/* * Copyright (C) 2008 The Android Open Source Project * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "rsa.h" #include "sha.h" /* a[] -= mod */ static void subM(RSAPublicKey *key, uint32_t *a) { int64_t A = 0; int i; for (i = 0; i < key->len; ++i) { A += (uint64_t)a[i] - key->n[i]; a[i] = (uint32_t)A; A >>= 32; } } /* return a[] >= mod */ static int geM(RSAPublicKey *key, const uint32_t *a) { int i; for (i = key->len; i;) { --i; if (a[i] < key->n[i]) return 0; if (a[i] > key->n[i]) return 1; } return 1; /* equal */ } /* montgomery c[] += a * b[] / R % mod */ static void montMulAdd(RSAPublicKey *key, uint32_t* c, const uint32_t a, const uint32_t* b) { uint64_t A = (uint64_t)a * b[0] + c[0]; uint32_t d0 = (uint32_t)A * key->n0inv; uint64_t B = (uint64_t)d0 * key->n[0] + (uint32_t)A; int i; for (i = 1; i < key->len; ++i) { A = (A >> 32) + (uint64_t)a * b[i] + c[i]; B = (B >> 32) + (uint64_t)d0 * key->n[i] + (uint32_t)A; c[i - 1] = (uint32_t)B; } A = (A >> 32) + (B >> 32); c[i - 1] = (uint32_t)A; if (A >> 32) { subM(key, c); } } /* montgomery c[] = a[] * b[] / R % mod */ static void montMul(RSAPublicKey *key, uint32_t* c, const uint32_t* a, const uint32_t* b) { int i; for (i = 0; i < key->len; ++i) { c[i] = 0; } for (i = 0; i < key->len; ++i) { montMulAdd(key, c, a[i], b); } } /* In-place public exponentiation. ** Input and output big-endian byte array in inout. */ static void modpow3(RSAPublicKey *key, uint8_t* inout) { uint32_t a[RSANUMWORDS]; uint32_t aR[RSANUMWORDS]; uint32_t aaR[RSANUMWORDS]; uint32_t *aaa = aR; /* Re-use location. */ int i; /* Convert from big endian byte array to little endian word array. */ for (i = 0; i < key->len; ++i) { uint32_t tmp = (inout[((key->len - 1 - i) * 4) + 0] << 24) | (inout[((key->len - 1 - i) * 4) + 1] << 16) | (inout[((key->len - 1 - i) * 4) + 2] << 8) | (inout[((key->len - 1 - i) * 4) + 3] << 0); a[i] = tmp; } montMul(key, aR, a, key->rr); /* aR = a * RR / R mod M */ montMul(key, aaR, aR, aR); /* aaR = aR * aR / R mod M */ montMul(key, aaa, aaR, a); /* aaa = aaR * a / R mod M */ /* Make sure aaa < mod; aaa is at most 1x mod too large. */ if (geM(key, aaa)) { subM(key, aaa); } /* Convert to bigendian byte array */ for (i = key->len - 1; i >= 0; --i) { uint32_t tmp = aaa[i]; *inout++ = tmp >> 24; *inout++ = tmp >> 16; *inout++ = tmp >> 8; *inout++ = tmp >> 0; } } /* Expected PKCS1.5 signature padding bytes, for a keytool RSA signature. ** Has the 0-length optional parameter encoded in the ASN1 (as opposed to the ** other flavor which omits the optional parameter entirely). This code does not ** accept signatures without the optional parameter. */ static const uint8_t padding[RSANUMBYTES - SHA_DIGEST_SIZE] = { 0x00,0x01,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0x00, 0x30,0x21,0x30,0x09,0x06,0x05,0x2b,0x0e,0x03,0x02,0x1a,0x05,0x00, 0x04,0x14 }; /* Verify a 2048 bit RSA PKCS1.5 signature against an expected SHA-1 hash. ** Returns 0 on failure, 1 on success. */ int RSA_verify(RSAPublicKey *key, const uint8_t *signature, const int len, const uint8_t *sha) { uint8_t buf[RSANUMBYTES]; int i; if (key->len != RSANUMWORDS) { return 0; /* Wrong key passed in. */ } if (len != sizeof(buf)) { return 0; /* Wrong input length. */ } for (i = 0; i < len; ++i) { buf[i] = signature[i]; } modpow3(key, buf); /* Check pkcs1.5 padding bytes. */ for (i = 0; i < (int) sizeof(padding); ++i) { if (buf[i] != padding[i]) { return 0; } } /* Check sha digest matches. */ for (; i < len; ++i) { if (buf[i] != *sha++) { return 0; } } return 1; }