {
mpArena = pArena;
}
// Returns a token for a given string of characters.
tokenid_t intern(const char* pText, size_t length) {
Token probe;
int hash = hashmapHash((void*) pText, length);
{
Token probe;
probe.hash = hash;
probe.length = length;
probe.pText = (char*) pText;
Token* pValue = (Token*) hashmapGet(mpMap, &probe);
if (pValue) {
return pValue->id;
}
}
Token* pToken = (Token*) mpArena->alloc(sizeof(Token));
memset(pToken, 0, sizeof(*pToken));
pToken->hash = hash;
pToken->length = length;
pToken->pText = (char*) mpArena->alloc(length + 1);
memcpy(pToken->pText, pText, length);
pToken->pText[length] = 0;
pToken->id = mTokens.size() + TOKEN_BASE;
mTokens.push_back(pToken);
hashmapPut(mpMap, pToken, pToken);
return pToken->id;
}
// Return the Token for a given tokenid.
Token& operator[](tokenid_t id) {
return *mTokens[id - TOKEN_BASE];
}
inline size_t size() {
return mTokens.size();
}
private:
static int hashFn(void* pKey) {
Token* pToken = (Token*) pKey;
return pToken->hash;
}
static bool equalsFn(void* keyA, void* keyB) {
Token* pTokenA = (Token*) keyA;
Token* pTokenB = (Token*) keyB;
// Don't need to compare hash values, they should always be equal
return pTokenA->length == pTokenB->length
&& strcmp(pTokenA->pText, pTokenB->pText) == 0;
}
Hashmap* mpMap;
Vector<Token*> mTokens;
Arena* mpArena;
};
class InputStream {
public:
virtual ~InputStream() {}
virtual int getChar() = 0;
};
class TextInputStream : public InputStream {
public:
TextInputStream(const char* text, size_t textLength)
: pText(text), mTextLength(textLength), mPosition(0) {
}
virtual int getChar() {
return mPosition < mTextLength ? pText[mPosition++] : EOF;
}
private:
const char* pText;
size_t mTextLength;
size_t mPosition;
};
class String {
public:
String() {
mpBase = 0;
mUsed = 0;
mSize = 0;
}
String(const char* item, int len, bool adopt) {
if (len < 0) {
len = strlen(item);
}
if (adopt) {
mpBase = (char*) item;
mUsed = len;
mSize = len + 1;
} else {
mpBase = 0;
mUsed = 0;
mSize = 0;
appendBytes(item, len);
}
}
String(const String& other) {
mpBase = 0;
mUsed = 0;
mSize = 0;
appendBytes(other.getUnwrapped(), other.len());
}
~String() {
if (mpBase) {
free(mpBase);
}
}
String& operator=(const String& other) {
clear();
appendBytes(other.getUnwrapped(), other.len());
return *this;
}
inline char* getUnwrapped() const {
return mpBase;
}
void clear() {
mUsed = 0;
if (mSize > 0) {
mpBase[0] = 0;
}
}
void appendCStr(const char* s) {
appendBytes(s, strlen(s));
}
void appendBytes(const char* s, int n) {
memcpy(ensure(n), s, n + 1);
}
void append(char c) {
* ensure(1) = c;
}
void append(String& other) {
appendBytes(other.getUnwrapped(), other.len());
}
char* orphan() {
char* result = mpBase;
mpBase = 0;
mUsed = 0;
mSize = 0;
return result;
}
void printf(const char* fmt,...) {
va_list ap;
va_start(ap, fmt);
vprintf(fmt, ap);
va_end(ap);
}
void vprintf(const char* fmt, va_list ap) {
char* temp;
int numChars = vasprintf(&temp, fmt, ap);
memcpy(ensure(numChars), temp, numChars+1);
free(temp);
}
inline size_t len() const {
return mUsed;
}
private:
char* ensure(int n) {
size_t newUsed = mUsed + n;
if (newUsed > mSize) {
size_t newSize = mSize * 2 + 10;
if (newSize < newUsed) {
newSize = newUsed;
}
mpBase = (char*) realloc(mpBase, newSize + 1);
mSize = newSize;
}
mpBase[newUsed] = '\0';
char* result = mpBase + mUsed;
mUsed = newUsed;
return result;
}
char* mpBase;
size_t mUsed;
size_t mSize;
};
void internKeywords() {
// Note: order has to match TOK_ constants
static const char* keywords[] = {
"int",
"char",
"void",
"if",
"else",
"while",
"break",
"return",
"for",
"auto",
"case",
"const",
"continue",
"default",
"do",
"double",
"enum",
"extern",
"float",
"goto",
"long",
"register",
"short",
"signed",
"sizeof",
"static",
"struct",
"switch",
"typedef",
"union",
"unsigned",
"volatile",
"_Bool",
"_Complex",
"_Imaginary",
"inline",
"restrict",
// predefined tokens that can also be symbols start here:
"pragma",
"define",
"line",
0};
for(int i = 0; keywords[i]; i++) {
mTokenTable.intern(keywords[i], strlen(keywords[i]));
}
}
struct InputState {
InputStream* pStream;
int oldCh;
};
struct VariableInfo {
void* pAddress;
void* pForward; // For a forward direction, linked list of data to fix up
tokenid_t tok;
size_t level;
VariableInfo* pOldDefinition;
Type* pType;
bool isStructTag;
};
class SymbolStack {
public:
SymbolStack() {
mpArena = 0;
mpTokenTable = 0;
}
void setArena(Arena* pArena) {
mpArena = pArena;
}
void setTokenTable(TokenTable* pTokenTable) {
mpTokenTable = pTokenTable;
}
void pushLevel() {
Mark mark;
mark.mArenaMark = mpArena->mark();
mark.mSymbolHead = mStack.size();
mLevelStack.push_back(mark);
}
void popLevel() {
// Undo any shadowing that was done:
Mark mark = mLevelStack.back();
mLevelStack.pop_back();
while (mStack.size() > mark.mSymbolHead) {
VariableInfo* pV = mStack.back();
mStack.pop_back();
if (pV->isStructTag) {
(*mpTokenTable)[pV->tok].mpStructInfo = pV->pOldDefinition;
} else {
(*mpTokenTable)[pV->tok].mpVariableInfo = pV->pOldDefinition;
}
}
mpArena->freeToMark(mark.mArenaMark);
}
bool isDefinedAtCurrentLevel(tokenid_t tok) {
VariableInfo* pV = (*mpTokenTable)[tok].mpVariableInfo;
return pV && pV->level == level();
}
bool isStructTagDefinedAtCurrentLevel(tokenid_t tok) {
VariableInfo* pV = (*mpTokenTable)[tok].mpStructInfo;
return pV && pV->level == level();
}
VariableInfo* add(tokenid_t tok) {
Token& token = (*mpTokenTable)[tok];
VariableInfo* pOldV = token.mpVariableInfo;
VariableInfo* pNewV =
(VariableInfo*) mpArena->alloc(sizeof(VariableInfo));
memset(pNewV, 0, sizeof(VariableInfo));
pNewV->tok = tok;
pNewV->level = level();
pNewV->pOldDefinition = pOldV;
token.mpVariableInfo = pNewV;
mStack.push_back(pNewV);
return pNewV;
}
VariableInfo* addStructTag(tokenid_t tok) {
Token& token = (*mpTokenTable)[tok];
VariableInfo* pOldS = token.mpStructInfo;
VariableInfo* pNewS =
(VariableInfo*) mpArena->alloc(sizeof(VariableInfo));
memset(pNewS, 0, sizeof(VariableInfo));
pNewS->tok = tok;
pNewS->level = level();
pNewS->isStructTag = true;
pNewS->pOldDefinition = pOldS;
token.mpStructInfo = pNewS;
mStack.push_back(pNewS);
return pNewS;
}
VariableInfo* add(Type* pType) {
VariableInfo* pVI = add(pType->id);
pVI->pType = pType;
return pVI;
}
void forEach(bool (*fn)(VariableInfo*, void*), void* context) {
for (size_t i = 0; i < mStack.size(); i++) {
if (! fn(mStack[i], context)) {
break;
}
}
}
private:
inline size_t level() {
return mLevelStack.size();
}
struct Mark {
Arena::Mark mArenaMark;
size_t mSymbolHead;
};
Arena* mpArena;
TokenTable* mpTokenTable;
Vector<VariableInfo*> mStack;
Vector<Mark> mLevelStack;
};
int ch; // Current input character, or EOF
tokenid_t tok; // token
intptr_t tokc; // token extra info
double tokd; // floating point constant value
int tokl; // token operator level
intptr_t rsym; // return symbol
Type* pReturnType; // type of the current function's return.
intptr_t loc; // local variable index
char* glo; // global variable index
String mTokenString;
bool mbSuppressMacroExpansion;
char* dptr; // Macro state: Points to macro text during macro playback.
int dch; // Macro state: Saves old value of ch during a macro playback.
char* pGlobalBase;
ACCSymbolLookupFn mpSymbolLookupFn;
void* mpSymbolLookupContext;
// Arena for the duration of the compile
Arena mGlobalArena;
// Arena for data that's only needed when compiling a single function
Arena mLocalArena;
Arena* mpCurrentArena;
TokenTable mTokenTable;
SymbolStack mGlobals;
SymbolStack mLocals;
SymbolStack* mpCurrentSymbolStack;
// Prebuilt types, makes things slightly faster.
