HELLO·Android
系统源代码
IT资讯
技术文章
我的收藏
注册
登录
-
我收藏的文章
创建代码块
我的代码块
我的账号
Android 10
|
10.0.0_r6
下载
查看原文件
收藏
根目录
system
tools
hidl
test
hidl_test
hidl_test_client.cpp
#define LOG_TAG "hidl_test_client" #include "FooCallback.h" #include "hidl_test.h" #include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#if GTEST_IS_THREADSAFE #include
#include
#include
#include
#include
#else #error "GTest did not detect pthread library." #endif #include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define EXPECT_OK(__ret__) EXPECT_TRUE(isOk(__ret__)) #define EXPECT_FAIL(__ret__) EXPECT_FALSE(isOk(__ret__)) #define EXPECT_ARRAYEQ(__a1__, __a2__, __size__) EXPECT_TRUE(isArrayEqual(__a1__, __a2__, __size__)) // TODO uncomment this when kernel is patched with pointer changes. //#define HIDL_RUN_POINTER_TESTS 1 // forward declarations. class HidlEnvironment; // static storage enum TestMode { BINDERIZED, PASSTHROUGH }; static HidlEnvironment *gHidlEnvironment = nullptr; using ::android::Condition; using ::android::DELAY_NS; using ::android::DELAY_S; using ::android::FQName; using ::android::MultiDimensionalToString; using ::android::Mutex; using ::android::ONEWAY_TOLERANCE_NS; using ::android::sp; using ::android::to_string; using ::android::TOLERANCE_NS; using ::android::wp; using ::android::hardware::GrantorDescriptor; using ::android::hardware::hidl_array; using ::android::hardware::hidl_death_recipient; using ::android::hardware::hidl_handle; using ::android::hardware::hidl_memory; using ::android::hardware::hidl_string; using ::android::hardware::hidl_vec; using ::android::hardware::HidlMemory; using ::android::hardware::MQDescriptor; using ::android::hardware::MQFlavor; using ::android::hardware::Return; using ::android::hardware::Void; using ::android::hardware::tests::bar::V1_0::IBar; using ::android::hardware::tests::bar::V1_0::IComplicated; using ::android::hardware::tests::baz::V1_0::IBaz; using ::android::hardware::tests::expression::V1_0::IExpression; using ::android::hardware::tests::foo::V1_0::Abc; using ::android::hardware::tests::foo::V1_0::IFoo; using ::android::hardware::tests::foo::V1_0::IFooCallback; using ::android::hardware::tests::foo::V1_0::ISimple; using ::android::hardware::tests::foo::V1_0::implementation::FooCallback; using ::android::hardware::tests::hash::V1_0::IHash; using ::android::hardware::tests::inheritance::V1_0::IChild; using ::android::hardware::tests::inheritance::V1_0::IFetcher; using ::android::hardware::tests::inheritance::V1_0::IGrandparent; using ::android::hardware::tests::inheritance::V1_0::IParent; using ::android::hardware::tests::memory::V1_0::IMemoryTest; using ::android::hardware::tests::multithread::V1_0::IMultithread; using ::android::hardware::tests::pointer::V1_0::IGraph; using ::android::hardware::tests::pointer::V1_0::IPointer; using ::android::hardware::tests::safeunion::cpp::V1_0::ICppSafeUnion; using ::android::hardware::tests::safeunion::V1_0::IOtherInterface; using ::android::hardware::tests::safeunion::V1_0::ISafeUnion; using ::android::hardware::tests::trie::V1_0::ITrie; using ::android::hardware::tests::trie::V1_0::TrieNode; using ::android::hidl::allocator::V1_0::IAllocator; using ::android::hidl::base::V1_0::IBase; using ::android::hidl::manager::V1_0::IServiceNotification; using ::android::hidl::manager::V1_2::IServiceManager; using ::android::hidl::memory::block::V1_0::MemoryBlock; using ::android::hidl::memory::token::V1_0::IMemoryToken; using ::android::hidl::memory::V1_0::IMemory; using ::android::hidl::token::V1_0::ITokenManager; using std::to_string; using HandleTypeSafeUnion = ISafeUnion::HandleTypeSafeUnion; using InterfaceTypeSafeUnion = ISafeUnion::InterfaceTypeSafeUnion; using LargeSafeUnion = ISafeUnion::LargeSafeUnion; using SmallSafeUnion = ISafeUnion::SmallSafeUnion; template
using hidl_enum_range = ::android::hardware::hidl_enum_range
; template
static inline ::testing::AssertionResult isOk(const ::android::hardware::Return
&ret) { return ret.isOk() ? (::testing::AssertionSuccess() << ret.description()) : (::testing::AssertionFailure() << ret.description()); } template
static inline bool isArrayEqual(const T arr1, const S arr2, size_t size) { for(size_t i = 0; i < size; i++) if(arr1[i] != arr2[i]) return false; return true; } template
std::string to_string(std::set
set) { std::stringstream ss; ss << "{"; bool first = true; for (const T &item : set) { if (first) { first = false; } else { ss << ", "; } ss << to_string(item); } ss << "}"; return ss.str(); } // does not check for fd equality static void checkNativeHandlesDataEquality(const native_handle_t* reference, const native_handle_t* result) { if (reference == nullptr || result == nullptr) { EXPECT_EQ(reference, result); return; } ASSERT_EQ(reference->version, result->version); EXPECT_EQ(reference->numFds, result->numFds); EXPECT_EQ(reference->numInts, result->numInts); int offset = reference->numFds; int numInts = reference->numInts; EXPECT_ARRAYEQ(&(reference->data[offset]), &(result->data[offset]), numInts); } template
static void checkMQDescriptorEquality(const MQDescriptor
& expected, const MQDescriptor
& actual) { checkNativeHandlesDataEquality(expected.handle(), actual.handle()); EXPECT_EQ(expected.grantors().size(), actual.grantors().size()); EXPECT_EQ(expected.getQuantum(), actual.getQuantum()); EXPECT_EQ(expected.getFlags(), actual.getFlags()); } struct Simple : public ISimple { Simple(int32_t cookie) : mCookie(cookie) { } Return
getCookie() override { return mCookie; } Return
customVecInt(customVecInt_cb _cb) override { _cb(hidl_vec
()); return Void(); } Return
customVecStr(customVecStr_cb _cb) override { hidl_vec
vec; vec.resize(2); _cb(vec); return Void(); } Return
mystr(mystr_cb _cb) override { _cb(hidl_string()); return Void(); } Return
