#!/bin/ipython
import argparse
import numpy as np
import matplotlib.pyplot as plt
import sys
## general defines
linecolor = "#%x%x%x" % ( 217, 234, 211 )
markercolor = "#%x%x%x" % ( 217/2, 234/2, 211/2 )
# Draw pretty plot
def doc_plot(fig, x, y):
plt.figure(fig.number)
fig.clear()
lines, = plt.plot(x,y)
lines.set_color(linecolor)
lines.set_linewidth(4)
lines.set_marker('o')
lines.set_markeredgecolor(markercolor)
lines.set_markersize(6)
lines.set_markeredgewidth(2)
axes = fig.get_axes()[0]
axes.set_aspect(1)
axes.set_ybound(0,1)
axes.set_xbound(0,1)
axes.grid(True)
axes.xaxis.label.set_text(r'$P_{IN}$')
axes.xaxis.label.set_fontsize(14)
axes.yaxis.label.set_text(r'$P_{OUT}$')
axes.yaxis.label.set_fontsize(14)
# Print out interleaved coefficients for HAL3 tonemap curve tags
def doc_coeff(x,y):
coeffs = np.vstack((x, y)).reshape(-1,order='F')
coeff_str = "[ "
for val in coeffs[:-1]:
coeff_str += "%0.4f, " % val
coeff_str += "%0.4f ]" % coeffs[-1]
print coeff_str
def doc_map(fig, imgMap, index):
plt.figure(fig.number)
fig.clear()
plt.imshow(imgMap - 1, interpolation='nearest')
for x in range(0, np.size(imgMap, 1)):
for y in range(0, np.size(imgMap, 0)):
plt.text(x,y, imgMap[y,x,index], color='white')
axes = fig.get_axes()[0]
axes.set_xticks(range(0, np.size(imgMap, 1)))
axes.set_yticks(range(0, np.size(imgMap, 0)))
## Check arguments
parser = argparse.ArgumentParser(description='Draw plots for camera HAL3.x implementation spec doc')
parser.add_argument('--save_figures', default=False, action='store_true',
help='Save figures as pngs')
args = parser.parse_args()
## Linear mapping
x_lin = np.linspace(0,1,2)
y_lin = x_lin
lin_fig = plt.figure(1)
doc_plot(lin_fig, x_lin, y_lin)
lin_title = 'Linear tonemapping curve'
plt.title(lin_title)
print lin_title
doc_coeff(x_lin, y_lin)
if args.save_figures:
plt.savefig('linear_tonemap.png',bbox_inches='tight')
## Inverse mapping
x_inv = x_lin
y_inv = 1 - x_lin
inv_fig = plt.figure(2)
doc_plot(inv_fig, x_inv, y_inv)
inv_title = 'Inverting tonemapping curve'
plt.title(inv_title)
print inv_title
doc_coeff(x_inv, y_inv)
if args.save_figures:
plt.savefig('inverse_tonemap.png',bbox_inches='tight')
## Gamma 1/2.2
x_gamma = np.linspace(0, 1, 16);
y_gamma = x_gamma**(1/2.2)
gamma_fig = plt.figure(3)
doc_plot(gamma_fig, x_gamma, y_gamma)
gamma_title = r'$\gamma=1/2.2$ tonemapping curve'
plt.title(gamma_title)
print gamma_title
doc_coeff(x_gamma, y_gamma)
if args.save_figures:
plt.savefig('gamma_tonemap.png',bbox_inches='tight')
## sRGB curve
x_srgb = x_gamma
y_srgb = np.where(x_srgb <= 0.0031308, x_srgb * 12.92, 1.055*x_srgb**(1/2.4)-0.055)
srgb_fig = plt.figure(4)
doc_plot(srgb_fig, x_srgb, y_srgb)
srgb_title = 'sRGB tonemapping curve'
plt.title(srgb_title)
print srgb_title
doc_coeff(x_srgb, y_srgb)
if args.save_figures:
plt.savefig('srgb_tonemap.png',bbox_inches='tight')
## Sample lens shading map
shadingMapSize = np.array([3, 4])
shadingMap1 = np.array(
[ 1.3, 1.2, 1.15, 1.2, 1.2, 1.2, 1.15, 1.2, 1.1, 1.2, 1.2, 1.2, 1.3, 1.2, 1.3, 1.3,
1.2, 1.2, 1.25, 1.1, 1.1, 1.1, 1.1, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.3, 1.25, 1.2,
1.3, 1.2, 1.2, 1.3, 1.2, 1.15, 1.1, 1.2, 1.2, 1.1, 1.0, 1.2, 1.3, 1.15, 1.2, 1.3 ])
redMap = shadingMap1[0::4].reshape(shadingMapSize)
greenEMap = shadingMap1[1::4].reshape(shadingMapSize)
greenOMap = shadingMap1[2::4].reshape(shadingMapSize)
blueMap = shadingMap1[3::4].reshape(shadingMapSize)
rgbMap = np.dstack( (redMap, (greenEMap + greenOMap) / 2, blueMap) )
redMap = np.dstack( (redMap, np.zeros(shadingMapSize), np.zeros(shadingMapSize) ) )
greenEMap = np.dstack( (np.zeros(shadingMapSize), greenEMap, np.zeros(shadingMapSize) ) )
greenOMap = np.dstack( (np.zeros(shadingMapSize), greenOMap, np.zeros(shadingMapSize) ) )
blueMap = np.dstack( (np.zeros(shadingMapSize), np.zeros(shadingMapSize), blueMap ) )
redImg = plt.figure(5)
doc_map(redImg, redMap, 0)
plt.title('Red lens shading map')
if args.save_figures:
plt.savefig('red_shading.png',bbox_inches='tight')
greenEImg = plt.figure(6)
doc_map(greenEImg, greenEMap, 1)
plt.title('Green (even rows) lens shading map')
if args.save_figures:
plt.savefig('green_e_shading.png',bbox_inches='tight')
greenOImg = plt.figure(7)
doc_map(greenOImg, greenOMap, 1)
plt.title('Green (odd rows) lens shading map')
if args.save_figures:
plt.savefig('green_o_shading.png',bbox_inches='tight')
blueImg = plt.figure(8)
doc_map(blueImg, blueMap, 2)
plt.title('Blue lens shading map')
if args.save_figures:
plt.savefig('blue_shading.png',bbox_inches='tight')
rgbImg = plt.figure(9)
rgbImg.clear()
plt.imshow(1/rgbMap,interpolation='bicubic')
axes = rgbImg.get_axes()[0]
axes.set_xticks(range(0, np.size(rgbMap, 1)))
axes.set_yticks(range(0, np.size(rgbMap, 0)))
plt.title('Image of uniform white wall (inverse shading map)')
if args.save_figures:
plt.savefig('inv_shading.png',bbox_inches='tight')
# Rec. 709
x_rec709 = x_gamma
y_rec709 = np.where(x_rec709 <= 0.018, x_rec709 * 4.500, 1.099*x_rec709**0.45-0.099)
rec709_fig = plt.figure(10)
doc_plot(rec709_fig, x_rec709, y_rec709)
rec709_title = 'Rec. 709 tonemapping curve'
plt.title(rec709_title)
print rec709_title
doc_coeff(x_rec709, y_rec709)
if args.save_figures:
plt.savefig('rec709_tonemap.png',bbox_inches='tight')
# Show figures
plt.show()