Type* mkpInt; // int
Type* mkpShort; // short
Type* mkpChar; // char
Type* mkpVoid; // void
Type* mkpFloat;
Type* mkpDouble;
Type* mkpIntFn;
Type* mkpIntPtr;
Type* mkpCharPtr;
Type* mkpFloatPtr;
Type* mkpDoublePtr;
Type* mkpPtrIntFn;
InputStream* file;
int mLineNumber;
bool mbBumpLine;
ICodeBuf* pCodeBuf;
CodeGenerator* pGen;
String mErrorBuf;
String mPragmas;
int mPragmaStringCount;
int mCompileResult;
static const int ALLOC_SIZE = 99999;
static const int TOK_DUMMY = 1;
static const int TOK_NUM = 2;
static const int TOK_NUM_FLOAT = 3;
static const int TOK_NUM_DOUBLE = 4;
static const int TOK_OP_ASSIGNMENT = 5;
static const int TOK_OP_ARROW = 6;
// 3..255 are character and/or operators
// Keywords start at 0x100 and increase by 1
// Order has to match string list in "internKeywords".
enum {
TOK_KEYWORD = TokenTable::TOKEN_BASE,
TOK_INT = TOK_KEYWORD,
TOK_CHAR,
TOK_VOID,
TOK_IF,
TOK_ELSE,
TOK_WHILE,
TOK_BREAK,
TOK_RETURN,
TOK_FOR,
TOK_AUTO,
TOK_CASE,
TOK_CONST,
TOK_CONTINUE,
TOK_DEFAULT,
TOK_DO,
TOK_DOUBLE,
TOK_ENUM,
TOK_EXTERN,
TOK_FLOAT,
TOK_GOTO,
TOK_LONG,
TOK_REGISTER,
TOK_SHORT,
TOK_SIGNED,
TOK_SIZEOF,
TOK_STATIC,
TOK_STRUCT,
TOK_SWITCH,
TOK_TYPEDEF,
TOK_UNION,
TOK_UNSIGNED,
TOK_VOLATILE,
TOK__BOOL,
TOK__COMPLEX,
TOK__IMAGINARY,
TOK_INLINE,
TOK_RESTRICT,
// Symbols start after keywords
TOK_SYMBOL,
TOK_PRAGMA = TOK_SYMBOL,
TOK_DEFINE,
TOK_LINE
};
static const int LOCAL = 0x200;
static const int SYM_FORWARD = 0;
static const int SYM_DEFINE = 1;
/* tokens in string heap */
static const int TAG_TOK = ' ';
static const int OP_INCREMENT = 0;
static const int OP_DECREMENT = 1;
static const int OP_MUL = 2;
static const int OP_DIV = 3;
static const int OP_MOD = 4;
static const int OP_PLUS = 5;
static const int OP_MINUS = 6;
static const int OP_SHIFT_LEFT = 7;
static const int OP_SHIFT_RIGHT = 8;
static const int OP_LESS_EQUAL = 9;
static const int OP_GREATER_EQUAL = 10;
static const int OP_LESS = 11;
static const int OP_GREATER = 12;
static const int OP_EQUALS = 13;
static const int OP_NOT_EQUALS = 14;
static const int OP_LOGICAL_AND = 15;
static const int OP_LOGICAL_OR = 16;
static const int OP_BIT_AND = 17;
static const int OP_BIT_XOR = 18;
static const int OP_BIT_OR = 19;
static const int OP_BIT_NOT = 20;
static const int OP_LOGICAL_NOT = 21;
static const int OP_COUNT = 22;
/* Operators are searched from front, the two-character operators appear
* before the single-character operators with the same first character.
* @ is used to pad out single-character operators.
*/
static const char* operatorChars;
static const char operatorLevel[];
/* Called when we detect an internal problem. Does nothing in production.
*
*/
void internalError() {
* (char*) 0 = 0;
}
void assertImpl(bool isTrue, int line) {
if (!isTrue) {
LOGD("%d: assertion failed at line %s:%d.", mLineNumber, __FILE__, line);
internalError();
}
}
bool isSymbol(tokenid_t t) {
return t >= TOK_SYMBOL &&
((size_t) (t-TOK_SYMBOL)) < mTokenTable.size();
}
bool isSymbolOrKeyword(tokenid_t t) {
return t >= TOK_KEYWORD &&
((size_t) (t-TOK_KEYWORD)) < mTokenTable.size();
}
VariableInfo* VI(tokenid_t t) {
assert(isSymbol(t));
VariableInfo* pV = mTokenTable[t].mpVariableInfo;
if (pV && pV->tok != t) {
internalError();
}
return pV;
}
inline bool isDefined(tokenid_t t) {
return t >= TOK_SYMBOL && VI(t) != 0;
}
const char* nameof(tokenid_t t) {
assert(isSymbolOrKeyword(t));
return mTokenTable[t].pText;
}
void pdef(int t) {
mTokenString.append(t);
}
void inp() {
if (dptr) {
ch = *dptr++;
if (ch == 0) {
dptr = 0;
ch = dch;
}
} else {
if (mbBumpLine) {
mLineNumber++;
mbBumpLine = false;
}
ch = file->getChar();
if (ch == '\n') {
mbBumpLine = true;
}
}
#if 0
printf("ch='%c' 0x%x\n", ch, ch);
#endif
}
int isid() {
return isalnum(ch) | (ch == '_');
}
int decodeHex(int c) {
if (isdigit(c)) {
c -= '0';
} else if (c <= 'F') {
c = c - 'A' + 10;
} else {
c =c - 'a' + 10;
}
return c;
}
/* read a character constant, advances ch to after end of constant */
int getq() {
int val = ch;
if (ch == '\\') {
inp();
if (isoctal(ch)) {
// 1 to 3 octal characters.
val = 0;
for(int i = 0; i < 3; i++) {
if (isoctal(ch)) {
val = (val << 3) + ch - '0';
inp();
}
}
return val;
} else if (ch == 'x' || ch == 'X') {
// N hex chars
inp();
if (! isxdigit(ch)) {
error("'x' character escape requires at least one digit.");
} else {
val = 0;
while (isxdigit(ch)) {
val = (val << 4) + decodeHex(ch);
inp();
}
}
} else {
int val = ch;
switch (ch) {
case 'a':
val = '\a';
break;
case 'b':
val = '\b';
break;
case 'f':
val = '\f';
break;
case 'n':
val = '\n';
break;
case 'r':
val = '\r';
break;
case 't':
val = '\t';
break;
case 'v':
val = '\v';
break;
case '\\':
val = '\\';
break;
case '\'':
val = '\'';
break;
case '"':
val = '"';
break;
case '?':
val = '?';
break;
default:
error("Undefined character escape %c", ch);
break;
}
inp();
return val;
}
} else {
inp();
}
return val;
}
static bool isoctal(int ch) {
return ch >= '0' && ch <= '7';
}
bool acceptCh(int c) {
bool result = c == ch;
if (result) {
pdef(ch);
inp();
}
return result;
}
bool acceptDigitsCh() {
bool result = false;
while (isdigit(ch)) {
result = true;
pdef(ch);
inp();
}
return result;
}
void parseFloat() {
tok = TOK_NUM_DOUBLE;
// mTokenString already has the integral part of the number.