myhandle(myhandle_cb _cb) override { auto h = native_handle_create(0, 1); _cb(h); native_handle_delete(h); return Void(); } private: int32_t mCookie; }; struct SimpleParent : public IParent { Return
doGrandparent() override { return Void(); } Return
doParent() override { return Void(); } }; struct SimpleChild : public IChild { Return
doGrandparent() override { return Void(); } Return
doParent() override { return Void(); } Return
doChild() override { return Void(); } }; struct Complicated : public IComplicated { Complicated(int32_t cookie) : mCookie(cookie) { } Return
getCookie() override { return mCookie; } Return
customVecInt(customVecInt_cb _cb) override { _cb(hidl_vec
()); return Void(); } Return
customVecStr(customVecStr_cb _cb) override { hidl_vec
vec; vec.resize(2); _cb(vec); return Void(); } Return
mystr(mystr_cb _cb) override { _cb(hidl_string()); return Void(); } Return
myhandle(myhandle_cb _cb) override { auto h = native_handle_create(0, 1); _cb(h); native_handle_delete(h); return Void(); } private: int32_t mCookie; }; struct OtherInterface : public IOtherInterface { Return
concatTwoStrings(const hidl_string& a, const hidl_string& b, concatTwoStrings_cb _hidl_cb) override { hidl_string result = std::string(a) + std::string(b); _hidl_cb(result); return Void(); } }; struct ServiceNotification : public IServiceNotification { std::mutex mutex; std::condition_variable condition; Return
onRegistration(const hidl_string &fqName, const hidl_string &name, bool preexisting) override { if (preexisting) { // not interested in things registered from previous runs of hidl_test return Void(); } std::unique_lock
lock(mutex); mRegistered.push_back(std::string(fqName.c_str()) + "/" + name.c_str()); lock.unlock(); condition.notify_one(); return Void(); } const std::vector
&getRegistrations() const { return mRegistered; } private: std::vector
mRegistered{}; }; class HidlEnvironment : public ::testing::Environment { public: sp
manager; sp
tokenManager; sp
ashmemAllocator; sp
memoryTest; sp
fetcher; sp
foo; sp
baz; sp
dyingBaz; sp
bar; sp
graphInterface; sp
pointerInterface; sp
validationPointerInterface; sp
multithreadInterface; sp
trieInterface; sp
cppSafeunionInterface; sp
safeunionInterface; TestMode mode; bool enableDelayMeasurementTests; HidlEnvironment(TestMode mode, bool enableDelayMeasurementTests) : mode(mode), enableDelayMeasurementTests(enableDelayMeasurementTests) {}; void getServices() { manager = IServiceManager::getService(); // alternatively: // manager = defaultServiceManager() ASSERT_NE(manager, nullptr); ASSERT_TRUE(manager->isRemote()); // manager is always remote tokenManager = ITokenManager::getService(); ASSERT_NE(tokenManager, nullptr); ASSERT_TRUE(tokenManager->isRemote()); // tokenManager is always remote ashmemAllocator = IAllocator::getService("ashmem"); ASSERT_NE(ashmemAllocator, nullptr); ASSERT_TRUE(ashmemAllocator->isRemote()); // allocator is always remote // getStub is true if we are in passthrough mode to skip checking // binderized server, false for binderized mode. memoryTest = IMemoryTest::getService("memory", mode == PASSTHROUGH /* getStub */); ASSERT_NE(memoryTest, nullptr); ASSERT_EQ(memoryTest->isRemote(), mode == BINDERIZED); fetcher = IFetcher::getService("fetcher", mode == PASSTHROUGH /* getStub */); ASSERT_NE(fetcher, nullptr); ASSERT_EQ(fetcher->isRemote(), mode == BINDERIZED); foo = IFoo::getService("foo", mode == PASSTHROUGH /* getStub */); ASSERT_NE(foo, nullptr); ASSERT_EQ(foo->isRemote(), mode == BINDERIZED); baz = IBaz::getService("baz", mode == PASSTHROUGH /* getStub */); ASSERT_NE(baz, nullptr); ASSERT_EQ(baz->isRemote(), mode == BINDERIZED); dyingBaz = IBaz::getService("dyingBaz", mode == PASSTHROUGH /* getStub */); ASSERT_NE(dyingBaz, nullptr); ASSERT_EQ(dyingBaz->isRemote(), mode == BINDERIZED); bar = IBar::getService("foo", mode == PASSTHROUGH /* getStub */); ASSERT_NE(bar, nullptr); ASSERT_EQ(bar->isRemote(), mode == BINDERIZED); graphInterface = IGraph::getService("graph", mode == PASSTHROUGH /* getStub */); ASSERT_NE(graphInterface, nullptr); ASSERT_EQ(graphInterface->isRemote(), mode == BINDERIZED); pointerInterface = IPointer::getService("pointer", mode == PASSTHROUGH /* getStub */); ASSERT_NE(pointerInterface, nullptr); ASSERT_EQ(pointerInterface->isRemote(), mode == BINDERIZED); // use passthrough mode as the validation object. validationPointerInterface = IPointer::getService("pointer", true /* getStub */); ASSERT_NE(validationPointerInterface, nullptr); multithreadInterface = IMultithread::getService("multithread", mode == PASSTHROUGH /* getStub */); ASSERT_NE(multithreadInterface, nullptr); ASSERT_EQ(multithreadInterface->isRemote(), mode == BINDERIZED); trieInterface = ITrie::getService("trie", mode == PASSTHROUGH /* getStub */); ASSERT_NE(trieInterface, nullptr); ASSERT_EQ(trieInterface->isRemote(), mode == BINDERIZED); cppSafeunionInterface = ICppSafeUnion::getService("default", mode == PASSTHROUGH /* getStub */); ASSERT_NE(cppSafeunionInterface, nullptr); ASSERT_EQ(cppSafeunionInterface->isRemote(), mode == BINDERIZED); safeunionInterface = ISafeUnion::getService("safeunion", mode == PASSTHROUGH /* getStub */); ASSERT_NE(safeunionInterface, nullptr); ASSERT_EQ(safeunionInterface->isRemote(), mode == BINDERIZED); } void SetUp() override { ALOGI("Environment setup beginning..."); getServices(); ALOGI("Environment setup complete."); } }; class HidlTest : public ::testing::Test { public: sp
manager; sp
tokenManager; sp
ashmemAllocator; sp
memoryTest; sp
fetcher; sp
foo; sp
baz; sp
dyingBaz; sp
bar; sp
graphInterface; sp
pointerInterface; sp
validationPointerInterface; sp
trieInterface; sp
cppSafeunionInterface; sp