if(mTokenString.len() == 0) {
mTokenString.append('0');
}
acceptCh('.');
acceptDigitsCh();
if (acceptCh('e') || acceptCh('E')) {
acceptCh('-') || acceptCh('+');
acceptDigitsCh();
}
if (ch == 'f' || ch == 'F') {
tok = TOK_NUM_FLOAT;
inp();
} else if (ch == 'l' || ch == 'L') {
inp();
error("Long floating point constants not supported.");
}
char* pText = mTokenString.getUnwrapped();
char* pEnd = pText + strlen(pText);
char* pEndPtr = 0;
errno = 0;
if (tok == TOK_NUM_FLOAT) {
tokd = strtof(pText, &pEndPtr);
} else {
tokd = strtod(pText, &pEndPtr);
}
if (errno || pEndPtr != pEnd) {
error("Can't parse constant: %s", pText);
}
// fprintf(stderr, "float constant: %s (%d) %g\n", pText, tok, tokd);
}
void next() {
int l, a;
while (isspace(ch) | (ch == '#')) {
if (ch == '#') {
inp();
next();
if (tok == TOK_DEFINE) {
doDefine();
} else if (tok == TOK_PRAGMA) {
doPragma();
} else if (tok == TOK_LINE) {
doLine();
} else {
error("Unsupported preprocessor directive \"%s\"",
mTokenString.getUnwrapped());
}
}
inp();
}
tokl = 0;
tok = ch;
/* encode identifiers & numbers */
if (isdigit(ch) || ch == '.') {
// Start of a numeric constant. Could be integer, float, or
// double, won't know until we look further.
mTokenString.clear();
pdef(ch);
inp();
if (tok == '.' && !isdigit(ch)) {
goto done;
}
int base = 10;
if (tok == '0') {
if (ch == 'x' || ch == 'X') {
base = 16;
tok = TOK_NUM;
tokc = 0;
inp();
while ( isxdigit(ch) ) {
tokc = (tokc << 4) + decodeHex(ch);
inp();
}
} else if (isoctal(ch)){
base = 8;
tok = TOK_NUM;
tokc = 0;
while ( isoctal(ch) ) {
tokc = (tokc << 3) + (ch - '0');
inp();
}
}
} else if (isdigit(tok)){
acceptDigitsCh();
}
if (base == 10) {
if (tok == '.' || ch == '.' || ch == 'e' || ch == 'E') {
parseFloat();
} else {
// It's an integer constant
char* pText = mTokenString.getUnwrapped();
char* pEnd = pText + strlen(pText);
char* pEndPtr = 0;
errno = 0;
tokc = strtol(pText, &pEndPtr, base);
if (errno || pEndPtr != pEnd) {
error("Can't parse constant: %s %d %d", pText, base, errno);
}
tok = TOK_NUM;
}
}
} else if (isid()) {
mTokenString.clear();
while (isid()) {
pdef(ch);
inp();
}
tok = mTokenTable.intern(mTokenString.getUnwrapped(), mTokenString.len());
if (! mbSuppressMacroExpansion) {
// Is this a macro?
char* pMacroDefinition = mTokenTable[tok].mpMacroDefinition;
if (pMacroDefinition) {
// Yes, it is a macro
dptr = pMacroDefinition;
dch = ch;
inp();
next();
}
}
} else {
inp();
if (tok == '\'') {
tok = TOK_NUM;
tokc = getq();
if (ch != '\'') {
error("Expected a ' character, got %c", ch);
} else {
inp();
}
} else if ((tok == '/') & (ch == '*')) {
inp();
while (ch && ch != EOF) {
while (ch != '*' && ch != EOF)
inp();
inp();
if (ch == '/')
ch = 0;
}
if (ch == EOF) {
error("End of file inside comment.");
}
inp();
next();
} else if ((tok == '/') & (ch == '/')) {
inp();
while (ch && (ch != '\n') && (ch != EOF)) {
inp();
}
inp();
next();
} else if ((tok == '-') & (ch == '>')) {
inp();
tok = TOK_OP_ARROW;
} else {
const char* t = operatorChars;
int opIndex = 0;
while ((l = *t++) != 0) {
a = *t++;
tokl = operatorLevel[opIndex];
tokc = opIndex;
if ((l == tok) & ((a == ch) | (a == '@'))) {
#if 0
printf("%c%c -> tokl=%d tokc=0x%x\n",
l, a, tokl, tokc);
#endif
if (a == ch) {
inp();
tok = TOK_DUMMY; /* dummy token for double tokens */
}
/* check for op=, valid for * / % + - << >> & ^ | */
if (ch == '=' &&
((tokl >= 1 && tokl <= 3)
|| (tokl >=6 && tokl <= 8)) ) {
inp();
tok = TOK_OP_ASSIGNMENT;
}
break;
}
opIndex++;
}
if (l == 0) {
tokl = 0;
tokc = 0;
}
}
}
done: ;
#if 0
{
String buf;
decodeToken(buf, tok, true);
fprintf(stderr, "%s\n", buf.getUnwrapped());
}
#endif
}
void doDefine() {
mbSuppressMacroExpansion = true;
next();
mbSuppressMacroExpansion = false;
tokenid_t name = tok;
String* pName = new String();
if (ch == '(') {
delete pName;
error("Defines with arguments not supported");
return;
}
while (isspace(ch)) {
inp();
}
String value;
bool appendToValue = true;
while (ch != '\n' && ch != EOF) {
// Check for '//' comments.
if (appendToValue && ch == '/') {
inp();
if (ch == '/') {
appendToValue = false;
} else {
value.append('/');
}
}
if (appendToValue && ch != EOF) {
value.append(ch);
}
inp();
}
char* pDefn = (char*)mGlobalArena.alloc(value.len() + 1);
memcpy(pDefn, value.getUnwrapped(), value.len());
pDefn[value.len()] = 0;
mTokenTable[name].mpMacroDefinition = pDefn;
}
void doPragma() {
// # pragma name(val)
int state = 0;
while(ch != EOF && ch != '\n' && state < 10) {
switch(state) {
case 0:
if (isspace(ch)) {
inp();
} else {
state++;
}
break;
case 1:
if (isalnum(ch)) {
mPragmas.append(ch);
inp();
} else if (ch == '(') {
mPragmas.append(0);
inp();
state++;
} else {
state = 11;
}
break;
case 2:
if (isalnum(ch)) {
mPragmas.append(ch);
inp();
} else if (ch == ')') {
mPragmas.append(0);
inp();
state = 10;
} else {
state = 11;
}
break;
}
}
if(state != 10) {
error("Unexpected pragma syntax");
}
mPragmaStringCount += 2;
}
void doLine() {
// # line number { "filename "}
next();
if (tok != TOK_NUM) {
error("Expected a line-number");
} else {
mLineNumber = tokc-1; // The end-of-line will increment it.
}
while(ch != EOF && ch != '\n') {
inp();
}
}
virtual void verror(const char* fmt, va_list ap) {
mErrorBuf.printf("%ld: ", mLineNumber);
mErrorBuf.vprintf(fmt, ap);
mErrorBuf.printf("\n");
}
void skip(intptr_t c) {
if (!accept(c)) {
error("'%c' expected", c);
}
}
bool accept(intptr_t c) {
if (tok == c) {
next();
return true;
}
return false;
}
bool acceptStringLiteral() {
if (tok == '"') {
pGen->leaR0((int) glo, mkpCharPtr, ET_RVALUE);
// This while loop merges multiple adjacent string constants.
while (tok == '"') {
while (ch != '"' && ch != EOF) {
*allocGlobalSpace(1,1) = getq();
}
if (ch != '"') {
error("Unterminated string constant.");
}
inp();
next();
}
/* Null terminate */
*glo = 0;
/* align heap */
allocGlobalSpace(1,(char*) (((intptr_t) glo + 4) & -4) - glo);
return true;
}
return false;
}
void linkGlobal(tokenid_t t, bool isFunction) {
VariableInfo* pVI = VI(t);
void* n = NULL;
if (mpSymbolLookupFn) {
n = mpSymbolLookupFn(mpSymbolLookupContext, nameof(t));
}
if (pVI->pType == NULL) {
if (isFunction) {
pVI->pType = mkpIntFn;
} else {
pVI->pType = mkpInt;
}
}
pVI->pAddress = n;
}
void unaryOrAssignment() {
unary();
if (accept('=')) {
checkLVal();
pGen->pushR0();
expr();
pGen->forceR0RVal();
pGen->storeR0ToTOS();
} else if (tok == TOK_OP_ASSIGNMENT) {
int t = tokc;
next();
checkLVal();
pGen->pushR0();
pGen->forceR0RVal();
pGen->pushR0();
expr();
pGen->forceR0RVal();
pGen->genOp(t);
pGen->storeR0ToTOS();
}
}
/* Parse and evaluate a unary expression.
*/
void unary() {
tokenid_t t;
intptr_t a;
t = 0;
if (acceptStringLiteral()) {
// Nothing else to do.
} else {
int c = tokl;
a = tokc;
double ad = tokd;
t = tok;
next();
if (t == TOK_NUM) {
pGen->li(a);
} else if (t == TOK_NUM_FLOAT) {
// Align to 4-byte boundary
glo = (char*) (((intptr_t) glo + 3) & -4);
* (float*) glo = (float) ad;
pGen->loadFloat((int) glo, mkpFloat);
glo += 4;
} else if (t == TOK_NUM_DOUBLE) {
// Align to 8-byte boundary
glo = (char*) (((intptr_t) glo + 7) & -8);
* (double*) glo = ad;
pGen->loadFloat((int) glo, mkpDouble);
glo += 8;
} else if (c == 2) {
/* -, +, !, ~ */
unary();
pGen->forceR0RVal();
if (t == '!')
pGen->gUnaryCmp(a);
else if (t == '+') {
// ignore unary plus.
} else {
pGen->genUnaryOp(a);
}
} else if (c == 11) {
// pre increment / pre decrement
unary();
doIncDec(a == OP_INCREMENT, 0);
}
else if (t == '(') {
// It's either a cast or an expression
Type* pCast = acceptCastTypeDeclaration();
if (pCast) {
skip(')');
unary();
pGen->forceR0RVal();
pGen->castR0(pCast);
} else {
commaExpr();
skip(')');
}
} else if (t == '*') {
/* This is a pointer dereference.
*/
unary();
doPointer();
} else if (t == '&') {
unary();
doAddressOf();
} else if (t == EOF ) {
error("Unexpected EOF.");
} else if (t == ';') {
error("Unexpected ';'");
} else if (!checkSymbol(t)) {
// Don't have to do anything special here, the error
// message was printed by checkSymbol() above.
} else {
if (!isDefined(t)) {
mGlobals.add(t);
// printf("Adding new global function %s\n", nameof(t));
}
VariableInfo* pVI = VI(t);
int n = (intptr_t) pVI->pAddress;
/* forward reference: try our lookup function */
if (!n) {
linkGlobal(t, tok == '(');
n = (intptr_t) pVI->pAddress;
if (!n && tok != '(') {
error("Undeclared variable %s", nameof(t));
}
}
if (tok != '(') {
/* variable or function name */
if (!n) {
linkGlobal(t, false);
n = (intptr_t) pVI->pAddress;
if (!n) {
error("Undeclared variable %s", nameof(t));
}
}
}
// load a variable
Type* pVal;
ExpressionType et;
if (pVI->pType->tag == TY_ARRAY) {
pVal = pVI->pType;
et = ET_RVALUE;
} else {
pVal = createPtrType(pVI->pType);
et = ET_LVALUE;
}
if (n) {
int tag = pVal->pHead->tag;
if (tag == TY_FUNC) {
et = ET_RVALUE;
}
pGen->leaR0(n, pVal, et);
} else {
pVI->pForward = (void*) pGen->leaForward(
(int) pVI->pForward, pVal);
}
}
}
/* Now handle postfix operators */
for(;;) {
if (tokl == 11) {
// post inc / post dec
doIncDec(tokc == OP_INCREMENT, true);
next();
} else if (accept('[')) {
// Array reference
pGen->forceR0RVal();
pGen->pushR0();
commaExpr();
pGen->forceR0RVal();
pGen->genOp(OP_PLUS);
doPointer();
skip(']');
} else if (accept('.')) {
// struct element
pGen->forceR0RVal();
Type* pStruct = pGen->getR0Type();
if (pStruct->tag == TY_STRUCT) {
doStructMember(pStruct, true);
} else {
error("expected a struct value to the left of '.'");
}
} else if (accept(TOK_OP_ARROW)) {
pGen->forceR0RVal();
Type* pPtr = pGen->getR0Type();
if (pPtr->tag == TY_POINTER && pPtr->pHead->tag == TY_STRUCT) {
pGen->loadR0FromR0();
doStructMember(pPtr->pHead, false);
} else {
error("Expected a pointer to a struct to the left of '->'");
}
} else if (accept('(')) {
/* function call */
Type* pDecl = NULL;
VariableInfo* pVI = NULL;
Type* pFn = pGen->getR0Type();
assert(pFn->tag == TY_POINTER);
assert(pFn->pHead->tag == TY_FUNC);
pDecl = pFn->pHead;
pGen->pushR0();
Type* pArgList = pDecl->pTail;
bool varArgs = pArgList == NULL;
/* push args and invert order */
a = pGen->beginFunctionCallArguments();
int l = 0;
int argCount = 0;
while (tok != ')' && tok != EOF) {
if (! varArgs && !pArgList) {
error("Unexpected argument.");
}
expr();
pGen->forceR0RVal();
Type* pTargetType;
if (pArgList) {
pTargetType = pArgList->pHead;
pArgList = pArgList->pTail;
} else {
// This is a ... function, just pass arguments in their
// natural type.
pTargetType = pGen->getR0Type();
if (pTargetType->tag == TY_FLOAT) {
pTargetType = mkpDouble;
} else if (pTargetType->tag == TY_ARRAY) {
// Pass arrays by pointer.
pTargetType = pTargetType->pTail;
}
}
if (pTargetType->tag == TY_VOID) {
error("Can't pass void value for argument %d",
argCount + 1);
} else {
l += pGen->storeR0ToArg(l, pTargetType);
}
if (accept(',')) {
// fine
} else if ( tok != ')') {
error("Expected ',' or ')'");
}
argCount += 1;
}
if (! varArgs && pArgList) {
error("Expected more argument(s). Saw %d", argCount);
}
pGen->endFunctionCallArguments(pDecl, a, l);
skip(')');
pGen->callIndirect(l, pDecl);
pGen->adjustStackAfterCall(pDecl, l, true);
} else {
break;
}
}
}
void doStructMember(Type* pStruct, bool isDot) {
Type* pStructElement = lookupStructMember(pStruct, tok);
if (pStructElement) {
next();
pGen->addStructOffsetR0(pStructElement->length, createPtrType(pStructElement->pHead));
} else {
String buf;
decodeToken(buf, tok, true);
error("Expected a struct member to the right of '%s', got %s",
isDot ? "." : "->", buf.getUnwrapped());
}
}
void doIncDec(int isInc, int isPost) {
// R0 already has the lval
checkLVal();
int lit = isInc ? 1 : -1;
pGen->pushR0();
pGen->loadR0FromR0();
int tag = pGen->getR0Type()->tag;
if (!(tag == TY_INT || tag == TY_SHORT || tag == TY_CHAR ||
tag == TY_POINTER)) {
error("++/-- illegal for this type. %d", tag);
}
if (isPost) {
pGen->over();
pGen->pushR0();
pGen->li(lit);
pGen->genOp(OP_PLUS);
pGen->storeR0ToTOS();
pGen->popR0();
} else {
pGen->pushR0();
pGen->li(lit);
pGen->genOp(OP_PLUS);
pGen->over();
pGen->storeR0ToTOS();
pGen->popR0();
}
}
void doPointer() {
pGen->forceR0RVal();
Type* pR0Type = pGen->getR0Type();
if (pR0Type->tag != TY_POINTER) {
error("Expected a pointer type.");
} else {
if (pR0Type->pHead->tag != TY_FUNC) {
pGen->setR0ExpressionType(ET_LVALUE);
}
}
}
void doAddressOf() {
Type* pR0 = pGen->getR0Type();
bool isFuncPtr = pR0->tag == TY_POINTER && pR0->pHead->tag == TY_FUNC;
if ((! isFuncPtr) && pGen->getR0ExpressionType() != ET_LVALUE) {
error("Expected an lvalue");
}
Type* pR0Type = pGen->getR0Type();
pGen->setR0ExpressionType(ET_RVALUE);
}
/* Recursive descent parser for binary operations.
*/
void binaryOp(int level) {
intptr_t t, a;
t = 0;
if (level-- == 1)
unaryOrAssignment();
else {
binaryOp(level);
a = 0;
while (level == tokl) {
t = tokc;
next();
pGen->forceR0RVal();
if (level > 8) {
a = pGen->gtst(t == OP_LOGICAL_OR, a); /* && and || output code generation */
binaryOp(level);
} else {
pGen->pushR0();
binaryOp(level);
// Check for syntax error.
if (pGen->getR0Type() == NULL) {
// We failed to parse a right-hand argument.