safeunionInterface; TestMode mode = TestMode::PASSTHROUGH; void SetUp() override { ALOGI("Test setup beginning..."); manager = gHidlEnvironment->manager; tokenManager = gHidlEnvironment->tokenManager; ashmemAllocator = gHidlEnvironment->ashmemAllocator; memoryTest = gHidlEnvironment->memoryTest; fetcher = gHidlEnvironment->fetcher; foo = gHidlEnvironment->foo; baz = gHidlEnvironment->baz; dyingBaz = gHidlEnvironment->dyingBaz; bar = gHidlEnvironment->bar; graphInterface = gHidlEnvironment->graphInterface; pointerInterface = gHidlEnvironment->pointerInterface; validationPointerInterface = gHidlEnvironment->validationPointerInterface; trieInterface = gHidlEnvironment->trieInterface; cppSafeunionInterface = gHidlEnvironment->cppSafeunionInterface; safeunionInterface = gHidlEnvironment->safeunionInterface; mode = gHidlEnvironment->mode; ALOGI("Test setup complete"); } }; TEST_F(HidlTest, ToStringTest) { using namespace android::hardware; LOG(INFO) << toString(IFoo::Everything{}); // Note that handles don't need to be deleted because MQDescriptor takes ownership // and deletes them when destructed. auto handle = native_handle_create(0, 1); auto handle2 = native_handle_create(0, 1); handle->data[0] = 5; handle2->data[0] = 6; IFoo::Everything e{ .u = {.number = 3}, .number = 10, .h = handle, .descSync = {std::vector
(), handle, 5}, .descUnsync = {std::vector
(), handle2, 6}, .mem = hidl_memory("mymem", handle, 5), .p = reinterpret_cast
(0x6), .vs = {"hello", "world"}, .multidimArray = hidl_vec
{"hello", "great", "awesome", "nice"}.data(), .sArray = hidl_vec
{"awesome", "thanks", "you're welcome"}.data(), .anotherStruct = {.first = "first", .last = "last"}, .bf = IFoo::BitField::V0 | IFoo::BitField::V2}; LOG(INFO) << toString(e); LOG(INFO) << toString(foo); // toString is for debugging purposes only; no good EXPECT // statement can be written here. } TEST_F(HidlTest, ConstantExpressionTest) { // these tests are written so that these always evaluate to one for (const auto value : hidl_enum_range
()) { EXPECT_EQ(1, static_cast
(value)); } for (const auto value : hidl_enum_range
()) { EXPECT_EQ(1, static_cast
(value)); } } TEST_F(HidlTest, PassthroughLookupTest) { // IFoo is special because it returns an interface no matter // what instance name is requested. In general, this is BAD! EXPECT_NE(nullptr, IFoo::getService("", true /* getStub */).get()); EXPECT_NE(nullptr, IFoo::getService("a", true /* getStub */).get()); EXPECT_NE(nullptr, IFoo::getService("asdf", true /* getStub */).get()); EXPECT_NE(nullptr, IFoo::getService("::::::::", true /* getStub */).get()); EXPECT_NE(nullptr, IFoo::getService("/////", true /* getStub */).get()); EXPECT_NE(nullptr, IFoo::getService("\n", true /* getStub */).get()); } TEST_F(HidlTest, EnumIteratorTest) { using Empty = ::android::hardware::tests::foo::V1_0::EnumIterators::Empty; using Grandchild = ::android::hardware::tests::foo::V1_0::EnumIterators::Grandchild; using SkipsValues = ::android::hardware::tests::foo::V1_0::EnumIterators::SkipsValues; using MultipleValues = ::android::hardware::tests::foo::V1_0::EnumIterators::MultipleValues; for (const auto value : hidl_enum_range
()) { (void)value; ADD_FAILURE() << "Empty range should not iterate"; } EXPECT_EQ(hidl_enum_range
().begin(), hidl_enum_range
().cbegin()); EXPECT_EQ(hidl_enum_range
().end(), hidl_enum_range
().cend()); EXPECT_EQ(hidl_enum_range
().rbegin(), hidl_enum_range
().crbegin()); EXPECT_EQ(hidl_enum_range
().rend(), hidl_enum_range
().crend()); auto it1 = hidl_enum_range
().begin(); EXPECT_EQ(Grandchild::A, *it1++); EXPECT_EQ(Grandchild::B, *it1++); EXPECT_EQ(hidl_enum_range
().end(), it1); auto it1r = hidl_enum_range
().rbegin(); EXPECT_EQ(Grandchild::B, *it1r++); EXPECT_EQ(Grandchild::A, *it1r++); EXPECT_EQ(hidl_enum_range
().rend(), it1r); auto it2 = hidl_enum_range
().begin(); EXPECT_EQ(SkipsValues::A, *it2++); EXPECT_EQ(SkipsValues::B, *it2++); EXPECT_EQ(SkipsValues::C, *it2++); EXPECT_EQ(SkipsValues::D, *it2++); EXPECT_EQ(SkipsValues::E, *it2++); EXPECT_EQ(hidl_enum_range
().end(), it2); auto it2r = hidl_enum_range
().rbegin(); EXPECT_EQ(SkipsValues::E, *it2r++); EXPECT_EQ(SkipsValues::D, *it2r++); EXPECT_EQ(SkipsValues::C, *it2r++); EXPECT_EQ(SkipsValues::B, *it2r++); EXPECT_EQ(SkipsValues::A, *it2r++); EXPECT_EQ(hidl_enum_range
().rend(), it2r); auto it3 = hidl_enum_range
().begin(); EXPECT_EQ(MultipleValues::A, *it3++); EXPECT_EQ(MultipleValues::B, *it3++); EXPECT_EQ(MultipleValues::C, *it3++); EXPECT_EQ(MultipleValues::D, *it3++); EXPECT_EQ(hidl_enum_range
().end(), it3); auto it3r = hidl_enum_range
().rbegin(); EXPECT_EQ(MultipleValues::D, *it3r++); EXPECT_EQ(MultipleValues::C, *it3r++); EXPECT_EQ(MultipleValues::B, *it3r++); EXPECT_EQ(MultipleValues::A, *it3r++); EXPECT_EQ(hidl_enum_range
().rend(), it3r); } TEST_F(HidlTest, EnumToStringTest) { using namespace std::string_literals; using ::android::hardware::tests::foo::V1_0::toString; // toString for enum EXPECT_EQ(toString(IFoo::BitField::V0), "V0"s); EXPECT_EQ(toString(static_cast
(0)), "0"s) << "Invalid enum isn't stringified correctly."; EXPECT_EQ(toString(static_cast
(IFoo::BitField::V0 | IFoo::BitField::V2)), "0x5"s) << "Invalid enum isn't stringified correctly."; // dump bitfields EXPECT_EQ(toString
((uint8_t)0 | IFoo::BitField::V0), "V0 (0x1)"s); EXPECT_EQ(toString
((uint8_t)0 | IFoo::BitField::V0 | IFoo::BitField::V2), "V0 | V2 (0x5)"s); EXPECT_EQ(toString
((uint8_t)0xF), "V0 | V1 | V2 | V3 | VALL (0xf)"s); EXPECT_EQ(toString
((uint8_t)0xFF), "V0 | V1 | V2 | V3 | VALL | 0xf0 (0xff)"s); // inheritance using Parent = ::android::hardware::tests::foo::V1_0::EnumIterators::Parent; using EmptyChild = ::android::hardware::tests::foo::V1_0::EnumIterators::EmptyChild; using Grandchild = ::android::hardware::tests::foo::V1_0::EnumIterators::Grandchild; EXPECT_EQ(toString(Parent::A), "A"s); EXPECT_EQ(toString(EmptyChild::A), "A"s); EXPECT_EQ(toString(Grandchild::A), "A"s); EXPECT_EQ(toString(Grandchild::B), "B"s); } TEST_F(HidlTest, PingTest) { EXPECT_OK(manager->ping()); } TEST_F(HidlTest, TryGetServiceTest) { sp