// Push a dummy value so we don't fail
pGen->li(0);
}
pGen->forceR0RVal();
if ((level == 4) | (level == 5)) {
pGen->gcmp(t);
} else {
pGen->genOp(t);
}
}
}
/* && and || output code generation */
if (a && level > 8) {
pGen->forceR0RVal();
a = pGen->gtst(t == OP_LOGICAL_OR, a);
pGen->li(t != OP_LOGICAL_OR);
int b = pGen->gjmp(0);
pGen->gsym(a);
pGen->li(t == OP_LOGICAL_OR);
pGen->gsym(b);
}
}
}
void commaExpr() {
for(;;) {
expr();
if (!accept(',')) {
break;
}
}
}
void expr() {
binaryOp(11);
}
int test_expr() {
commaExpr();
pGen->forceR0RVal();
return pGen->gtst(0, 0);
}
void block(intptr_t l, bool outermostFunctionBlock) {
intptr_t a, n, t;
Type* pBaseType;
if ((pBaseType = acceptPrimitiveType())) {
/* declarations */
localDeclarations(pBaseType);
} else if (tok == TOK_IF) {
next();
skip('(');
a = test_expr();
skip(')');
block(l, false);
if (tok == TOK_ELSE) {
next();
n = pGen->gjmp(0); /* jmp */
pGen->gsym(a);
block(l, false);
pGen->gsym(n); /* patch else jmp */
} else {
pGen->gsym(a); /* patch if test */
}
} else if ((tok == TOK_WHILE) | (tok == TOK_FOR)) {
t = tok;
next();
skip('(');
if (t == TOK_WHILE) {
n = pCodeBuf->getPC(); // top of loop, target of "next" iteration
a = test_expr();
} else {
if (tok != ';')
commaExpr();
skip(';');
n = pCodeBuf->getPC();
a = 0;
if (tok != ';')
a = test_expr();
skip(';');
if (tok != ')') {
t = pGen->gjmp(0);
commaExpr();
pGen->gjmp(n - pCodeBuf->getPC() - pGen->jumpOffset());
pGen->gsym(t);
n = t + 4;
}
}
skip(')');
block((intptr_t) &a, false);
pGen->gjmp(n - pCodeBuf->getPC() - pGen->jumpOffset()); /* jmp */
pGen->gsym(a);
} else if (tok == '{') {
if (! outermostFunctionBlock) {
mLocals.pushLevel();
}
next();
while (tok != '}' && tok != EOF)
block(l, false);
skip('}');
if (! outermostFunctionBlock) {
mLocals.popLevel();
}
} else {
if (accept(TOK_RETURN)) {
if (tok != ';') {
commaExpr();
pGen->forceR0RVal();
if (pReturnType->tag == TY_VOID) {
error("Must not return a value from a void function");
} else {
pGen->convertR0(pReturnType);
}
} else {
if (pReturnType->tag != TY_VOID) {
error("Must specify a value here");
}
}
rsym = pGen->gjmp(rsym); /* jmp */
} else if (accept(TOK_BREAK)) {
*(int *) l = pGen->gjmp(*(int *) l);
} else if (tok != ';')
commaExpr();
skip(';');
}
}
static bool typeEqual(Type* a, Type* b) {
if (a == b) {
return true;
}
if (a == NULL || b == NULL) {
return false;
}
TypeTag at = a->tag;
if (at != b->tag) {
return false;
}
if (at == TY_POINTER) {
return typeEqual(a->pHead, b->pHead);
} else if (at == TY_ARRAY) {
return a->length == b->length && typeEqual(a->pHead, b->pHead);
} else if (at == TY_FUNC || at == TY_PARAM) {
return typeEqual(a->pHead, b->pHead)
&& typeEqual(a->pTail, b->pTail);
} else if (at == TY_STRUCT) {
return a->pHead == b->pHead;
}
return true;
}
Type* createType(TypeTag tag, Type* pHead, Type* pTail) {
assert(tag >= TY_INT && tag <= TY_PARAM);
Type* pType = (Type*) mpCurrentArena->alloc(sizeof(Type));
memset(pType, 0, sizeof(*pType));
pType->tag = tag;
pType->pHead = pHead;
pType->pTail = pTail;
return pType;
}
Type* createPtrType(Type* pType) {
return createType(TY_POINTER, pType, NULL);
}
/**
* Try to print a type in declaration order
*/
void decodeType(String& buffer, Type* pType) {
buffer.clear();
if (pType == NULL) {
buffer.appendCStr("null");
return;
}
decodeTypeImp(buffer, pType);
}
void decodeTypeImp(String& buffer, Type* pType) {
decodeTypeImpPrefix(buffer, pType);
decodeId(buffer, pType->id);
decodeTypeImpPostfix(buffer, pType);
}
void decodeId(String& buffer, tokenid_t id) {
if (id) {
String temp;
decodeToken(temp, id, false);
buffer.append(temp);
}
}
void decodeTypeImpPrefix(String& buffer, Type* pType) {
TypeTag tag = pType->tag;
if ((tag >= TY_INT && tag <= TY_DOUBLE) || tag == TY_STRUCT) {
switch (tag) {
case TY_INT:
buffer.appendCStr("int");
break;
case TY_SHORT:
buffer.appendCStr("short");
break;
case TY_CHAR:
buffer.appendCStr("char");
break;
case TY_VOID:
buffer.appendCStr("void");
break;
case TY_FLOAT:
buffer.appendCStr("float");
break;
case TY_DOUBLE:
buffer.appendCStr("double");
break;
case TY_STRUCT:
{
bool isStruct = (pType->pHead->alignment & 0x80000000) != 0;
buffer.appendCStr(isStruct ? "struct" : "union");
if (pType->pHead && pType->pHead->structTag) {
buffer.append(' ');
decodeId(buffer, pType->pHead->structTag);
}
}
break;
default:
break;
}
buffer.append(' ');
}
switch (tag) {
case TY_INT:
break;
case TY_SHORT:
break;
case TY_CHAR:
break;
case TY_VOID:
break;
case TY_FLOAT:
break;
case TY_DOUBLE:
break;
case TY_POINTER:
decodeTypeImpPrefix(buffer, pType->pHead);
if(pType->pHead && pType->pHead->tag == TY_FUNC) {
buffer.append('(');
}
buffer.append('*');
break;
case TY_ARRAY:
decodeTypeImpPrefix(buffer, pType->pHead);
break;
case TY_STRUCT:
break;
case TY_FUNC:
decodeTypeImp(buffer, pType->pHead);
break;
case TY_PARAM:
decodeTypeImp(buffer, pType->pHead);
break;
default:
String temp;
temp.printf("Unknown tag %d", pType->tag);
buffer.append(temp);
break;
}
}
void decodeTypeImpPostfix(String& buffer, Type* pType) {
TypeTag tag = pType->tag;
switch(tag) {
case TY_POINTER:
if(pType->pHead && pType->pHead->tag == TY_FUNC) {
buffer.append(')');
}
decodeTypeImpPostfix(buffer, pType->pHead);
break;
case TY_ARRAY:
{
String temp;
temp.printf("[%d]", pType->length);
buffer.append(temp);
}
break;
case TY_STRUCT:
if (pType->pHead->length >= 0) {
buffer.appendCStr(" {");
for(Type* pArg = pType->pTail; pArg; pArg = pArg->pTail) {
decodeTypeImp(buffer, pArg->pHead);
buffer.appendCStr(";");
}
buffer.append('}');
}
break;
case TY_FUNC:
buffer.append('(');
for(Type* pArg = pType->pTail; pArg; pArg = pArg->pTail) {
decodeTypeImp(buffer, pArg);
if (pArg->pTail) {
buffer.appendCStr(", ");
}
}
buffer.append(')');
break;
default:
break;
}
}
void printType(Type* pType) {
String buffer;
decodeType(buffer, pType);
fprintf(stderr, "%s\n", buffer.getUnwrapped());
}
Type* acceptPrimitiveType() {
Type* pType;
if (tok == TOK_INT) {
pType = mkpInt;
} else if (tok == TOK_SHORT) {
pType = mkpShort;
} else if (tok == TOK_CHAR) {
pType = mkpChar;
} else if (tok == TOK_VOID) {
pType = mkpVoid;
} else if (tok == TOK_FLOAT) {
pType = mkpFloat;
} else if (tok == TOK_DOUBLE) {
pType = mkpDouble;
} else if (tok == TOK_STRUCT || tok == TOK_UNION) {
return acceptStruct();
} else {
return NULL;
}
next();
return pType;
}
Type* acceptStruct() {
assert(tok == TOK_STRUCT || tok == TOK_UNION);
bool isStruct = tok == TOK_STRUCT;
next();
tokenid_t structTag = acceptSymbol();
bool isDeclaration = accept('{');
bool fail = false;
Type* pStructType = createType(TY_STRUCT, NULL, NULL);
if (structTag) {
Token* pToken = &mTokenTable[structTag];
VariableInfo* pStructInfo = pToken->mpStructInfo;
bool needToDeclare = !pStructInfo;
if (pStructInfo) {
if (isDeclaration) {
if (mpCurrentSymbolStack->isStructTagDefinedAtCurrentLevel(structTag)) {
if (pStructInfo->pType->pHead->length == -1) {
// we're filling in a forward declaration.
needToDeclare = false;
} else {
error("A struct with the same name is already defined at this level.");
fail = true;
}
} else {
needToDeclare = true;
}
}
if (!fail) {
assert(pStructInfo->isStructTag);
pStructType->pHead = pStructInfo->pType;
pStructType->pTail = pStructType->pHead->pTail;
}
}
if (needToDeclare) {
// This is a new struct name
pToken->mpStructInfo = mpCurrentSymbolStack->addStructTag(structTag);
pStructType = createType(TY_STRUCT, NULL, NULL);
pStructType->structTag = structTag;
pStructType->pHead = pStructType;
if (! isDeclaration) {
// A forward declaration
pStructType->length = -1;
}
pToken->mpStructInfo->pType = pStructType;
}
} else {
// An anonymous struct
pStructType->pHead = pStructType;
}
if (isDeclaration) {
size_t offset = 0;
size_t structSize = 0;
size_t structAlignment = 0;
Type** pParamHolder = & pStructType->pHead->pTail;
while (tok != '}' && tok != EOF) {
Type* pPrimitiveType = expectPrimitiveType();
if (pPrimitiveType) {
while (tok != ';' && tok != EOF) {
Type* pItem = acceptDeclaration(pPrimitiveType, true, false);
if (!pItem) {
break;
}
if (lookupStructMember(pStructType, pItem->id)) {
String buf;
decodeToken(buf, pItem->id, false);
error("Duplicate struct member %s", buf.getUnwrapped());
}
Type* pStructElement = createType(TY_PARAM, pItem, NULL);
size_t alignment = pGen->alignmentOf(pItem);
if (alignment > structAlignment) {
structAlignment = alignment;
}
size_t alignmentMask = alignment - 1;
offset = (offset + alignmentMask) & ~alignmentMask;
pStructElement->length = offset;
size_t size = pGen->sizeOf(pItem);
if (isStruct) {
offset += size;
structSize = offset;
} else {
if (size >= structSize) {
structSize = size;
}
}
*pParamHolder = pStructElement;
pParamHolder = &pStructElement->pTail;
accept(',');
}
skip(';');
} else {
// Some sort of syntax error, skip token and keep trying
next();
}
}
if (!fail) {
pStructType->pHead->length = structSize;
pStructType->pHead->alignment = structAlignment | (isStruct << 31);
}
skip('}');
}
if (fail) {
pStructType = NULL;
}
return pStructType;
}
Type* lookupStructMember(Type* pStruct, tokenid_t memberId) {
for(Type* pStructElement = pStruct->pHead->pTail; pStructElement; pStructElement = pStructElement->pTail) {
if (pStructElement->pHead->id == memberId) {
return pStructElement;
}
}
return NULL;
}
Type* acceptDeclaration(Type* pType, bool nameAllowed, bool nameRequired) {
tokenid_t declName = 0;
bool reportFailure = false;
pType = acceptDecl2(pType, declName, nameAllowed,
nameRequired, reportFailure);
if (declName) {
// Clone the parent type so we can set a unique ID
Type* pOldType = pType;
pType = createType(pType->tag, pType->pHead, pType->pTail);
*pType = *pOldType;
pType->id = declName;
} else if (nameRequired) {
error("Expected a variable name");
}
#if 0
fprintf(stderr, "Parsed a declaration: ");
printType(pType);
#endif
if (reportFailure) {
return NULL;
}
return pType;
}
Type* expectDeclaration(Type* pBaseType) {
bool nameRequired = pBaseType->tag != TY_STRUCT;
Type* pType = acceptDeclaration(pBaseType, true, nameRequired);
if (! pType) {
error("Expected a declaration");
}
return pType;
}
/* Used for accepting types that appear in casts */
Type* acceptCastTypeDeclaration() {
Type* pType = acceptPrimitiveType();
if (pType) {
pType = acceptDeclaration(pType, false, false);
}
return pType;
}
Type* expectCastTypeDeclaration() {
Type* pType = acceptCastTypeDeclaration();
if (! pType) {
error("Expected a declaration");
}
return pType;
}
Type* acceptDecl2(Type* pType, tokenid_t& declName,
bool nameAllowed, bool nameRequired,
bool& reportFailure) {
while (accept('*')) {
pType = createType(TY_POINTER, pType, NULL);
}
pType = acceptDecl3(pType, declName, nameAllowed, nameRequired,
reportFailure);
return pType;
}
Type* acceptDecl3(Type* pType, tokenid_t& declName,
bool nameAllowed, bool nameRequired,
bool& reportFailure) {
// direct-dcl :
// name
// (dcl)
// direct-dcl()
// direct-dcl[]
Type* pNewHead = NULL;
if (accept('(')) {
pNewHead = acceptDecl2(pNewHead, declName, nameAllowed,
nameRequired, reportFailure);
skip(')');
} else if ((declName = acceptSymbol()) != 0) {
if (nameAllowed == false && declName) {
error("Symbol %s not allowed here", nameof(declName));
reportFailure = true;
}
} else if (nameRequired && ! declName) {
String temp;
decodeToken(temp, tok, true);
error("Expected name. Got %s", temp.getUnwrapped());
reportFailure = true;
}
for(;;) {
if (accept('(')) {
// Function declaration
Type* pTail = acceptArgs(nameAllowed);
pType = createType(TY_FUNC, pType, pTail);
skip(')');
} if (accept('[')) {
if (tok != ']') {
if (tok != TOK_NUM || tokc <= 0) {
error("Expected positive integer constant");
} else {
Type* pDecayType = createPtrType(pType);
pType = createType(TY_ARRAY, pType, pDecayType);
pType->length = tokc;
}
next();
}
skip(']');
} else {
break;
}
}
if (pNewHead) {
Type* pA = pNewHead;
while (pA->pHead) {
pA = pA->pHead;
}
pA->pHead = pType;
pType = pNewHead;
}
return pType;
}
Type* acceptArgs(bool nameAllowed) {
Type* pHead = NULL;
Type* pTail = NULL;
for(;;) {
Type* pBaseArg = acceptPrimitiveType();
if (pBaseArg) {
Type* pArg = acceptDeclaration(pBaseArg, nameAllowed, false);
if (pArg) {
Type* pParam = createType(TY_PARAM, pArg, NULL);
if (!pHead) {
pHead = pParam;
pTail = pParam;
} else {
pTail->pTail = pParam;
pTail = pParam;
}
}
}
if (! accept(',')) {
break;
}
}
return pHead;
}
Type* expectPrimitiveType() {
Type* pType = acceptPrimitiveType();
if (!pType) {
String buf;
decodeToken(buf, tok, true);
error("Expected a type, got %s", buf.getUnwrapped());
}
return pType;
}
void checkLVal() {
if (pGen->getR0ExpressionType() != ET_LVALUE) {
error("Expected an lvalue");
}
}
void addGlobalSymbol(Type* pDecl) {
tokenid_t t = pDecl->id;
VariableInfo* pVI = VI(t);
if(pVI && pVI->pAddress) {
reportDuplicate(t);
}
mGlobals.add(pDecl);
}
void reportDuplicate(tokenid_t t) {
error("Duplicate definition of %s", nameof(t));
}
void addLocalSymbol(Type* pDecl) {
tokenid_t t = pDecl->id;
if (mLocals.isDefinedAtCurrentLevel(t)) {
reportDuplicate(t);
}
mLocals.add(pDecl);
}
bool checkUndeclaredStruct(Type* pBaseType) {
if (pBaseType->tag == TY_STRUCT && pBaseType->length < 0) {
String temp;
decodeToken(temp, pBaseType->structTag, false);
error("Undeclared struct %s", temp.getUnwrapped());
return true;
}
return false;
}
void localDeclarations(Type* pBaseType) {
intptr_t a;
while (pBaseType) {
while (tok != ';' && tok != EOF) {
Type* pDecl = expectDeclaration(pBaseType);
if (!pDecl) {
break;
}
if (!pDecl->id) {
break;
}
if (checkUndeclaredStruct(pDecl)) {
break;
}
addLocalSymbol(pDecl);
if (pDecl->tag == TY_FUNC) {
if (tok == '{') {
error("Nested functions are not allowed. Did you forget a '}' ?");
break;
}
// Else it's a forward declaration of a function.