dne = IServiceManager::tryGetService("boss"); ASSERT_EQ(dne, nullptr); sp
manager = IServiceManager::tryGetService(); ASSERT_NE(manager, nullptr); } TEST_F(HidlTest, ServiceListTest) { static const std::set
binderizedSet = { "android.hardware.tests.pointer@1.0::IPointer/pointer", "android.hardware.tests.bar@1.0::IBar/foo", "android.hardware.tests.inheritance@1.0::IFetcher/fetcher", "android.hardware.tests.inheritance@1.0::IParent/parent", "android.hardware.tests.inheritance@1.0::IParent/child", "android.hardware.tests.inheritance@1.0::IChild/child", "android.hardware.tests.pointer@1.0::IGraph/graph", "android.hardware.tests.inheritance@1.0::IGrandparent/child", "android.hardware.tests.foo@1.0::IFoo/foo", "android.hidl.manager@1.0::IServiceManager/default", "android.hidl.manager@1.1::IServiceManager/default", }; static const std::set
passthroughSet = { "android.hidl.manager@1.0::IServiceManager/default", "android.hidl.manager@1.1::IServiceManager/default", }; std::set
activeSet; switch(mode) { case BINDERIZED: { activeSet = binderizedSet; } break; case PASSTHROUGH: { activeSet = passthroughSet; } break; default: EXPECT_TRUE(false) << "unrecognized mode"; } EXPECT_OK(manager->list([&activeSet](const hidl_vec
®istered){ std::set
registeredSet; for (size_t i = 0; i < registered.size(); i++) { registeredSet.insert(registered[i]); } std::set
difference; std::set_difference(activeSet.begin(), activeSet.end(), registeredSet.begin(), registeredSet.end(), std::inserter(difference, difference.begin())); EXPECT_EQ(difference.size(), 0u) << "service(s) not registered " << to_string(difference); })); } TEST_F(HidlTest, ServiceListByInterfaceTest) { if (mode != BINDERIZED) { // passthrough service manager does not know about services return; } EXPECT_OK( manager->listByInterface(IParent::descriptor, [](const hidl_vec
& registered) { std::set
registeredSet; for (size_t i = 0; i < registered.size(); i++) { registeredSet.insert(registered[i]); } std::set
activeSet = {"parent", "child"}; std::set
difference; std::set_difference(activeSet.begin(), activeSet.end(), registeredSet.begin(), registeredSet.end(), std::inserter(difference, difference.begin())); EXPECT_EQ(difference.size(), 0u) << "service(s) not registered " << to_string(difference); })); } TEST_F(HidlTest, ServiceListManifestByInterfaceTest) { // system service EXPECT_OK(manager->listManifestByInterface(IServiceManager::descriptor, [](const hidl_vec
& registered) { ASSERT_EQ(1, registered.size()); EXPECT_EQ("default", registered[0]); })); // vendor service (this is required on all devices) EXPECT_OK( manager->listManifestByInterface("android.hardware.configstore@1.0::ISurfaceFlingerConfigs", [](const hidl_vec
& registered) { ASSERT_EQ(1, registered.size()); EXPECT_EQ("default", registered[0]); })); // test service that will never be in a manifest EXPECT_OK(manager->listManifestByInterface( IParent::descriptor, [](const hidl_vec
& registered) { ASSERT_EQ(0, registered.size()); })); // invalid service EXPECT_OK(manager->listManifestByInterface( "!(*#&$ASDASLKDJasdlkjfads", [](const hidl_vec
& registered) { ASSERT_EQ(0, registered.size()); })); } TEST_F(HidlTest, SubInterfaceServiceRegistrationTest) { using ::android::hardware::interfacesEqual; const std::string kInstanceName = "no-matter-what-it-is"; const std::string kOtherName = "something-different"; sp
child = new SimpleChild(); sp
parent = new SimpleParent(); EXPECT_EQ(::android::OK, child->registerAsService(kInstanceName)); EXPECT_EQ(::android::OK, child->registerAsService(kOtherName)); EXPECT_TRUE(interfacesEqual(child, IChild::getService(kInstanceName))); EXPECT_TRUE(interfacesEqual(child, IParent::getService(kInstanceName))); EXPECT_EQ(::android::OK, parent->registerAsService(kInstanceName)); // FALSE since passthrough HAL will return an instance // since binderized instance is nullptr EXPECT_FALSE(interfacesEqual(parent, IChild::getService(kInstanceName))); EXPECT_TRUE(interfacesEqual(parent, IParent::getService(kInstanceName))); // other instance name is unchanged EXPECT_TRUE(interfacesEqual(child, IChild::getService(kOtherName))); EXPECT_TRUE(interfacesEqual(child, IParent::getService(kOtherName))); } TEST_F(HidlTest, ServiceNotificationTest) { if (mode != BINDERIZED) { // service notifications aren't supported in passthrough mode return; } ServiceNotification* notification = new ServiceNotification(); std::string instanceName = "test-instance"; EXPECT_TRUE(IParent::registerForNotifications(instanceName, notification)); EXPECT_EQ(::android::OK, (new SimpleChild())->registerAsService(instanceName)); EXPECT_EQ(::android::OK, (new SimpleParent())->registerAsService(instanceName)); std::unique_lock
lock(notification->mutex); notification->condition.wait_for(lock, std::chrono::milliseconds(500), [¬ification]() { return notification->getRegistrations().size() >= 2; }); std::vector
registrations = notification->getRegistrations(); EXPECT_EQ(registrations.size(), 2u); EXPECT_EQ(to_string(registrations.data(), registrations.size()), std::string("['") + IParent::descriptor + "/" + instanceName + "', '" + IParent::descriptor + "/" + instanceName + "']"); } TEST_F(HidlTest, ServiceUnregisterTest) { const std::string instance = "some-instance-name"; sp
sNotification = new ServiceNotification(); // unregister all EXPECT_TRUE(IParent::registerForNotifications(instance, sNotification)); EXPECT_TRUE(manager->unregisterForNotifications("", "", sNotification)); // unregister all with instance name EXPECT_TRUE(IParent::registerForNotifications(instance, sNotification)); EXPECT_TRUE(manager->unregisterForNotifications(IParent::descriptor, "", sNotification)); // unregister package listener EXPECT_TRUE(IParent::registerForNotifications("", sNotification)); EXPECT_TRUE(manager->unregisterForNotifications(IParent::descriptor, "", sNotification)); // unregister listener for specific service and name EXPECT_TRUE(IParent::registerForNotifications(instance, sNotification)); EXPECT_TRUE(manager->unregisterForNotifications(IParent::descriptor, instance, sNotification)); EXPECT_FALSE(manager->unregisterForNotifications("", "", sNotification)); // TODO(b/32837397): remote destructor is lazy // wp