} else {
int variableAddress = 0;
size_t alignment = pGen->alignmentOf(pDecl);
assert(alignment > 0);
size_t alignmentMask = ~ (alignment - 1);
size_t sizeOf = pGen->sizeOf(pDecl);
assert(sizeOf > 0);
loc = (loc + alignment - 1) & alignmentMask;
size_t alignedSize = (sizeOf + alignment - 1) & alignmentMask;
loc = loc + alignedSize;
variableAddress = -loc;
VI(pDecl->id)->pAddress = (void*) variableAddress;
if (accept('=')) {
/* assignment */
pGen->leaR0(variableAddress, createPtrType(pDecl), ET_LVALUE);
pGen->pushR0();
expr();
pGen->forceR0RVal();
pGen->storeR0ToTOS();
}
}
if (tok == ',')
next();
}
skip(';');
pBaseType = acceptPrimitiveType();
}
}
bool checkSymbol() {
return checkSymbol(tok);
}
void decodeToken(String& buffer, tokenid_t token, bool quote) {
if (token == EOF ) {
buffer.printf("EOF");
} else if (token == TOK_NUM) {
buffer.printf("numeric constant");
} else if (token >= 0 && token < 256) {
if (token < 32) {
buffer.printf("'\\x%02x'", token);
} else {
buffer.printf("'%c'", token);
}
} else {
if (quote) {
if (token >= TOK_KEYWORD && token < TOK_SYMBOL) {
buffer.printf("keyword \"%s\"", nameof(token));
} else {
buffer.printf("symbol \"%s\"", nameof(token));
}
} else {
buffer.printf("%s", nameof(token));
}
}
}
void printToken(tokenid_t token) {
String buffer;
decodeToken(buffer, token, true);
fprintf(stderr, "%s\n", buffer.getUnwrapped());
}
bool checkSymbol(tokenid_t token) {
bool result = token >= TOK_SYMBOL;
if (!result) {
String temp;
decodeToken(temp, token, true);
error("Expected symbol. Got %s", temp.getUnwrapped());
}
return result;
}
tokenid_t acceptSymbol() {
tokenid_t result = 0;
if (tok >= TOK_SYMBOL) {
result = tok;
next();
}
return result;
}
void globalDeclarations() {
mpCurrentSymbolStack = &mGlobals;
while (tok != EOF) {
Type* pBaseType = expectPrimitiveType();
if (!pBaseType) {
break;
}
Type* pDecl = expectDeclaration(pBaseType);
if (!pDecl) {
break;
}
if (!pDecl->id) {
skip(';');
continue;
}
if (checkUndeclaredStruct(pDecl)) {
skip(';');
continue;
}
if (! isDefined(pDecl->id)) {
addGlobalSymbol(pDecl);
}
VariableInfo* name = VI(pDecl->id);
if (name && name->pAddress) {
error("Already defined global %s", nameof(pDecl->id));
}
if (pDecl->tag < TY_FUNC) {
// it's a variable declaration
for(;;) {
if (name && !name->pAddress) {
name->pAddress = (int*) allocGlobalSpace(
pGen->alignmentOf(name->pType),
pGen->sizeOf(name->pType));
}
if (accept('=')) {
if (tok == TOK_NUM) {
if (name) {
* (int*) name->pAddress = tokc;
}
next();
} else {
error("Expected an integer constant");
}
}
if (!accept(',')) {
break;
}
pDecl = expectDeclaration(pBaseType);
if (!pDecl) {
break;
}
if (! isDefined(pDecl->id)) {
addGlobalSymbol(pDecl);
}
name = VI(pDecl->id);
}
skip(';');
} else {
// Function declaration
if (accept(';')) {
// forward declaration.
} else if (tok != '{') {
error("expected '{'");
} else {
mpCurrentArena = &mLocalArena;
mpCurrentSymbolStack = &mLocals;
if (name) {
/* patch forward references */
pGen->resolveForward((int) name->pForward);
/* put function address */
name->pAddress = (void*) pCodeBuf->getPC();
}
// Calculate stack offsets for parameters
mLocals.pushLevel();
intptr_t a = 8;
int argCount = 0;
for (Type* pP = pDecl->pTail; pP; pP = pP->pTail) {
Type* pArg = pP->pHead;
if (pArg->id) {
addLocalSymbol(pArg);
}
/* read param name and compute offset */
Type* pPassingType = passingType(pArg);
size_t alignment = pGen->alignmentOf(pPassingType);
a = (a + alignment - 1) & ~ (alignment-1);
if (pArg->id) {
VI(pArg->id)->pAddress = (void*) a;
}
a = a + pGen->sizeOf(pPassingType);
argCount++;
}
rsym = loc = 0;
pReturnType = pDecl->pHead;
a = pGen->functionEntry(pDecl);
block(0, true);
pGen->gsym(rsym);
pGen->functionExit(pDecl, a, loc);
mLocals.popLevel();
mpCurrentArena = &mGlobalArena;
mpCurrentSymbolStack = &mGlobals;
}
}
}
}
Type* passingType(Type* pType) {
switch (pType->tag) {
case TY_CHAR:
case TY_SHORT:
return mkpInt;
default:
return pType;
}
}
char* allocGlobalSpace(size_t alignment, size_t bytes) {
size_t base = (((size_t) glo) + alignment - 1) & ~(alignment-1);
size_t end = base + bytes;
if ((end - (size_t) pGlobalBase) > (size_t) ALLOC_SIZE) {
error("Global space exhausted");
assert(false);
return NULL;
}
char* result = (char*) base;
glo = (char*) end;
return result;
}
void cleanup() {
if (pGlobalBase != 0) {
free(pGlobalBase);
pGlobalBase = 0;
}
if (pGen) {
delete pGen;
pGen = 0;
}
if (pCodeBuf) {
delete pCodeBuf;
pCodeBuf = 0;
}
if (file) {
delete file;
file = 0;
}
}
// One-time initialization, when class is constructed.