wNotification = sNotification; // sNotification = nullptr; // EXPECT_EQ(nullptr, wNotification.promote().get()); } TEST_F(HidlTest, ServiceAllNotificationTest) { ServiceNotification* notification = new ServiceNotification(); std::string instanceOne = "test-instance-one"; std::string instanceTwo = "test-instance-two"; EXPECT_TRUE(ISimple::registerForNotifications("", notification)); Simple* instanceA = new Simple(1); EXPECT_EQ(::android::OK, instanceA->registerAsService(instanceOne)); Simple* instanceB = new Simple(2); EXPECT_EQ(::android::OK, instanceB->registerAsService(instanceTwo)); std::unique_lock
lock(notification->mutex); notification->condition.wait_for(lock, std::chrono::milliseconds(500), [¬ification]() { return notification->getRegistrations().size() >= 2; }); std::vector
registrations = notification->getRegistrations(); std::sort(registrations.begin(), registrations.end()); EXPECT_EQ(registrations.size(), 2u); std::string descriptor = ISimple::descriptor; EXPECT_EQ( to_string(registrations.data(), registrations.size()), "['" + descriptor + "/" + instanceOne + "', '" + descriptor + "/" + instanceTwo + "']"); } TEST_F(HidlTest, DebugDumpTest) { EXPECT_OK(manager->debugDump([](const auto& list) { for (const auto& debugInfo : list) { FQName name; EXPECT_TRUE(FQName::parse(debugInfo.interfaceName, &name)) << debugInfo.interfaceName; EXPECT_TRUE(debugInfo.instanceName.size() > 0); } })); } TEST_F(HidlTest, InterfacesEqualTest) { using android::hardware::interfacesEqual; sp
service1 = IParent::getService("child", mode == PASSTHROUGH /* getStub */); sp
service2 = service1; // Passthrough services are reinstantiated whenever getService is called. if (mode == BINDERIZED) { service2 = IParent::getService("child"); } EXPECT_NE(nullptr, service1.get()); EXPECT_NE(nullptr, service2.get()); EXPECT_TRUE(interfacesEqual(service1, service2)); sp
child = IChild::castFrom(service1); EXPECT_NE(nullptr, child.get()); // it is actually a child EXPECT_TRUE(interfacesEqual(service1, child)); EXPECT_TRUE(interfacesEqual(service2, child)); } TEST_F(HidlTest, TestToken) { using android::hardware::interfacesEqual; Return
ret = tokenManager->createToken(manager, [&] (const hidl_vec
&token) { Return
> retService = tokenManager->get(token); EXPECT_OK(retService); if (retService.isOk()) { sp
service = retService; EXPECT_NE(nullptr, service.get()); sp
retManager = IServiceManager::castFrom(service); EXPECT_TRUE(interfacesEqual(manager, retManager)); } Return
unregisterRet = tokenManager->unregister(token); EXPECT_OK(unregisterRet); if (unregisterRet.isOk()) { EXPECT_TRUE(unregisterRet); } }); EXPECT_OK(ret); } TEST_F(HidlTest, TestSharedMemory) { const uint8_t kValue = 0xCA; hidl_memory mem_copy; EXPECT_OK(ashmemAllocator->allocate(1024, [&](bool success, const hidl_memory& mem) { EXPECT_EQ(success, true); sp
memory = mapMemory(mem); EXPECT_NE(memory, nullptr); uint8_t* data = static_cast
(static_cast
(memory->getPointer())); EXPECT_NE(data, nullptr); EXPECT_EQ(memory->getSize(), mem.size()); memory->update(); memset(data, 0, memory->getSize()); memory->commit(); mem_copy = mem; memoryTest->fillMemory(mem, kValue); memory->read(); for (size_t i = 0; i < mem.size(); i++) { EXPECT_EQ(kValue, data[i]); } memory->commit(); })); // Test the memory persists after the call sp
memory = mapMemory(mem_copy); EXPECT_NE(memory, nullptr); uint8_t* data = static_cast
(static_cast
(memory->getPointer())); EXPECT_NE(data, nullptr); memory->read(); for (size_t i = 0; i < mem_copy.size(); i++) { EXPECT_EQ(kValue, data[i]); } memory->commit(); hidl_memory mem_move(std::move(mem_copy)); ASSERT_EQ(nullptr, mem_copy.handle()); ASSERT_EQ(0UL, mem_copy.size()); ASSERT_EQ("", mem_copy.name()); memory.clear(); memory = mapMemory(mem_move); EXPECT_NE(memory, nullptr); data = static_cast
(static_cast
(memory->getPointer())); EXPECT_NE(data, nullptr); memory->read(); for (size_t i = 0; i < mem_move.size(); i++) { EXPECT_EQ(kValue, data[i]); } memory->commit(); } TEST_F(HidlTest, BatchSharedMemory) { const uint8_t kValue = 0xCA; const uint64_t kBatchSize = 2; hidl_vec
batchCopy; EXPECT_OK(ashmemAllocator->batchAllocate(1024, kBatchSize, [&](bool success, const hidl_vec
& batch) { ASSERT_TRUE(success); EXPECT_EQ(kBatchSize, batch.size()); for (uint64_t i = 0; i < batch.size(); i++) { sp
memory = mapMemory(batch[i]); EXPECT_NE(nullptr, memory.get()); uint8_t* data = static_cast
(static_cast
(memory->getPointer())); EXPECT_NE(nullptr, data); EXPECT_EQ(memory->getSize(), batch[i].size()); memory->update(); memset(data, kValue, memory->getSize()); memory->commit(); } batchCopy = batch; })); for (uint64_t i = 0; i < batchCopy.size(); i++) { // Test the memory persists after the call sp
memory = mapMemory(batchCopy[i]); EXPECT_NE(memory, nullptr); uint8_t* data = static_cast
(static_cast
(memory->getPointer())); EXPECT_NE(data, nullptr); memory->read(); for (size_t i = 0; i < batchCopy[i].size(); i++) { EXPECT_EQ(kValue, data[i]); } memory->commit(); } } TEST_F(HidlTest, MemoryBlock) { const uint8_t kValue = 0xCA; using ::android::hardware::IBinder; using ::android::hardware::interfacesEqual; using ::android::hardware::toBinder; sp
mem; EXPECT_OK(ashmemAllocator->allocate(1024, [&](bool success, const hidl_memory& _mem) { ASSERT_TRUE(success); mem = HidlMemory::getInstance(_mem); })); memoryTest->set(*mem); Return
> tokenRet = memoryTest->get(); EXPECT_OK(tokenRet); sp
token = tokenRet; EXPECT_NE(nullptr, token.get()); EXPECT_OK(token->get([&](const hidl_memory& mem) { sp
memory = mapMemory(mem); EXPECT_NE(nullptr, memory.get()); uint8_t* data = static_cast
(static_cast
(memory->getPointer())); EXPECT_NE(data, nullptr); EXPECT_EQ(memory->getSize(), mem.size()); memory->update(); memset(data, 0, memory->getSize()); memory->commit(); memoryTest->fillMemory(mem, kValue); memory->commit(); })); MemoryBlock blk = {token, 0x200 /* size */, 0x100 /* offset */}; EXPECT_OK(memoryTest->haveSomeMemoryBlock(blk, [&](const MemoryBlock& blkBack) { sp
tokenBack = blkBack.token; EXPECT_TRUE(interfacesEqual(token, tokenBack)); EXPECT_EQ(blkBack.size, 0x200ULL); EXPECT_EQ(blkBack.offset, 0x100ULL); blk = blkBack; })); sp
mtoken = blk.token; mtoken->get([&](const hidl_memory& mem) { sp
memory = mapMemory(mem); uint8_t* data = static_cast
(static_cast
(memory->getPointer())); EXPECT_NE(data, nullptr); for (size_t i = 0; i < mem.size(); i++) { EXPECT_EQ(kValue, data[i]); } }); } TEST_F(HidlTest, NullSharedMemory) { hidl_memory memory{}; EXPECT_EQ(nullptr, memory.handle()); EXPECT_OK(memoryTest->haveSomeMemory(memory, [&](const hidl_memory &mem) { EXPECT_EQ(nullptr, mem.handle()); })); } TEST_F(HidlTest, FooGetDescriptorTest) { EXPECT_OK(foo->interfaceDescriptor([&] (const auto &desc) { EXPECT_EQ(desc, mode == BINDERIZED ? IBar::descriptor // service is actually IBar in binderized mode : IFoo::descriptor); // dlopened, so service is IFoo })); } TEST_F(HidlTest, FooConvertToBoolIfSmallTest) { hidl_vec
u = { {.intValue = 7}, {.intValue = 0}, {.intValue = 1}, {.intValue = 8}, }; EXPECT_OK(foo->convertToBoolIfSmall(IFoo::Discriminator::INT, u, [&](const auto& res) { ASSERT_EQ(4u, res.size()); EXPECT_EQ(IFoo::Discriminator::INT, res[0].discriminator); EXPECT_EQ(u[0].intValue, res[0].value.intValue); EXPECT_EQ(IFoo::Discriminator::BOOL, res[1].discriminator); EXPECT_EQ(static_cast
(u[1].intValue), res[1].value.boolValue); EXPECT_EQ(IFoo::Discriminator::BOOL, res[2].discriminator); EXPECT_EQ(static_cast
(u[2].intValue), res[2].value.boolValue); EXPECT_EQ(IFoo::Discriminator::INT, res[3].discriminator); EXPECT_EQ(u[3].intValue, res[3].value.intValue); })); } TEST_F(HidlTest, FooDoThisTest) { ALOGI("CLIENT call doThis."); EXPECT_OK(foo->doThis(1.0f)); ALOGI("CLIENT doThis returned."); } TEST_F(HidlTest, FooDoThatAndReturnSomethingTest) { ALOGI("CLIENT call doThatAndReturnSomething."); int32_t result = foo->doThatAndReturnSomething(2.0f); ALOGI("CLIENT doThatAndReturnSomething returned %d.", result); EXPECT_EQ(result, 666); } TEST_F(HidlTest, FooDoQuiteABitTest) { ALOGI("CLIENT call doQuiteABit"); double something = foo->doQuiteABit(1, 2, 3.0f, 4.0); ALOGI("CLIENT doQuiteABit returned %f.", something); EXPECT_DOUBLE_EQ(something, 666.5); } TEST_F(HidlTest, FooDoSomethingElseTest) { ALOGI("CLIENT call doSomethingElse"); hidl_array
param; for (size_t i = 0; i < sizeof(param) / sizeof(param[0]); ++i) { param[i] = i; } EXPECT_OK(foo->doSomethingElse(param, [&](const auto &something) { ALOGI("CLIENT doSomethingElse returned %s.", to_string(something).c_str()); int32_t expect[] = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 2}; EXPECT_TRUE(isArrayEqual(something, expect, 32)); })); } TEST_F(HidlTest, FooDoStuffAndReturnAStringTest) { ALOGI("CLIENT call doStuffAndReturnAString"); EXPECT_OK(foo->doStuffAndReturnAString([&](const auto &something) { ALOGI("CLIENT doStuffAndReturnAString returned '%s'.", something.c_str()); EXPECT_STREQ(something.c_str(), "Hello, world"); EXPECT_EQ(strlen("Hello, world"), something.size()); })); } TEST_F(HidlTest, FooMapThisVectorTest) { hidl_vec
vecParam; vecParam.resize(10); for (size_t i = 0; i < 10; ++i) { vecParam[i] = i; } EXPECT_OK(foo->mapThisVector(vecParam, [&](const auto &something) { ALOGI("CLIENT mapThisVector returned %s.", to_string(something).c_str()); int32_t expect[] = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18}; EXPECT_TRUE(isArrayEqual(something, expect, something.size())); })); } TEST_F(HidlTest, WrapTest) { if (!gHidlEnvironment->enableDelayMeasurementTests) { return; } using ::android::hardware::tests::foo::V1_0::BnHwSimple; using ::android::hardware::tests::foo::V1_0::BsSimple; using ::android::hardware::tests::foo::V1_0::BpHwSimple; using ::android::hardware::details::HidlInstrumentor; nsecs_t now; int i = 0; now = systemTime(); new BnHwSimple(new Simple(1)); EXPECT_LT(systemTime() - now, 2000000) << " for BnHwSimple(nonnull)"; now = systemTime(); new BnHwSimple(nullptr); EXPECT_LT(systemTime() - now, 2000000) << " for BnHwSimple(null)"; now = systemTime(); new BsSimple(new Simple(1)); EXPECT_LT(systemTime() - now, 2000000) << " for BsSimple(nonnull)"; now = systemTime(); new BsSimple(nullptr); EXPECT_LT(systemTime() - now, 2000000) << " for BsSimple(null)"; now = systemTime(); new BpHwSimple(nullptr); EXPECT_LT(systemTime() - now, 2000000) << " for BpHwSimple(null)"; now = systemTime(); new ::android::hardware::details::HidlInstrumentor("", ""); EXPECT_LT(systemTime() - now, 2000000) << " for HidlInstrumentor"; now = systemTime(); i++; EXPECT_LT(systemTime() - now, 1000) << " for nothing"; } TEST_F(HidlTest, FooCallMeTest) { if (!gHidlEnvironment->enableDelayMeasurementTests) { return; } sp