void init() {
mpSymbolLookupFn = 0;
mpSymbolLookupContext = 0;
}
void clear() {
tok = 0;
tokc = 0;
tokl = 0;
ch = 0;
rsym = 0;
loc = 0;
glo = 0;
dptr = 0;
dch = 0;
file = 0;
pGlobalBase = 0;
pCodeBuf = 0;
pGen = 0;
mPragmaStringCount = 0;
mCompileResult = 0;
mLineNumber = 1;
mbBumpLine = false;
mbSuppressMacroExpansion = false;
}
void setArchitecture(const char* architecture) {
delete pGen;
pGen = 0;
delete pCodeBuf;
pCodeBuf = new CodeBuf();
if (architecture != NULL) {
#ifdef PROVIDE_ARM_CODEGEN
if (! pGen && strcmp(architecture, "arm") == 0) {
pGen = new ARMCodeGenerator();
pCodeBuf = new ARMCodeBuf(pCodeBuf);
}
#endif
#ifdef PROVIDE_X86_CODEGEN
if (! pGen && strcmp(architecture, "x86") == 0) {
pGen = new X86CodeGenerator();
}
#endif
if (!pGen ) {
error("Unknown architecture %s\n", architecture);
}
}
if (pGen == NULL) {
#if defined(DEFAULT_ARM_CODEGEN)
pGen = new ARMCodeGenerator();
pCodeBuf = new ARMCodeBuf(pCodeBuf);
#elif defined(DEFAULT_X86_CODEGEN)
pGen = new X86CodeGenerator();
#endif
}
if (pGen == NULL) {
error("No code generator defined.");
} else {
pGen->setErrorSink(this);
pGen->setTypes(mkpInt);
}
}
public:
struct args {
args() {
architecture = 0;
}
const char* architecture;
};
Compiler() {
init();
clear();
}
~Compiler() {
cleanup();
}
void registerSymbolCallback(ACCSymbolLookupFn pFn, ACCvoid* pContext) {
mpSymbolLookupFn = pFn;
mpSymbolLookupContext = pContext;
}
int compile(const char* text, size_t textLength) {
int result;
mpCurrentArena = &mGlobalArena;
createPrimitiveTypes();
cleanup();
clear();
mTokenTable.setArena(&mGlobalArena);
mGlobals.setArena(&mGlobalArena);
mGlobals.setTokenTable(&mTokenTable);
mLocals.setArena(&mLocalArena);
mLocals.setTokenTable(&mTokenTable);
internKeywords();
setArchitecture(NULL);
if (!pGen) {
return -1;
}
#ifdef PROVIDE_TRACE_CODEGEN
pGen = new TraceCodeGenerator(pGen);
#endif
pGen->setErrorSink(this);
if (pCodeBuf) {
pCodeBuf->init(ALLOC_SIZE);
}
pGen->init(pCodeBuf);
file = new TextInputStream(text, textLength);
pGlobalBase = (char*) calloc(1, ALLOC_SIZE);
glo = pGlobalBase;
inp();
next();
globalDeclarations();
checkForUndefinedForwardReferences();
result = pGen->finishCompile();
if (result == 0) {
if (mErrorBuf.len()) {
result = -2;
}
}
mCompileResult = result;
return result;
}
void createPrimitiveTypes() {
mkpInt = createType(TY_INT, NULL, NULL);
mkpShort = createType(TY_SHORT, NULL, NULL);
mkpChar = createType(TY_CHAR, NULL, NULL);
mkpVoid = createType(TY_VOID, NULL, NULL);
mkpFloat = createType(TY_FLOAT, NULL, NULL);
mkpDouble = createType(TY_DOUBLE, NULL, NULL);
mkpIntFn = createType(TY_FUNC, mkpInt, NULL);
mkpIntPtr = createPtrType(mkpInt);
mkpCharPtr = createPtrType(mkpChar);
mkpFloatPtr = createPtrType(mkpFloat);
mkpDoublePtr = createPtrType(mkpDouble);
mkpPtrIntFn = createPtrType(mkpIntFn);
}
void checkForUndefinedForwardReferences() {
mGlobals.forEach(static_ufrcFn, this);
}
static bool static_ufrcFn(VariableInfo* value, void* context) {
Compiler* pCompiler = (Compiler*) context;
return pCompiler->undefinedForwardReferenceCheck(value);
}
bool undefinedForwardReferenceCheck(VariableInfo* value) {
if (!value->pAddress && value->pForward) {
error("Undefined forward reference: %s",
mTokenTable[value->tok].pText);
}
return true;
}
/* Look through the symbol table to find a symbol.
* If found, return its value.
*/
void* lookup(const char* name) {
if (mCompileResult == 0) {
tokenid_t tok = mTokenTable.intern(name, strlen(name));
VariableInfo* pVariableInfo = VI(tok);
if (pVariableInfo) {
return pVariableInfo->pAddress;
}
}
return NULL;
}
void getPragmas(ACCsizei* actualStringCount,
ACCsizei maxStringCount, ACCchar** strings) {
int stringCount = mPragmaStringCount;
if (actualStringCount) {
*actualStringCount = stringCount;
}
if (stringCount > maxStringCount) {
stringCount = maxStringCount;
}
if (strings) {
char* pPragmas = mPragmas.getUnwrapped();
while (stringCount-- > 0) {
*strings++ = pPragmas;
pPragmas += strlen(pPragmas) + 1;
}
}
}
void getProgramBinary(ACCvoid** base, ACCsizei* length) {
*base = pCodeBuf->getBase();
*length = (ACCsizei) pCodeBuf->getSize();
}
char* getErrorMessage() {
return mErrorBuf.getUnwrapped();
}
};
const char* Compiler::operatorChars =
"++--*@/@%@+@-@<<>><=>=<@>@==!=&&||&@^@|@~@!@";
const char Compiler::operatorLevel[] =
{11, 11, 1, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4,
5, 5, /* ==, != */
9, 10, /* &&, || */
6, 7, 8, /* & ^ | */
2, 2 /* ~ ! */
};
#ifdef PROVIDE_X86_CODEGEN
const int Compiler::X86CodeGenerator::operatorHelper[] = {
0x1, // ++
0xff, // --
0xc1af0f, // *
0xf9f79991, // /
0xf9f79991, // % (With manual assist to swap results)
0xc801, // +
0xd8f7c829, // -
0xe0d391, // <<
0xf8d391, // >>
0xe, // <=
0xd, // >=
0xc, // <
0xf, // >
0x4, // ==
0x5, // !=
0x0, // &&
0x1, // ||
0xc821, // &
0xc831, // ^
0xc809, // |
0xd0f7, // ~
0x4 // !
};
#endif
struct ACCscript {
ACCscript() {
text = 0;
textLength = 0;
accError = ACC_NO_ERROR;
}
~ACCscript() {
delete text;
}
void registerSymbolCallback(ACCSymbolLookupFn pFn, ACCvoid* pContext) {
compiler.registerSymbolCallback(pFn, pContext);
}
void setError(ACCenum error) {
if (accError == ACC_NO_ERROR && error != ACC_NO_ERROR) {
accError = error;
}
}
ACCenum getError() {
ACCenum result = accError;
accError = ACC_NO_ERROR;
return result;
}
Compiler compiler;
char* text;
int textLength;
ACCenum accError;
};
extern "C"
ACCscript* accCreateScript() {
return new ACCscript();
}
extern "C"
ACCenum accGetError( ACCscript* script ) {
return script->getError();
}
extern "C"
void accDeleteScript(ACCscript* script) {
delete script;
}
extern "C"
void accRegisterSymbolCallback(ACCscript* script, ACCSymbolLookupFn pFn,
ACCvoid* pContext) {
script->registerSymbolCallback(pFn, pContext);
}
extern "C"
void accScriptSource(ACCscript* script,
ACCsizei count,
const ACCchar ** string,
const ACCint * length) {
int totalLength = 0;
for(int i = 0; i < count; i++) {
int len = -1;
const ACCchar* s = string[i];
if (length) {
len = length[i];
}
if (len < 0) {
len = strlen(s);
}
totalLength += len;
}
delete script->text;
char* text = new char[totalLength + 1];
script->text = text;
script->textLength = totalLength;
char* dest = text;
for(int i = 0; i < count; i++) {
int len = -1;
const ACCchar* s = string[i];
if (length) {
len = length[i];
}
if (len < 0) {
len = strlen(s);
}
memcpy(dest, s, len);
dest += len;
}
text[totalLength] = '\0';
#ifdef DEBUG_SAVE_INPUT_TO_FILE
LOGD("Saving input to file...");
int counter;
char path[PATH_MAX];
for (counter = 0; counter < 4096; counter++) {
sprintf(path, DEBUG_DUMP_PATTERN, counter);
if(access(path, F_OK) != 0) {
break;
}
}
if (counter < 4096) {
LOGD("Saving input to file %s", path);
FILE* fd = fopen(path, "w");
if (fd) {
fwrite(text, totalLength, 1, fd);
fclose(fd);
LOGD("Saved input to file %s", path);
} else {
LOGD("Could not save. errno: %d", errno);
}
}
#endif
}
extern "C"
void accCompileScript(ACCscript* script) {
int result = script->compiler.compile(script->text, script->textLength);
if (result) {
script->setError(ACC_INVALID_OPERATION);
}
}
extern "C"
void accGetScriptiv(ACCscript* script,
ACCenum pname,
ACCint * params) {
switch (pname) {
case ACC_INFO_LOG_LENGTH:
*params = 0;
break;
}
}
extern "C"
void accGetScriptInfoLog(ACCscript* script,
ACCsizei maxLength,
ACCsizei * length,
ACCchar * infoLog) {
char* message = script->compiler.getErrorMessage();
int messageLength = strlen(message) + 1;
if (length) {
*length = messageLength;
}
if (infoLog && maxLength > 0) {
int trimmedLength = maxLength < messageLength ?
maxLength : messageLength;
memcpy(infoLog, message, trimmedLength);
infoLog[trimmedLength] = 0;
}
}
extern "C"
void accGetScriptLabel(ACCscript* script, const ACCchar * name,
ACCvoid ** address) {
void* value = script->compiler.lookup(name);
if (value) {
*address = value;
} else {
script->setError(ACC_INVALID_VALUE);
}
}
extern "C"
void accGetPragmas(ACCscript* script, ACCsizei* actualStringCount,
ACCsizei maxStringCount, ACCchar** strings){
script->compiler.getPragmas(actualStringCount, maxStringCount, strings);
}
extern "C"
void accGetProgramBinary(ACCscript* script,
ACCvoid** base, ACCsizei* length) {
script->compiler.getProgramBinary(base, length);
}
} // namespace acc