fooCb = new FooCallback(); ALOGI("CLIENT call callMe."); // callMe is oneway, should return instantly. nsecs_t now; now = systemTime(); EXPECT_OK(foo->callMe(fooCb)); EXPECT_LT(systemTime() - now, ONEWAY_TOLERANCE_NS); ALOGI("CLIENT callMe returned."); // Bar::callMe will invoke three methods on FooCallback; one will return // right away (even though it is a two-way method); the second one will // block Bar for DELAY_S seconds, and the third one will return // to Bar right away (is oneway) but will itself block for DELAY_S seconds. // We need a way to make sure that these three things have happened within // 2*DELAY_S seconds plus some small tolerance. // // Method FooCallback::reportResults() takes a timeout parameter. It blocks for // that length of time, while waiting for the three methods above to // complete. It returns the information of whether each method was invoked, // as well as how long the body of the method took to execute. We verify // the information returned by reportResults() against the timeout we pass (which // is long enough for the method bodies to execute, plus tolerance), and // verify that eachof them executed, as expected, and took the length of // time to execute that we also expect. const nsecs_t waitNs = 3 * DELAY_NS + TOLERANCE_NS; const nsecs_t reportResultsNs = 2 * DELAY_NS + TOLERANCE_NS; ALOGI("CLIENT: Waiting for up to %" PRId64 " seconds.", nanoseconds_to_seconds(waitNs)); fooCb->reportResults(waitNs, [&](int64_t timeLeftNs, const hidl_array
&invokeResults) { ALOGI("CLIENT: FooCallback::reportResults() is returning data."); ALOGI("CLIENT: Waited for %" PRId64 " milliseconds.", nanoseconds_to_milliseconds(waitNs - timeLeftNs)); EXPECT_LE(waitNs - timeLeftNs, reportResultsNs) << "waited for " << (timeLeftNs >= 0 ? "" : "more than ") << (timeLeftNs >= 0 ? (waitNs - timeLeftNs) : waitNs) << "ns, expect to finish in " << reportResultsNs << " ns"; // two-way method, was supposed to return right away EXPECT_TRUE(invokeResults[0].invoked); EXPECT_LE(invokeResults[0].timeNs, invokeResults[0].callerBlockedNs); EXPECT_LE(invokeResults[0].callerBlockedNs, TOLERANCE_NS); // two-way method, was supposed to block caller for DELAY_NS EXPECT_TRUE(invokeResults[1].invoked); EXPECT_LE(invokeResults[1].timeNs, invokeResults[1].callerBlockedNs); EXPECT_LE(invokeResults[1].callerBlockedNs, DELAY_NS + TOLERANCE_NS); // one-way method, do not block caller, but body was supposed to block for DELAY_NS EXPECT_TRUE(invokeResults[2].invoked); EXPECT_LE(invokeResults[2].callerBlockedNs, ONEWAY_TOLERANCE_NS); EXPECT_LE(invokeResults[2].timeNs, DELAY_NS + TOLERANCE_NS); }); } TEST_F(HidlTest, FooUseAnEnumTest) { ALOGI("CLIENT call useAnEnum."); IFoo::SomeEnum sleepy = foo->useAnEnum(IFoo::SomeEnum::quux); ALOGI("CLIENT useAnEnum returned %u", (unsigned)sleepy); EXPECT_EQ(sleepy, IFoo::SomeEnum::goober); } TEST_F(HidlTest, FooHaveAGooberTest) { hidl_vec
gooberVecParam; gooberVecParam.resize(2); gooberVecParam[0].name = "Hello"; gooberVecParam[1].name = "World"; ALOGI("CLIENT call haveAGooberVec."); EXPECT_OK(foo->haveAGooberVec(gooberVecParam)); ALOGI("CLIENT haveAGooberVec returned."); ALOGI("CLIENT call haveaGoober."); EXPECT_OK(foo->haveAGoober(gooberVecParam[0])); ALOGI("CLIENT haveaGoober returned."); ALOGI("CLIENT call haveAGooberArray."); hidl_array
gooberArrayParam; EXPECT_OK(foo->haveAGooberArray(gooberArrayParam)); ALOGI("CLIENT haveAGooberArray returned."); } TEST_F(HidlTest, FooHaveATypeFromAnotherFileTest) { ALOGI("CLIENT call haveATypeFromAnotherFile."); Abc abcParam{}; abcParam.x = "alphabet"; abcParam.y = 3.14f; native_handle_t *handle = native_handle_create(0, 0); abcParam.z = handle; EXPECT_OK(foo->haveATypeFromAnotherFile(abcParam)); ALOGI("CLIENT haveATypeFromAnotherFile returned."); native_handle_delete(handle); abcParam.z = nullptr; } TEST_F(HidlTest, FooHaveSomeStringsTest) { ALOGI("CLIENT call haveSomeStrings."); hidl_array
stringArrayParam; stringArrayParam[0] = "What"; stringArrayParam[1] = "a"; stringArrayParam[2] = "disaster"; EXPECT_OK(foo->haveSomeStrings( stringArrayParam, [&](const auto &out) { ALOGI("CLIENT haveSomeStrings returned %s.", to_string(out).c_str()); EXPECT_EQ(to_string(out), "['Hello', 'World']"); })); ALOGI("CLIENT haveSomeStrings returned."); } TEST_F(HidlTest, FooHaveAStringVecTest) { ALOGI("CLIENT call haveAStringVec."); hidl_vec
stringVecParam; stringVecParam.resize(3); stringVecParam[0] = "What"; stringVecParam[1] = "a"; stringVecParam[2] = "disaster"; EXPECT_OK(foo->haveAStringVec( stringVecParam, [&](const auto &out) { ALOGI("CLIENT haveAStringVec returned %s.", to_string(out).c_str()); EXPECT_EQ(to_string(out), "['Hello', 'World']"); })); ALOGI("CLIENT haveAStringVec returned."); } TEST_F(HidlTest, FooTransposeMeTest) { hidl_array
in; float k = 1.0f; for (size_t i = 0; i < 3; ++i) { for (size_t j = 0; j < 5; ++j, ++k) { in[i][j] = k; } } ALOGI("CLIENT call transposeMe(%s).", to_string(in).c_str()); EXPECT_OK(foo->transposeMe( in, [&](const auto &out) { ALOGI("CLIENT transposeMe returned %s.", to_string(out).c_str()); for (size_t i = 0; i < 3; ++i) { for (size_t j = 0; j < 5; ++j) { EXPECT_EQ(out[j][i], in[i][j]); } } })); } TEST_F(HidlTest, FooCallingDrWhoTest) { IFoo::MultiDimensional in; size_t k = 0; for (size_t i = 0; i < 5; ++i) { for (size_t j = 0; j < 3; ++j, ++k) { in.quuxMatrix[i][j].first = ("First " + std::to_string(k)).c_str(); in.quuxMatrix[i][j].last = ("Last " + std::to_string(15-k)).c_str(); } } ALOGI("CLIENT call callingDrWho(%s).", MultiDimensionalToString(in).c_str()); EXPECT_OK(foo->callingDrWho( in, [&](const auto &out) { ALOGI("CLIENT callingDrWho returned %s.", MultiDimensionalToString(out).c_str()); size_t k = 0; for (size_t i = 0; i < 5; ++i) { for (size_t j = 0; j < 3; ++j, ++k) { EXPECT_STREQ( out.quuxMatrix[i][j].first.c_str(), in.quuxMatrix[4 - i][2 - j].last.c_str()); EXPECT_STREQ( out.quuxMatrix[i][j].last.c_str(), in.quuxMatrix[4 - i][2 - j].first.c_str()); } } })); } static std::string numberToEnglish(int x) { static const char *const kDigits[] = { "zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine", }; if (x < 0) { return "negative " + numberToEnglish(-x); } if (x < 10) { return kDigits[x]; } if (x <= 15) { static const char *const kSpecialTens[] = { "ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen", }; return kSpecialTens[x - 10]; } if (x < 20) { return std::string(kDigits[x % 10]) + "teen"; } if (x < 100) { static const char *const kDecades[] = { "twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety", }; return std::string(kDecades[x / 10 - 2]) + kDigits[x % 10]; } return "positively huge!"; } TEST_F(HidlTest, FooTransposeTest) { IFoo::StringMatrix5x3 in; for (int i = 0; i < 5; ++i) { for (int j = 0; j < 3; ++j) { in.s[i][j] = numberToEnglish(3 * i + j + 1).c_str(); } } EXPECT_OK(foo->transpose( in, [&](const auto &out) { EXPECT_EQ( to_string(out), "[['one', 'four', 'seven', 'ten', 'thirteen'], " "['two', 'five', 'eight', 'eleven', 'fourteen'], " "['three', 'six', 'nine', 'twelve', 'fifteen']]"); })); } TEST_F(HidlTest, FooTranspose2Test) { hidl_array
in; for (int i = 0; i < 5; ++i) { for (int j = 0; j < 3; ++j) { in[i][j] = numberToEnglish(3 * i + j + 1).c_str(); } } EXPECT_OK(foo->transpose2( in, [&](const auto &out) { EXPECT_EQ( to_string(out), "[['one', 'four', 'seven', 'ten', 'thirteen'], " "['two', 'five', 'eight', 'eleven', 'fourteen'], " "['three', 'six', 'nine', 'twelve', 'fifteen']]"); })); } TEST_F(HidlTest, FooNullNativeHandleTest) { Abc xyz; xyz.z = nullptr; EXPECT_OK(bar->expectNullHandle(nullptr, xyz, [](bool hIsNull, bool xyzHasNull) { EXPECT_TRUE(hIsNull); EXPECT_TRUE(xyzHasNull); })); } TEST_F(HidlTest, FooNullSynchronousCallbackTest) { Return
ret = foo->echoNullInterface(nullptr, nullptr /* synchronous callback */); EXPECT_FAIL(ret); EXPECT_TRUE(ret.description().find("Null synchronous callback passed") != std::string::npos); } TEST_F(HidlTest, FooNullCallbackTest) { EXPECT_OK(foo->echoNullInterface(nullptr, [](const auto receivedNull, const auto &intf) { EXPECT_TRUE(receivedNull); EXPECT_EQ(intf, nullptr); })); } TEST_F(HidlTest, StructWithFmq) { IFoo::WithFmq w = { .scatterGathered = { .descSync = {std::vector
(), native_handle_create(0, 1), 5}, }, .containsPointer = { .descSync = {std::vector
(), native_handle_create(0, 1), 5}, .foo = nullptr, }, }; EXPECT_OK(foo->repeatWithFmq(w, [&](const IFoo::WithFmq& returned) { checkMQDescriptorEquality(w.scatterGathered.descSync, returned.scatterGathered.descSync); checkMQDescriptorEquality(w.containsPointer.descSync, returned.containsPointer.descSync); EXPECT_EQ(w.containsPointer.foo, returned.containsPointer.foo); })); } TEST_F(HidlTest, FooNonNullCallbackTest) { hidl_array
in; EXPECT_FAIL(foo->transpose2(in, nullptr /* _hidl_cb */)); } TEST_F(HidlTest, FooSendVecTest) { hidl_vec
in; in.resize(16); for (size_t i = 0; i < in.size(); ++i) { in[i] = i; } EXPECT_OK(foo->sendVec( in, [&](const auto &out) { EXPECT_EQ(to_string(in), to_string(out)); })); } TEST_F(HidlTest, FooSendEmptyVecTest) { hidl_vec
in; EXPECT_OK(foo->sendVec( in, [&](const auto &out) { EXPECT_EQ(out.size(), 0u); EXPECT_EQ(to_string(in), to_string(out)); })); } TEST_F(HidlTest, FooHaveAVectorOfInterfacesTest) { hidl_vec
> in; in.resize(16); for (size_t i = 0; i < in.size(); ++i) { in[i] = new Simple(i); } EXPECT_OK(foo->haveAVectorOfInterfaces( in, [&](const auto &out) { EXPECT_EQ(in.size(), out.size()); for (size_t i = 0; i < in.size(); ++i) { int32_t inCookie = in[i]->getCookie(); int32_t outCookie = out[i]->getCookie(); EXPECT_EQ(inCookie, outCookie); } })); } TEST_F(HidlTest, FooHaveAVectorOfGenericInterfacesTest) { hidl_vec
> in; in.resize(16); for (size_t i = 0; i < in.size(); ++i) { sp
s = new Simple(i); in[i] = s; } EXPECT_OK(foo->haveAVectorOfGenericInterfaces( in, [&](const auto &out) { EXPECT_EQ(in.size(), out.size()); EXPECT_OK(out[0]->interfaceDescriptor([](const auto &name) { ASSERT_STREQ(name.c_str(), ISimple::descriptor); })); for (size_t i = 0; i < in.size(); ++i) { sp
inSimple = ISimple::castFrom(in[i]); sp
outSimple = ISimple::castFrom(out[i]); ASSERT_NE(inSimple.get(), nullptr); ASSERT_NE(outSimple.get(), nullptr); EXPECT_EQ(in[i], inSimple.get()); // pointers must be equal! int32_t inCookie = inSimple->getCookie(); int32_t outCookie = outSimple->getCookie(); EXPECT_EQ(inCookie, outCookie); } })); } TEST_F(HidlTest, FooStructEmbeddedHandleTest) { EXPECT_OK(foo->createMyHandle([&](const auto &myHandle) { EXPECT_EQ(myHandle.guard, 666); const native_handle_t* handle = myHandle.h.getNativeHandle(); EXPECT_EQ(handle->numInts, 10); EXPECT_EQ(handle->numFds, 0); int data[] = {2,3,5,7,11,13,17,19,21,23}; EXPECT_ARRAYEQ(handle->data, data, 10); })); EXPECT_OK(foo->closeHandles()); } TEST_F(HidlTest, FooHandleVecTest) { EXPECT_OK(foo->createHandles(3, [&](const auto &handles) { EXPECT_EQ(handles.size(), 3ull); int data[] = {2,3,5,7,11,13,17,19,21,23}; for (size_t i = 0; i < 3; i++) { const native_handle_t *h = handles[i]; EXPECT_EQ(h->numInts, 10) << " for element " << i; EXPECT_EQ(h->numFds, 0) << " for element " << i; EXPECT_ARRAYEQ(h->data, data, 10); } })); EXPECT_OK(foo->closeHandles()); } TEST_F(HidlTest, BazStructWithInterfaceTest) { using ::android::hardware::interfacesEqual; const std::string testString = "Hello, World!"; const std::array
testArray{-1, -2, -3, 0, 1, 2, 3}; const hidl_vec
testStrings{"So", "Many", "Words"}; const hidl_vec
testVector{false, true, false, true, true, true}; hidl_vec
goldenResult(testVector.size()); for (size_t i = 0; i < testVector.size(); i++) { goldenResult[i] = !testVector[i]; } IBaz::StructWithInterface swi; swi.number = 42; swi.array = testArray; swi.oneString = testString; swi.vectorOfStrings = testStrings; swi.dummy = baz; EXPECT_OK(baz->haveSomeStructWithInterface(swi, [&](const IBaz::StructWithInterface& swiBack) { EXPECT_EQ(42, swiBack.number); for (size_t i = 0; i < testArray.size(); i++) { EXPECT_EQ(testArray[i], swiBack.array[i]); } EXPECT_EQ(testString, std::string(swiBack.oneString)); EXPECT_EQ(testStrings, swiBack.vectorOfStrings); EXPECT_TRUE(interfacesEqual(swi.dummy, swiBack.dummy)); EXPECT_OK(swiBack.dummy->someBoolVectorMethod( testVector, [&](const hidl_vec